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A B S T R A C T   

Large-scale networks of phase synchronization are considered to regulate the communication between brain 
regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure- 
function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the 
influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8–12 
Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalog
raphy (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we 
compared a BNM with standard “distance-dependent delays”, which assumes constant conduction velocity, to 
BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, 
“isochronous delays” and “mixed delays”. We followed the Approximate Bayesian Computation (ABC) workflow, 
i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of 
the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG 
resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing 
between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive 
Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, 
suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior 
distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with “distance- 
dependent delays”, as the most probable to describe the generation of alpha-band networks of phase synchro
nization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical 
architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of 
inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the 
communication between regions vital to cognition.   

1. Introduction 

Communication between brain regions is fundamental to all senso
rimotor and cognitive functions (Fries, 2015; Buszáki, 2006; Varela 

et al., 2001)). Phase synchronization between neuronal oscillations from 
different brain regions is considered to subserve inter-regional 
communication by regulating the relation of spike arrival times to 
windows of excitability in the receiving brain region (Fries, 2015; Fries, 
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2005; Womelsdorf et al., 2007; Salazar et al., 2012). Distinct sets of 
brain regions are recruited into networks of phase synchronization in 
tasks involving, e.g., working memory (Kitzbichler et al., 2011; Palva 
et al., 2010), language (Doesburg et al., 2016), visual attention (Lobier 
et al., 2018; Gross et al., 2004), and sensorimotor processing (Hirvonen 
et al., 2018). Neurophysiological studies have revealed reciprocal in
teractions between excitatory and inhibitory neuronal populations to 
underlie intra-regional phase synchronization (Buzsáki, 2006; Traub 
et al., 1997; Gray, 1994). However, the mapping between large-scale, 
inter-regional networks of phase synchronization and their structural 
substrates, i.e., the structure-function relationship, remains poorly 
understood. 

Biophysical Network Models (BNMs) comprise models of individual 
brain regions linked by biologically informed patterns of anatomical 
connections via finite conduction delays (Woolrich and Stephan, 2005). 
BNMs are a powerful tool to understand the structure-function rela
tionship pertaining to inter-regional networks of phase synchronization 
(Breakspear, 2017). BNMs have been used to demonstrate the influences 
of oscillatory activity from neuronal populations (Forrester et al., 2020), 
the pattern of inter-regional anatomical connections (Finger et al., 
2016), and inhibitory synaptic plasticity (Abeysuriya et al., 2018), in 
generating large-scale networks of phase synchronization observed in 
Electroencephalography (EEG) or Magnetoencephalography (MEG) 
resting-state. They have also been used to relate the heterogeneity of 
inter-regional conduction delays to the observed (Dotson et al., 2014) 
bimodal distribution in angles of inter-regional phase synchronization 
(Petkoski et al., 2018; Petkoski and Jirsa, 2019). However, the influence 
of inter-regional delays in generating the pattern of connection strengths 
in large-scale networks of phase synchronization observed in EEG or 
MEG resting-state, has not been investigated. 

