Bordbar-Khiabani, Aydin; Gasik, Michael

Electrochemical behavior of additively manufactured patterned titanium alloys under simulated normal, inflammatory, and severe inflammatory conditions

Published in:
Journal of Materials Research and Technology

DOI:
10.1016/j.jmrt.2023.07.113

Published: 01/09/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Electrochemical behavior of additively manufactured patterned titanium alloys under simulated normal, inflammatory, and severe inflammatory conditions

Aydin Bordbar-Khiabani* , Michael Gasik
Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland

Abstract
The electrochemical behavior of a biomaterial surface in local conditions is a significant factor affecting the success of the implant placement. This is of a particular importance of metallic biomaterials which can undergo oxidation, corrosion and subsequent degradation. This study reports new data on the electrochemical behavior of additively manufactured (AM) patterned titanium alloys, analyzed after 1 and 12 h immersion in three different media mimicking normal, inflammatory and severe inflammatory conditions. Polarization study showed that corrosion resistance increases with increasing immersion time in all cases. It was found that in inflammatory condition a destructive effect on the passive layer’s resistance was triggered by H2O2 whereas in severe inflammatory condition, albumin, lactate, and H2O2 all have a synergistic effect towards decreasing the corrosion resistance of patterned titanium layers. Electrochemical impedance data suggests that in the severe inflammatory condition the charged albumins are attracting to the localized pitting areas, changing diffusion transport of corrosive species at the interface of the metal/passive layer. The electrochemical tests also proven that laser-assisted patterned titanium alloys surfaces have an improved corrosion resistance in simulated solutions compared to untreated titanium of the same composition. It is suggested that new surface topography and wettability are also positive factors contributing to this improved corrosion performance in patterned specimens.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction
Commercially pure titanium (CP—Ti, Grade 2, UNS R50400) and Ti–6Al–4V alloy (Grade 5 alloy, UNS R56400) are two among the most commonly used metallic biomaterials in medical implants devices [1,2]. They are usually deployed for hard tissue (bone) replacement because of their low specific weight, high strength, good corrosion resistance, and proper biocompatibility [3,4]. Since the nature of the implant surfaces influences the adhesion of cells to implanted biomaterials, the surface characteristics and the ability of adjusting them are

* Corresponding author.
E-mail address: aydin.bordbarkhiabani@aalto.fi (A. Bordbar-Khiabani).
https://doi.org/10.1016/j.jmrt.2023.07.113
2238-7854/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
important to ensure optimal bone-to-implant integration [5,6]. For example, it has been demonstrated that macro-pores on Ti implants surface can improve wettability, tribological performance and biological behavior [7–9]. It has also been reported that a porous surface with periodic patterns can promote early cell-to-surface interactions, including adhesion, proliferation, and metabolic activity in osteoblastic cells [10–12]. The design of specific surface patterns may also positively contribute to successful bone ingrowth into an implant by enhancing the interlocking between the biomaterial and the host bone [13,14].

Additive manufacturing (AM) is an emerging technology in the fabrication of the macro- and micro-architectural framework of metallic biomaterials both externally and internally with high flexibility and sufficient precision [15–17], comprising also various porosities and surface topographies. One of popular AM techniques is powder bed fusion (PBF), particularly laser-driven PBF (L-PBF), which was currently demonstrated to be an effective AM method for geometrically complex metallic implants, including those with periodic patterns [18,19]. There is still debate about the optimal pore size for osteointegration in porous structures of metallic biomaterials. Some sources suggest a range of 100…400 μm [20,21] or even 650…1400 μm [22], although there are other ranges too-cells were found even in the deep pores even as small as dozens of micrometers [21,23,24]. Porous titanium implants manufactured using L-PBF with pore sizes of 1000 μm in an in vitro study were shown a significant increase in metabolic activity and cell density compared with implants with pore sizes of 500 μm [25]. However, in another study [26] a significant improvement in cells fixation capability and in vivo bone ingrowth after 2 weeks were demonstrated for 600 μm pore size L-PBF-made porous titanium implant compared to structures with the average pore sizes of 300 and 900 μm.