BNMs typically specify inter-regional delays by dividing the 
Euclidean distance between regions with a biologically-informed but 
spatially uniform conduction velocity (Abeysuriya et al., 2018; Hadida 
et al., 2018; Cabral et al., 2014; Nakagawa et al., 2014; Deco et al., 2009; 
Ghosh et al., 2008). BNMs with “distance-dependent delays” assuming 
spatially uniform conduction velocity have been used to generate 
alpha-band (8–12 Hz) inter-regional networks of phase synchronization 
corresponding to those observed in MEG (Abeysuriya et al., 2018) and 
EEG resting-state (Finger et al., 2016). However, a wealth of evidence 
from human intra-cranial EEG recordings (Trebaul et al., 2018; 
Lemaréchal et al., 2022) and animal electrophysiological studies across 
species (Chomiak et al., 2008; Swadlow et al., 1978; Miller, 1975; 
Swadlow, 1990; Simmons and Pearlman, 1983) report spatially varying 
conduction velocities. Theoretical proposals have suggested that the fine 
temporal co-ordination in many cognitive functions requires regulating 
conduction velocities, to compensate for delay heterogeneity due to 
varying connection lengths (Seidl, 2014; Pajevic et al., 2014). Myeli
nation of neurons can regulate conduction velocities through the linear 
relationship between outer axonal diameter and conduction velocity 
(Rushton, 1951; Waxman and Bennett, 1972). Computational models 
incorporating activity-dependent myelination have been demonstrated 
to yield inter-regional connections with highly similar conduction de
lays, irrespective of the length of these connections (Noori et al., 2020). 
Animal electrophysiological studies (Salami et al., 2003; Carr and 
Konishi, 1990) have also found evidence for “isochronous delays”, i.e., 
highly similar delays, across connections, possibly as a result of 
activity-dependent myelination. Alternative theoretical proposals have 
suggested that the need for fine temporal co-ordination might be 
balanced by the high metabolic costs of myelinating long-distance 
connections (Aboitiz et al., 2003), resulting in a combination of “dis
tance-dependent” and “isochronous” inter-regional conduction delays. 
In line with this proposal, animal electrophysiological studies have 
found evidence for isochronous delays in ipsilateral but not contralateral 
connections (Chomiak et al., 2008). However, these alternative, bio
logically plausible methods to specifying inter-regional delays in BNMs, 
have not been compared to the standard “distance-dependent delays” 

method. 
In this study, we compared the “distance-dependent delays” method 

to two alternative biologically plausible methods to specifying inter- 
regional delays in BNMs of alpha-band (8–12 Hz) networks of phase 
synchronization. We focused on alpha-band frequencies i) because they 
provide a basis to compare against previously proposed BNMs of phase 
synchronization (Abeysuriya et al., 2018; Finger et al., 2016), which also 
focused on alpha-band frequencies, ii) because of the clear evidence for 
alpha-band oscillations manifested as a spectral peak in the 8–12 Hz 
range both in our own MEG dataset (see Section 2.1) and in previous 
human electrophysiological studies (Mahjoory et al., 2020; Donoghue 
et al., 2020; Wang, 2010) - oscillations are a pre-requisite for phase 
synchronization, and iii) because of the prominent functional role of 
alpha-band oscillations in cognitive functions, e.g., stimulus suppres
sion, stimulus selection and top-down modulation (Palva and Palva, 
2007; Foxe and Snyder, 2011; Klimesch, 2012). Apart from a standard 
BNM with “distance-dependent delays”, we defined a BNM with 
“isochronous delays” which assumed highly similar inter-regional de
lays across connections, and a BNM with “mixed delays” which assumed 
inter-regional delays to be a function of both the distance between re
gions and an isochronous or constant delay. 

We followed an Approximate Bayesian Computation (ABC) workflow 
to compare the three BNMs. To do this, we first specified prior distri
butions for parameters of each of the three BNMs based on strong 
neurophysiological constraints derived from the aggregated animal 
electrophysiology literature (Tripathy et al., 2014; Tripathy et al., 
2015). In these models, prior distributions are probability distributions 
reflecting our existing knowledge on the values of BNM parameters, 
while posterior distributions are probability distributions reflecting our 
updated knowledge on the values of BNM parameters after accounting 
for evidence from MEG data. We ran Prior Predictive Checks to verify 
the suitability of the chosen prior distributions, and then applied 
Bayesian optimization for Likelihood Free Inference (BOLFI) (Gutmann 
and Corander, 2016) to separately fit the BNMs with “dis
tance-dependent delays”, “isochronous delays”, and “mixed delays”, to 
an experimental MEG resting-state dataset (N = 75). Finally, we used 
ABC model comparison (Beaumont, 2019) to compare the three fitted 
BNMs with an independent MEG resting-state dataset (N = 30). The 
Prior Predictive Checks revealed the range of dynamics generated by the 
three BNMs to encompass those reflected by the phase synchronization 
phenomena we observed in MEG resting-state. This suggested the suit
ability of the prior distributions of the parameters of all three BNMs. 
Fitting the three BNMs to experimental MEG data with BOLFI yielded 
reliable posterior distributions, representing constraints on the values of 
BNM parameters after accounting for evidence from the MEG data. 
Finally, ABC model comparison revealed the BNM with “dis
tance-dependent delays” as more probable than the other BNMs, to 
describe the mechanisms generating large-scale alpha-band networks of 
phase synchronization observed in MEG resting-state. 

2. Materials and methods 

We used an ABC workflow to compare the “isochronous delays”, 
“mixed delays”, and “distance-dependent delays” methods of specifying 
inter-regional delays in BNMs of alpha-band networks of phase syn
chronization (Fig. 1). First, we employed the high-dimensional ABC 
inference method BOLFI (Gutmann and Corander, 2016) to fit BNMs 
with “isochronous delays”, “mixed delays”, and “distance-dependent 
delays”, to an MEG resting-state dataset (N = 75). Then, we used ABC 
model comparison (Beaumont, 2019) to choose between the three fitted 
BNMs on an independent MEG resting-state dataset (N = 30). We used 
the ABC workflow since it provides methods to fit and compare BNMs 
despite their likelihood functions being intractable or mathematically 
difficult to formulate (Green et al., 2015; Lintusaari et al., 2017). 
Further, ABC methods perform Bayesian inference (Gelman et al., 2013; 
van de Schoot et al. 2021; Gelman et al., 2020), which provides a 
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principled framework i) to combine existing knowledge from e.g., ani
mal electrophysiology with evidence from observed MEG data to esti
mate values of BNM parameters, and ii) to account for uncertainty in the 
values of BNM parameters. We express existing knowledge of BNM pa
rameters as prior distributions while we express updated knowledge of 
BNM parameters, given the observed data, as posterior distributions. 
Marginal distributions represent the probability distributions of indi
vidual BNM parameters irrespective of the values of other BNM pa
rameters. Conditional distributions represent the probability 
distributions of individual BNM parameters given the value of another 

BNM parameter. Joint distributions represent the probability distribu
tion of all BNM parameters given the values of all other BNM parame
ters. In this paper, we refer to marginal prior and posterior distributions 
of BNM parameters as simply their “prior distributions” and “posterior 
distributions” respectively, while we refer to conditional or joint prior 
and posterior distributions by their entire names, e.g., “conditional prior 
distribution”. 

Fig. 1. Workflow comparing strategies to specify inter-regional delays in Biophysical Network Models (BNMs) of phase synchronization. Bayesian optimization for 
Likelihood-Free Inference (BOLFI) was used to fit BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays” to Magnetoencephalographic 
(MEG) resting-state data (N = 75), i.e. to determine parameter values for each of the three BNMs that would generate alpha-band inter-regional networks of phase 
synchronization corresponding closely to those observed in MEG resting-state. Approximate Bayesian Computation (ABC) model comparison was then used to choose 
between BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays”, by comparing their alpha-band networks of phase synchronization to 
those observed in an independent MEG dataset (N = 30). 
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2.1. BNM specification 

BNMs comprise models of individual brain regions linked by bio
logically informed patterns of anatomical connections with finite con
duction delays. For BNMs implementing each of the delay specification 
methods, we used Wilson-Cowan (WC) oscillators to model the dy
namics of individual brain regions (Wilson and Cowan, 1972; Kilpa
trick, 2013; Cowan et al., 2016). WC oscillators have been used to model 
dynamics of individual brain regions in a number of modeling studies 
emulating brain functional networks (Hadida et al., 2018; Hellyer et al., 
2016; Heitmann et al., 2017), including modeling studies on 
inter-regional networks of phase synchronization (Abeysuriya et al., 
2018; Hlinka and Coombes, 2012). The dynamics of WC oscillators arise 
from the interaction between excitatory and inhibitory neuronal pop
ulations, i.e., the Pyramidal Inter-Neuronal Gamma (PING) model of 
oscillation generation (Traub et al., 1997) and are also influenced by 
external inputs and the dynamics of linked oscillators. Hence, the 
ensemble of connected WC oscillators represented our current under
standing on the generation of neuronal oscillations and inter-regional 
phase synchronization (Buzsáki, 2006; Gray, 1994). The dynamics of 
oscillator x is given by: 