Less attention was paid to electrochemical behavior of such implants in their reactions with body fluids, as this results in changes, sometimes drastic, over time [27]. This might be an underexplored area for AM-made titanium implants because new techniques like L-PBF create local heat affected zones and can therefore change both microstructure and local electrochemical stability of the materials. Both surface modification of the material and the selection of the corrosion media [28] are very important to mimic specific in vivo conditions. Commonly used options (simulated body fluids, artificial saliva, etc.) cannot sometimes adequately represent the complex environment in loco the implantation site [29], as the implantation of orthopedic devices usually triggers a local inflammatory response in the body [30]. This needs to be properly reflected in the media composition and reactivity analysis when measured in the laboratory. During an inflammatory response, the release of reactive oxygen species (ROS), lactic acid, hydroperoxyl radicals (HO₂), hypochlorous acid (HOCl) by leukocytes and HCl by osteoclasts causes the extracellular medium to become oxidative and acidic (pH ≈ 4–5) [31]. Subsequently, microorganisms, neutrophils, and macrophages can produce more acidic (pH ≈ 2–3) and oxidative environment surrounding an implant associated with severe inflammation [32,33]. Generally, Ti-based biomaterials are relatively corrosion resistant in normal physiological conditions due to the dense oxide layers protecting the surfaces [34]. However, it was found that CP-Ti and Ti–6Al–4V alloys indeed undergo intensive corrosion and visible surface roughening when exposed to media reflecting these inflammatory and severe inflammatory conditions [35], mimicked by the addition of H₂O₂ and HCl to a phosphate-buffered saline (PBS) solution (which itself can be ranked as a normal medium). To simulate the severe inflammatory condition, H₂O₂, calcium L-lactate hydrate (CLH), bovine serum albumin (BSA), and more HCl were added to the normal biological solution [35].

In the literature, multiple surface patterning techniques on titanium alloys have been used to enhance implant performance and sometimes also the corrosion resistance [36–38]. However, till now, there are very scarce information about regularly patterned surfaces of Ti alloys made with L-PBF method. Most of the corrosion studies performed on AM Ti implants have been conducted in normal conditions [39,40], lacking consistent reports on their performance in more complex environments corresponding to post-implantation. The main objective of this study was to perform a deeper study the electrochemical and corrosion behavior of L-PBF-made patterned CP-Ti and Ti–6Al–4V substrates under the simulated normal, inflammatory, and severe inflammatory conditions, comparing the results with previous electrochemical study on untreated CP-Ti and Ti–6Al–4V substrates [35].

2. Materials and method

2.1. Preparation of patterned CP-Ti and Ti–6Al–4V layers

The supplied CP-Ti (99.6% purity) and Ti–6Al–4V alloy (Al 5.5...6.76%, V 3.5...4.5% wt., Ti - balance) plates by Goodfellow Cambridge Ltd. (Huntingdon, England) were used as substrates. The plates were cut into disks with 100 mm diameter for the L-PBF machine’s working platform, and rinsed ultrasonically in acetone for 10 min in order to remove surface contaminants before L-PBF process. The micromorphology of the CP-Ti (99.3% Ti), and Ti–6Al–4V (Al 5.4%, V 3.8%, Fe 0.2%, C 0.009% wt., balance Ti) powders (Merck, Germany) used for L-PBF are shown in Supplementary Fig. S1.

The computer-aided design (CAD) models of square patterns with the average lengths of ~600 μm were made with nTopology software (2020, nTopology, NY, USA). The patterned Ti layers were manufactured with optimized parameters (Supplementary Table ST1) at Btech Innovation Ltd., Istanbul, Türkiye. A 3D selective L-PBF printer (Mysint100, Sisma S.p.A., Vicenza, Italy) with a fiber laser of wavelength 1060–1100 nm, power <200 W and spot diameter of 55 μm was used to overprint CP-Ti and Ti–6Al–4V layers on flat CP-Ti and Ti–6Al–4V substrates, respectively (Supplementary video SV1), therefore producing patterned layers of the same composition as the substrate. Eleven slices of the powder were applied to reach a layer thickness of ~300 μm for both samples. The process was conducted under high purity Ar atmosphere, protecting the powder from oxidation. After L-PBF, the built parts (Supplementary Fig. S2a) were cut off into small disks with a 15 mm diameter (Supplementary Fig. S2b) by wire.
electrical discharge machining, washed with water and acetone using ultrasound.

Supplementary video related to this article can be found at https://doi.org/10.1016/j.jmrt.2023.07.113

2.2. Surface characterization

The surface morphology and microstructure were observed under an optical microscopy (OM, Olympus GX71, Olympus Corp., Japan) and scanning electron microscope (SEM) with an energy dispersive spectroscopy (SEM-EDS, Hitachi TM-4000Plus-RAMI, Japan). 3D profilometry in OM was made with a dedicated software (analysisDocu, Olympus Corp., Japan) with an automatic Z-stage movement and assembling of the resulted images into the package.