τe
dUe

dt
= − Ue(t)+F(weeUe(t) − weiUi(t) − be + Je + ψe(t)

+ k
∑N

y=1
IH(x, y).K(x, y)Ue(t − T(x, y)))

τi
dUi

dt
= − Ui(t) + F(wieUe(t) − wiiUi(t) − bi + Ji +ψi(t)) (1)  

where T is an N × N matrix, with T(x, y) specifying the inter-regional 
conduction delay from brain region y to brain region x, in millisec
onds. N is the number of brain regions or WC oscillators. We assumed the 
dynamics of each of the N brain regions to be governed by Eq. (1), in line 
with the assumption of identical brain regions in previous modeling 
studies of inter-regional phase synchronization in MEG (Abeysuriya 
et al., 2018; Finger et al., 2016). Further, we assumed all N brain regions 
to generate oscillatory dynamics, in agreement with the previously re
ported cortex-wide alpha-band spectral peaks in a large MEG 
resting-state dataset (N = 187) (Mahjoory et al., 2020) as well as the 
prominent alpha-band spectral peak across regions and subjects in our 
own MEG dataset (N = 75) (Figure S1) - spectral peaks are a signature of 
oscillatory dynamics (Wang, 2010). 

For the BNM with “distance-dependent delays”, we estimated T(x, y)
by dividing the Euclidean distance between regions x and y (in mm) by a 
scalar value v, which was the spatially uniform conduction velocity (in 
metres/second) assumed by distance-dependent delays. We estimated 
Euclidean distance between the centroids of brain regions in MNI space. 
For the BNM with “isochronous delays”, we populated the upper trian
gular elements of T by sampling from a Gaussian distribution whose 
mean was given by a delay parameter (in milliseconds) and whose 
standard deviation was given by the product of the delay parameter and 
a coeffvardelay parameter, which controlled the coefficient of variation 
around the mean. We constrained each of the delays to be positive using 
the ‘absolute’ operation and then constrained each of the delays to be 
integers using the ‘ceiling’ operation. Finally, we constrained the delays 
to be identical in both directions, i.e., T(x, y)=T(y, x) for all x and y 
values, by copying all upper-triangular elements of T(x, y) to their cor
responding lower-triangular elements. For the BNM with “mixed de
lays”, the inter-regional delays were determined both by an inter- 
regional distance term as well as a constant or isochronous delay 
term. We implemented the “mixed delays” method by first estimating 
the N × N velocity matrix Vdistance implied by the distance-dependent 
contribution. To do this, we set all non-diagonal elements of Vdistance to 
the value of the spatially uniform conduction velocity v assumed by 
distance-dependent delays. We next estimated the velocity matrix 

Visochronous implied by the isochronous delay contribution. To do this, we 
divided the N × N matrix of inter-regional distances by the scalar value 
of delay parameter assumed by isochronous delays. We then combined 
the Vdistance and Visochronous matrices in the relative proportion specified by 
the coeffbalance parameter, which typically assumed values between 0 and 
1. We estimated the N × N velocity matrix Vmixed implied by “mixed 
delays” by: 

Vmixed(x, y) = coeffbalance(Vdistance(x, y)) + (1 − coeffbalance)(Visochronous(x, y))
(2) 