The phase structure of the alloys was tested using X-ray diffraction (XRD, Philips PW3040/60, The Netherlands) with a monochromatic Cu-Kα radiation source at 40 KV and 30 mA in the range 2θ = 20° ... 80°, using a step size of 0.02°. The wettability was determined by measuring the contact angles of 5 μL phosphate buffered saline (PBS) solution's droplet via a Theta Flex optical tensiometer (Biolin Scientific, Finland) in the sessile drop mode. Three contact angles on different regions were measured, and the mean values and standard deviations for patterned and flat Ti samples were calculated. All wettability measurements would be performed under the same conditions of temperature and humidity.

2.3. Electrochemical measurements

Electrochemical tests like open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) were used to evaluate the corrosion behavior by the three-electrode configuration with a Ag/AgCl as a reference electrode (R.E.), a graphite rod (3 mm diameter) as the auxiliary electrode, and patterned Ti substrate as a working electrode (W.E.). The electrochemical measurement procedure comprised with extra details shown earlier [35]. The simulated media for electrochemical studies with their respective compositions are summarized in Supplementary Table ST2. The post-corrosion morphologies were studied after the PDP test using SEM/EDS on surfaces immersed in simulated biological media for 12 h.

3. Results and discussion

3.1. Microstructures and chemical composition

Fig. 1 shows two-dimensional (2D) and three-dimensional (3D) OM images of the patterned layers. Fig. 1a reveals that CP-Ti layer is patterned squarely with an average window size of about 610 μm in diameter. Similarly, the printed Ti–6Al–4V pattern (Fig. 1c) revealed square columns with a side length of ~560 μm and a strut size of ~500 μm. It can be seen that the average window size in both patterned samples is between 500 … 600 μm, which might be considered close to the optimal values reported in other studies [23, 24, 41]. There are some differences between the CP-Ti and Ti–6Al–4V printed surfaces. In the patterned CP-Ti sample, the size of the strut was higher compared to sample Ti–6Al–4V, and the height profile of the strut branch has become a stair-step.

Since the laser beam has a Gaussian distribution profile, the powder (partially melted by laser) occupies more space near well boundaries than what is predicted by ideal model.

![Fig. 1](image-url) - The 2D and reconstructed 3D OM images of patterned (a, b) CP-Ti and (c, d) Ti–6Al–4V (grid size = 250 μm). For b) and d) note vertical z-scale number shows the absolute specimen position during scanning and not the depth of the patterned wells.
made with CAD. The difference between the sizes of the struts in the two samples can be related to the size of the powders, as explained in Supplementary Fig. S3a. The laser beam provided in the L-PBF machine (55 μm) possesses the highest intensity near the center and decreasing outward (Supplementary Fig. S3b). CP-Ti powders used in this study has dimeter ~20 μm, so the central region that had a better beam intensity. The CP-Ti powder particles would melt within this 20 μm space and be better attached to the edges of the patterns, resulting in more particles being able adhere to the edges leading to a wider strut than the one obtained with Ti–6Al–4V powder (~50 μm size).

SEM images of the top surface of the patterned CP-Ti and Ti–6Al–4V layers are shown in Fig. 2a–d in two magnifications. They show that the regular square patterns with a complete strut are distributed on the top surface of samples. The surface of the patterned samples has a large number of small spherical particles (Fig. 2c and d). These particles are very similar in size and shape to as-received CP-Ti and Ti–6Al–4V powders (Supplementary Figs. S1 and S2). Attached metallic particles on the lattice strut surfaces are originating from the complete or partial melting of each layer of bent struts with different inclined angles, followed by adherence to the strut surface with diffusion [42,43]. The EDS maps and spectra for corresponded areas of patterned CP-Ti and Ti–6Al–4V (Supplementary Fig. S3a and Fig. S3b) show that the patterned Ti–6Al–4V layers constitute of Ti, Al, and V and small amounts of oxygen. The printed layer composition was consistent with the original composition of Ti–6Al–4V powders (Ti 90%, Al 5.4%, V 3.8%, Fe, O, C < 1% wt.), indicating that laser-powder interaction did not cause changes in alloying elements concentration during L-PBF. The EDS maps of patterned Ti–6Al–4V are characterized by solid solution alloying elements without non-homogeneous precipitates. It
indicates that during the L-PBF process, the melted metallic particles have solidified under fast cooling rates without segregation.

Fig. 2e represents the XRD profiles of the surface of patterned CP-Ti and Ti–6Al–4V layers on the same substrates. For both printed samples, the α-Ti peaks were identified using the reference cards JCPDS file #44–1294, and no oxide-related peaks were observed. The peak at 2θ = 39.5° in the graph of the printed Ti–6Al–4V layers shows a combination of α- and β-phase. Generally, due to the rapid cooling process used in the L-PBF production of Ti–6Al–4V alloys, only a small amount of the β-phase remains and thus it is difficult to detect the β-phase in Ti–6Al–4V alloys using XRD patterns in the vast majority of L-PBF cases [44,45].

3.2. Surface wettability

The surface wettability of titanium implant materials significantly influences corrosion behavior, protein adsorption, and cell adhesion [46]. Fig. 3 shows the results of an experiment evaluating the wettability of flat and patterned Ti samples based on the contact angle goniometry of a PBS solution’s droplet. Surfaces that have a contact angle less than 90° are commonly classified as hydrophilic, otherwise, they are hydrophobic. All samples considered in this study were found to be hydrophilic according to this criterion: the contact angle values increased from 48.4 ± 3.1° for the flat CP-Ti surface to 83.8 ± 2.4° for the patterned sample, and from 40.9 ± 2.8° for the flat Ti–6Al–4V surface to 75.5 ± 1.6° for its patterned sample. This is expected, as surface roughness influences the wettability behavior of surfaces according to the Wenzel and Cassie-Baxter models. Similar contact angle values for flat Ti–6Al–4V to PBS solution have been reported by other studies [47].

In this study, contact angle values could have increased by coupled effects of increasing surface roughness and air pockets trapped beneath the PBS droplet which is well justified using principal Cassie–Baxter’s theory. Nevertheless, the patterned surfaces were still hydrophilic in nature. It has previously been reported that Ti-based implants manufactured using L-PBF process might have a hydrophilic surface [48,49]. The noticeable variations in the contact angle values of patterned specimens could be related to a geometrical dissimilarity between the CP-Ti and Ti–6Al–4V patterns, especially in struts morphology. The surface chemical composition also influences wettability. It has been reported that the Ti–6Al–4V surface makes lower contact angle than CP-Ti due to the presence of aluminum and vanadium oxides on its surface [50,51].

3.3. Electrochemical studies

3.3.1. Open circuit potential

Data on OCP variations of patterned CP-Ti and Ti–6Al–4V layers after 1 and 12 h of immersion in simulated media are shown in Fig. 4. OCP values move toward electropositive potentials in the simulated inflammatory and severe inflammatory environment after implantation. A possible explanation for this is the decomposition of H₂O₂ into H₂ and O₂, thereby serving as an additional cathodic reaction in a sluggish oxygen reduction reaction [52]. Earlier studies indicate that the positive OCP values in inflammatory solutions can be attributed to the adsorption of oxidizing intermediates, such as ·HO₂ and ·HO, onto the passive film on Ti-based biomaterials [53]. In severe inflammatory conditions, adding BSA and CLH to the inflammatory solution (H₂O₂+PBS) decreases OCP values. Nevertheless, OCP values remain higher and more positive than normal conditions (PBS).

BSA presented in media adsorbs on the surface of Ti by chemisorption through carboxylate/amino functional groups or electrostatic interactions, inhibiting oxygen reduction reactions [54], resulting in decreasing surface potential. CLH...
adsorption on the surface of Ti implants also significantly blocks the cathodic site in H₂O₂-containing solutions, giving a lower OCP value [55]. It can also be observed that under all conditions with increasing immersion time, OCP values increased. Due to suppressed anodic reactions anodic current density has decreased and passive oxide layers have chemically reconstructed or thickened [56]. The patterned Ti₆Al₄V layer shows a much higher potential than patterned CP-Ti layer under all conditions, which is likely to be due to the formation of a passive layer which may have also aluminum and vanadium oxides, being also denser than the pure oxide layers present on CP-Ti [1,2]. H₂O₂ may cause fluctuations in the OCP evolution of patterned Ti₆Al₄V layer in an inflammatory environment due to the high resistance of the passive layer [52]. Fig. 4 also revealed that the patterned specimens had different OCP values compared with flat counterpart specimens (OCP evolutions for flat CP-Ti and Ti₆Al₄V were reported in our previous study [35]). In patterned specimens, OCP shows more of a shift towards electropositive values under normal and inflammatory conditions compared to flat Ti substrate, whereas OCP values do not change much in severe inflammatory conditions.