Finally, we estimated the N × N matrix T of “mixed delays” by an 
element-wise division of the N × N matrices of inter-regional distances 
and the N × N velocity matrix, Vmixed. We constrained all delays to be 
positive using the ‘ceiling’ operation. Please refer Figure S2 for illus
trations of example matrices of conduction velocities and resulting 
matrices of inter-regional delays for the “isochronous delays”, “mixed 
delays” and “distance-dependent delays” methods. F(z) = 1

1+e− z is a 
sigmoid function, Ue(t) and Ui(t) are the mean firing rates at time t of the 
excitatory and inhibitory populations respectively, wee and wii are the 
excitatory-excitatory and inhibitory-inhibitory connection weights 
respectively, wie and wei are the excitatory-inhibitory and inhibitory- 
excitatory connection weights, be and bicorrespond to the firing 
thresholds of excitatory and inhibitory populations, Je and Ji are injec
tion currents to excitatory and inhibitory populations, ψe(t) and ψ i(t) are 
noise input modelled by a Gaussian process with zero mean and stan
dard deviation given by ψ sigma, τe and τi are the time constants of the 
excitatory and inhibitory populations, and k is a scalar multiplier over 
the coupling matrix K, which is an N × N matrix. K(x,y) is the strength of 
the structural connection from brain region y to brain region x. IH is an 
N × N matrix that we used to selectively scale inter-hemispheric struc
tural connections to compensate for the known under-estimation of 
long-distance connections by diffusion MRI-based tractography (Sotir
opoulos and Zalesky, 2019). We specified the IH matrix by setting all 
elements corresponding to intra-hemispheric connections to 0, while we 
set all elements corresponding to inter-hemispheric connections to an 
identical positive value given by the IHscaling parameter. 

Each of the three BNMs had 11 parameters in common, i.e., those 
parameters corresponding to the dynamics of individual brain regions 
and the structural connectome. In addition, the three BNMs had 
different sets of parameters to specify the matrix of inter-regional delays 
- the BNM with “distance-dependent delays” had the v parameter, the 
BNM with “isochronous delays” had the delay and coeffvardelay parame
ters, while the BNM with “mixed delays” had the v, delay and coeffbalance 
parameters. 

2.1.1. Specifying strength of structural connections between WC oscillators 
We specified the number and positions of brain regions as per the 

Destrieux brain parcellation (Destrieux et al., 2010), whose 148 regions 
provided a balance between biologically detailed brain regions and 
computationally tractable model simulations. We specified the strengths 
of structural connections between WC oscillators by first estimating a 
148 × 148 Destrieux atlas-based group-averaged (N = 57) matrix of the 
number of streamlines between brain regions, estimated by constrained 
spherical deconvolution (Smith et al., 2013) and probabilistic tractog
raphy (Smith et al., 2012) on pre-processed DWI images from the 
Human Connectome Project (van Essen et al., 2013). The strengths of 
structural connections varied across seven orders of magnitude, i.e., 
from 10− 2 through 104, and log-transformed strengths were inversely 
related to Euclidean distance between brain regions (Figure S3). We 
normalised each element in the structural connectivity matrix by its 
row-sum (Hlinka and Coombes, 2012; Forrester et al., 2020). This 
normalization strategy adjusts for potential tractography-induced con
founds between streamline counts and sizes of brain regions. Similar 
strategies have been shown to improve the correspondence between 
diffusion MRI tractography-based structural connectivity estimates and 
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those from retrograde tracer injections in macaque (Donahue et al., 
2016). 

2.1.2. Simulating the model 
We simulated all three BNMs with the DDE23a integrator (Shampine 

and Thompson, 2001), through the Brain Dynamics Toolbox (BDT) 
(Heitmann et al., 2018). We ran the model simulations for 65 s with a 
250 Hz sampling frequency, and set Absolute Tolerance to 1 × 10− 6 and 
Relative Tolerance to 1 × 10− 3, to limit local discretisation error. We 
discarded data from the first 5 s to minimize the effect of transient dy
namics. We used dynamics of only the excitatory neuronal populations 
for further processing since the pyramidal neurons in excitatory pop
ulations are the dominant contributors to the measured MEG signals 
(Lopes da Silva, 2013). The dynamics of the excitatory neuronal pop
ulations represented the mean firing rate of pyramidal neurons in these 
populations. 