3.3.2. Potentiodynamic polarization

Fig. 5 shows the potentiodynamic polarization (PDP) plots for patterned CP-Ti and Ti₆Al₄V layers after different immersion times in simulated normal, inflammatory and severe inflammatory solutions. Based on Tafel extrapolation from cathodic and anodic branches of the polarization curves, corrosion potentials (Ecorr) and corrosion current densities (Icorr), Tafel slopes of anodic (βa) and cathodic (βc) branches were obtained. The polarization resistance (Rp) was calculated using the Stern-Geary Equation [57]:

\[R_p = \frac{\beta_a \beta_c}{2.3 I_{corr} (\beta_a + \beta_c)} \] (1)

The values of Ecorr, βa, βc, Icorr, and Rp extracted from the plots are summarized and compared with previous study in Supplementary Table ST3. As seen in Fig. 5a and b, all patterned specimens display passivation behavior in anodic branches after 1 h and 12 h immersion under normal conditions. This behavior is consistent with the literature [58]. However, the presence of H₂O₂ in the inflammatory and severe inflammatory solutions, has prevented specimens from exhibiting passive behavior under these conditions [59]. Hence anodic branches do not exhibit Tafel behavior [60], making it impossible to obtain accurate measurements of anodic Tafel slopes (βa) meaning the Stern–Geary analysis became invalid.

The Icorr values were increased after adding the H₂O₂ to the PBS for all specimens, indicating higher corrosion rates during inflammation (Supplementary Table ST3). For the inflammatory condition compared to the normal condition, the Ecorr values were electropositive, similar to the OCP values in
Fig. 4b. This corrosion behavior is consistent with previous studies of H$_2$O$_2$-containing biological solutions. A combination of BSA, CLH, and H$_2$O$_2$ in PBS (severe inflammatory media) result in an increase of I_{corr} and a decrease in R_p, suggesting a synergetic action of these compounds on the corrosion behavior of patterned Ti specimens.

From the point of view of immersion times’ effect on electrochemical behavior, it can be said that the I_{corr} and R_p values have decreased and increased respectively in all conditions after 12 h of immersion. It can be explained by the formation of a stable protective oxide film in the normal condition that protects patterned materials’ surfaces from further damage. H$_2$O$_2$ undergoes catalytic decomposition into H$_2$O and O$_2$ a prolonged immersion times during severe inflammatory and inflammatory conditions, thus reducing the oxidizing power of the solutions in these cases. In both inflammatory conditions, I_{corr} values for patterned CP-Ti specimens exhibits a gradual increase, indicating that the implant surface oxidizes when exposed to H$_2$O$_2$-containing solutions [61]. Nevertheless, the formed oxide dissolves more quickly than is necessary for optimal protection.

The patterned Ti–6Al–4V layer demonstrated superior corrosion resistance than patented CP-Ti under all simulated conditions, which correlates with other data [62]. When inflammation and severe inflammation conditions were present, I_{corr} of patterned Ti–6Al–4V specimens increased as compared to normal conditions. As a result of vanadium oxides (VO$_2$, V$_2$O$_4$, V$_2$O$_5$) dissolving in the native oxide layer on the Ti–6Al–4V alloy under inflammatory conditions described in the literature, cation vacancies are generated in the passive film, resulting in an increase in I_{corr} [62,63]. It is further enhanced by the presence of H$_2$O$_2$ molecules, lactate and chlorine ions. It is not straightforward to describe how BSA and CLH influence the corrosion process of patterned Ti6Al4V layer, as they can have an effect on both anodic and cathodic reactions [54].

It has been reported that the BSA and CLH can accelerate corrosion through their effect on the dissolution of the oxide on the Ti–6Al–4V alloy through anodic reactions. As a result of the generation of soluble complexes like metal-biomolecule matrices, the available metal ion species in the oxide passive layer will be consumed and the passive film dissolution will be
accelerated, which may be a major cause of the expedited anodic reaction kinetics associated with the co-existence of CLH and BSA biomolecules \[54,55\]. When comparing the I_{corr} of patterned layers with the results obtained from the previous study on flat specimens, it is evident that in both cases of Ti–6Al–4V and CP-Ti, the patterned specimens have a lower I_{corr}, indicating better corrosion performance of them in all simulated conditions. The lower I_{corr} of patterned Ti layers can be attributed to a number of factors arising from the surface topography difference induced by the L-PBF process. The beneficial influence of periodic patterns on the corrosion response of Ti implants was observed in earlier studies \[36,37\]. As seen in Fig. 3, creating square patterns on the surface of flat substrates increases the contact angle. Indeed, patterned samples had a relatively higher contact angle (Fig. 3), which resulted in fewer tendencies to absorb water molecules on the surface, leading to a high corrosion resistance. Consequently, aggressive ions reach the substrate at a slower rate and the substrate is less exposed to corrosive media and agents. It has also been established that Ti6Al4V implants fabricated through the L-PBF process exhibit a lower I_{corr} and a nobler E_{corr} in biological solutions when compared to wrought counterparts \[60,64,65\].

3.3.3. Electrochemical impedance spectroscopy

Figs. 6 and 7 present the Nyquist and Bode modulus/phase plots of EIS tests. In Nyquist plots, the diameter of capacitive semicircles decreases when H_2O_2 and HCl are added to PBS, which indicates that corrosion resistance is deteriorating under the inflammatory condition. When BSA and LCH are introduced into the medium of severe inflammatory conditions, the diameter of semicircles decreases sharply, indicating a drastic reduction in corrosion resistance \[54,55\]. The patterned Ti–6Al–4V exhibits nobler electrochemical behavior than patterned CP-Ti in all conditions, as evidenced by the largest area of capacitive semicircles and highest modulus values at low frequency (Figs. 6 and Fig. 7a–c). Phase angles of about 40° and 60° in Fig. 7f for patterned specimens implies almost complete destruction of passive film under severe inflammatory conditions. The EIS data is analyzed using equivalent circuits shown in Supplementary Fig. S5. In both circuits, R_s represents the resistance of the corrosion test solution between the R.E. and W.E. The circuit in Supplementary Fig. S5a was used for fitting the data obtained in normal and inflammatory conditions and it contained the constant phase element of the passive layer parallel with the resistance of the passive layer (CPE_{pl}/R_{pl}). A constant phase

Fig. 6 – EIS plots of the patterned CP-Ti and Ti–6Al–4V layers exposed in simulated normal, inflammatory and severe inflammatory conditions for 1 and 12 h: (a–c) Nyquist plots. Nyquist plots for the severe inflammatory condition have been enlarged for better display.
Element (CPE) formalism is applied to express the capacitive characteristics of coating surfaces due to the “scattering effect” resulting from the nonhomogeneous nature of the passive layer [66]:

$$Z_{CPE} = \frac{1}{Q(j\omega)^n}$$

(2)

where $j^2 = -1$, ω is an angular frequency (rad.s$^{-1}$), and $n = 0 \ldots 1$ is the power coefficient (with $n = 1$, CPE behaves as a pure capacitance, and for $n = 0$ as a pure resistance). The value of Q is usually used to approximate interfacial capacitance, but this approach does not always consistently work [66]. The effective capacity (C_{eff}) for each passive layer was calculated using the Brug model [67]:

$$C_{eff} = \sqrt{Q \cdot R_T^{1-n}}$$

(3)

where R_T is the total resistance sum ($R_{ct} + R_{pl}$). The passive layer thickness (d_{eff}) can be estimated using the equation [68] as follows:

$$d_{eff} = \frac{\varepsilon \varepsilon_0}{C_{eff}}$$

(4)

where ε is the relative permittivity of the material (around 45 for TiO$_2$ passive film [68]), and ε_0 is the vacuum permittivity (8.85×10^{-14} F cm$^{-1}$). As seen in Supplementary Fig. S5b, the circuit for severe inflammatory solution contains two-time constants and a Warburg component due to the difference in impedance characteristics. Here the capacitance of the electrical double layer at the interface between the substrate and solution is denoted by $C_{PE dl}$ and the resistance to charge transfer is shown by R_{ct} [69]. As a phase element, Warburg open terminus (W_o) demonstrates semi-infinite length diffusion of corrosion ions across the passive layer [70]. A straight line at an angle of 45° appears at the low-frequency region of the Nyquist plots in the severe inflammatory condition (Fig. 7c). This can be attributed to the Warburg impedance formed at this frequency [70]. It was found that the best fit to the data was achieved with the W_o element connected in

Fig. 7 – EIS plots of the patterned CP-Ti and Ti–6Al–4V layers exposed in simulated normal, inflammatory and severe inflammatory conditions for 1 and 12 h: (a–c) Bode modulus, and (d–f) Bode phase plots.
series with the \(R_{ct} \). \(\omega \) element can be expressed mathematically as follows [71]:

\[
Z_{W_0} = \frac{W_{o-R} \cdot \coth((W_{o-t} \cdot j\omega)^W_{o-T})}{(W_{o-t} \cdot j\omega)^W_{o-T}}
\] (5)

where \(W_{o-R} \) and \(W_{o-t} \) correspond to the Warburg pseudo-resistance and diffusion time, respectively. The \(W_{o-P} \) represents the power coefficient varying as 0...1. In the diffusional process assumes that characteristic time \(W_{o-t} = \delta^2 / D_{diff} \), where \(\delta \) is the diffusion layer thickness and \(D \) is the effective diffusion coefficient of the corrosive ions.

The fitted results of EIS and computed values by equations (1)–(4) are itemized in Supplementary Table ST4 and the values of each individual parameter of Warburg elements in Supplementary Table ST5. All \(R_{pl} \) values for patterned specimens decreases under inflammatory and severe inflammatory conditions, indicating that corrosion resistance is weakening. The reaction between Ti and H\(_2\)O\(_2\) results in the formation of the less stable Ti(IV)–H\(_2\)O\(_2\) complex compounds, which do not offer a high level of resistance against corrosive agents [56]. This lower compactness of the passive film is reflected in the higher \(CPE_{pl} \) [66]. Much higher values of \(CPE_{pl} \) in the inflammatory and severe inflammatory solutions indicate further drop in corrosion resistance. When a specimen exposed to H\(_2\)O\(_2\)-containing strong acidic solutions, the passive film is damaged, causing the surface to dissolve more and increasing the cathode reaction rate [52].

Values of \(R_{pl} \) in the severe inflammatory have been noticeably decreased compared to inflammatory conditions, showing a synergetic behavior of both CLH and BSA on patterned Ti layers degradation [54,55]. It was recently reported that biomolecules in the active layer are aligned to produce an electric field throughout the passive layer due to ROS intermediates’ high oxidation potential [72]. It is also possible CLH produces a lactate-chelating compound with Ti that would explain a decrease in \(R_{pl} \) during severe inflammation [73]. All specimens displayed an increase in \(R_{pl} \) after 12 h in all conditions, indicating that a passive protective film was forming and growing, facilitating the self-healing of passive layers in inflammatory media including the effect of the decomposition of H\(_2\)O\(_2\) to H\(_2\)O and O\(_2\) [52]. The rate of metal dissolution with the broken passive film is generally related to the \(R_{ct} \) and here it is seen that \(R_{ct} \) for patterned Ti–6Al–4V is slightly larger than that for patterned CP-Ti for both immersion times. Therefore, patterned Ti–6Al–4V layers display better corrosion protection performance than patterned CP-Ti layers on their own substrates in the severe inflammatory solution [62].

Supplementary Table ST4 shows that the surface patterning has effectively improved the corrosion resistance of the flat specimens in all simulated media. A lower \(CPE_{pl} \) of patterned Ti layers than flat Ti specimens indicates that the passive film that forms over patterned layers has a lower defect density. \(W_{o-R} \) values rise in patterned Ti–6Al–4V layers under severe inflammation (Supplementary Table ST5) as a result of the formation of strong oxide layers, as reported [74,75] for CP-Ti and Ti–6Al–4V corrosion in HCl-based fluids. Both \(W_{o-R} \) and \(W_{o-t} \) values are likely to increase with immersion time due to the increased penetration pathway of electrolyte through a thicker passive layer.

The equivalent circuit proposed for patterned specimens under severe inflammatory conditions (Supplementary Fig. S5b) differs from the circuit previously reported in our study for fitting EIS plots of flat Ti–6Al–4V and CP-Ti specimens under the same condition [35]. The Warburg impedance and \(R_{ct} \) indicates that diffusion of corrosive ions across the interface between the passive layer and the patterned substrate is responsible for electrochemical reactions in severe inflammatory condition [70]. Indeed, patterned layers on the surface Ti have caused a change in the corrosion mechanism compared to flat Ti in the severe inflammatory environment.

Fig. 8 – Schematic representation of the corrosion mechanism for patterned Ti layers in the severe inflammatory media.
The proposed corrosion mechanism for patterned Ti layers under the severe inflammatory condition is schematically illustrated in Fig. 8 where the cross-sectional view of a square printed pattern on the Ti substrate is shown. The gradient in oxygen concentration between the exterior and interior parts of the square patterned wells results from the hindered mass transport process within these struts. This gradient leads to an inferior surface potential of internal parts than at the outside parts, so more metallic ions are released and accumulated at the interior due to the anodically polarized Ti surface in localized corrosion pits. On the other hand, electron transfer to the outer part of the pit causes the cathodically polarized outer parts of the struts.

Taking into account that BSA is positively charged in the severe inflammatory condition at pH ≈ 3 [76], migration of positively charged BSA into the exterior part of the localized pit is essential in order to maintain charge balance. Larger amount of BSA hence accumulates in the outer parts, possessing higher electric charge on sharp and rough structures, with their number gradually increasing with the immersion time. BSA adsorption can also be further enhanced by the surface potential difference [77]. Additional negative charges are also generated by the potential difference between the exterior and interior of the corrosion pit, enabling them to interact with positive BSA particles, promoting their adsorption onto the alloy surface within the interior parts of the struts.

3.3.4. **Surface morphology after PDP tests**

SEM images and corresponding EDS spectra for the morphologies of patterned specimens after PDP in different conditions tests are shown in Fig. 9 and Supplementary Fig. S6. The PDP test of patterned Ti materials after 12 h immersion generally resulted in selective dissolution, pitting occurrence, and passivation decomposition. It can be seen in Fig. 9a that patterned CP-Ti layer is susceptible to inferior pitting corrosion under normal condition. However, fewer pits and localized corrosion products are detectable on the patterned Ti$_6$Al$_4$V surface in same conditions (Fig. 9d). Compared to the normal conditions, severe inflammatory and inflammatory conditions show a decrease in Ti and an increase in O (Supplementary Fig. S6), indicating a higher growing the oxide film over immersion time for the both patterned layers.

Lots of wide and deep pits can be seen on the struts surface in inflammatory condition (Fig. 9b), indicating the degradation of patterned CP-Ti layer in the presence of H$_2$O$_2$ and Cl$^-$ ions [80]. The Cl$^-$ accumulation at the surface of localized corrosion regions leads to rupture of the oxide film (Supplementary Fig. S6b): when Cl$^-$ ions are adsorbing on oxygen vacancies on the surface of a metal oxide in the presence of H$_2$O$_2$, they are produced extra cation vacancies. The condensation of excessive cation vacancies facilitates the formation of pit nuclei [81]. According to Fig. 9b and e, pits seem to propagate along non-melted particle interfaces at different rates and in various directions, starting from a local defect on patterned surfaces (void). It has been noted [82] that pits tend to form in areas with a high residual tensile stress in porous Ti materials produced by L-PBF.

The patterned Ti specimens under the severe inflammatory condition were covered almost completely with corrosion products. The original morphology of these specimens,
however, can still be observed. It is seen from Fig. 9c that numerous corrosion pits are randomly distributed on the corroded surface of patterned CP-Ti, and the number of which is significantly higher than patterned Ti–6Al–4V [Fig. 9f]. The presence of more carbon in regions “C” [Fig. 9c] and “F” [Fig. 9f] correlates with the envisaged CLH and BSA adsorption to patterned Ti layers under the severe inflammation [55,73,83].

4. Conclusions

In this work, the authors have studied the electrochemical corrosion behavior of AM-patterned CP-Ti, and Ti–6Al–4V layers under simulated normal, inflammatory, and severe inflammatory conditions. The electrochemical stability of patterned layers was evaluated by OCP, PDP, and EIS tests. This study has drawn the following main conclusions:

1. The patterned CP-Ti layer showed different morphology with stair-step struts compared with patterned Ti–6Al–4V alloy. It was attributed to the difference in the size of powders with the laser beam diameter.

2. The wettability results suggest that the PBS droplet’s contact angles were increased on AM-patterned Ti layers compared with their flat counterparts, but hydrophilic behavior has remained.

3. The OCP monitoring shown values moving towards the nobler direction with the increase of immersion time and it is explained by an increase in the passive layer’s thickness under normal conditions with the decomposition of H$_2$O$_2$ during inflammatory and severe inflammatory conditions.

4. The PDP results showed that the I$_{corr}$ values of the patterned layers is increased in the order: normal < inflammatory < severe inflammatory, indicating the role of H$_2$O$_2$, BSA, and CLH in destruction of the passive layer.

5. The equivalent circuit scheme obtained under the severe inflammatory condition differs from normal and inflammatory conditions, which is connected with altered corrosion mechanism when charged albumins are attracted to the localized pitting areas. There they cause the diffusion of corrosive species controlling the electrochemical process at the interface between the metal and the passive layer.

6. The PDP and EIS tests indicated that patterned Ti–6Al–4V layers had better electrochemical performance under all conditions than the patterned CP-Ti. SEM micrographs also confirmed that the pitting tendency of patterned CP-Ti layers was higher than the patterned Ti–6Al–4V alloy.

7. Comparing the results of this study with the previous one showed that the patterned specimens have better electrochemical stability than the flat counterparts because of low wettability. Further studies on the biological compatibility of patterned specimens will be required for the application of fabricated biomaterials in implantology.

Declaration of Competing Interest

The authors do not declare competing interests. Aydin Bordbar-Khiabani reports receiving financial support provided by European Commission which is acknowledged below.

Acknowledgements

Financial supports of the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Action ITN “Premurosa” (GA 860462) are gratefully acknowledged. We also thankfully acknowledge the help and cooperation of Btech Innovations Ltd. in each stage of production of 3D-printed Ti layers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmrt.2023.07.113.

References