2.2. Prior specification 

We specified prior distributions of BNM parameters as Gaussian 
distributions whose mean and standard deviation we set based on i) 
biological constraints, including values reported in the aggregated ani
mal electrophysiology literature and human intra-cranial EEG re
cordings, ii) values found to be optimal in the MEG and functional 
Magnetic Resonance Imaging (fMRI) modeling literature on brain 

functional networks, and iii) ranges of values generating oscillatory 
dynamics - oscillations are a pre-requisite of phase synchronization. 

2.2.1. Prior distributions of τe and τi 
We set the prior distribution of τe, the time constant of excitatory 

neuronal populations, to 18.6 ± 3.6 ms (mean ± standard deviation) 
(Fig. 2a) based on the weighted mean and pooled standard deviation of 
‘layer 2/3 pyramidal neurons’ time constants in the NeuroElectro 
database (Tripathy et al., 2015). We used values from ‘layer 2/3 pyra
midal neurons’ since post-synaptic potentials (PSPs) from apical den
drites of supra-granular neurons are the dominant contributors to the 
measured MEG signal (Baillet, 2017). We set the prior distribution of τi, 
the time constant of inhibitory neuronal populations, to 15.1 ± 4.7 ms 
based on the weighted mean and pooled standard deviation of time 
constants of different cortical inhibitory cell types in the NeuroElectro 
database: ‘basket cells’, ‘double bouquet cells’, ‘chandelier cells’, ‘Mar
tinotti cells’, ‘bipolar cells’ and ‘interneurons from deep cortical layers’. 
We used values from diverse inhibitory cell types due to the variety of 
inhibitory cell types forming connections to ‘layer 2/3 pyramidal neu
rons’ (Markram et al., 2004). We fixed Je and Ji, injection currents to 
excitatory and inhibitory populations to 0, reflecting negligible sensory 
and thalamic input at resting-state (Meijas et al., 2016). 

2.2.2. Prior distributions of be and bi 

We set the prior distribution of be, the firing threshold of excitatory 

Fig. 2. Prior specification a. Bar plot for time constants of excitatory and inhibitory neurons across multiple studies reported in NeuroElectro database. Whiskers 
indicate standard deviation. b. Bar plot for spike thresholds of excitatory and inhibitory neurons across multiple studies reported in NeuroElectro database. c. Logistic 
function curves for be=3 and bi=5, where be and bi are firing thresholds of the excitatory and inhibitory neuronal populations respectively. d. Histogram for standard 
deviation of activity from excitatory neuronal populations across multiple combinations of plausible parameter values for wee, wei, wie and wii, which are connection 
strengths within and between excitatory and inhibitory neuronal populations. Vertical red line indicates standard deviation threshold of 7 × 10− 3, to detect 
oscillatory dynamics. e. 3-D scatter plot displaying combinations of wee, wei and wie, generating oscillatory dynamics. color of dots indicates standard deviation 
of dynamics. 
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neuronal populations, to 3 ± 1. We set the mean to a positive value since 
neurons fire in response to net excitation. We used a low value since the 
typical excitation of 20 millivolts (from -60 millivolts resting-state to -40 
millivolts spike threshold) at which neurons fire, is small compared to 
the 100 millivolt range of the membrane potential (Kandel and 
Schwartz, 1985). We set the prior distribution of bi, the firing threshold 
of inhibitory neuronal populations, to 5 ± 1. We set the mean to 5 due to 
the higher spike thresholds of inhibitory neurons (-39.6 millivolts) 
compared to excitatory neurons (-43.2 millivolts) (Fig. 2b), as per values 
in the NeuroElectro database (Tripathy et al., 2015). Higher spike 
thresholds of inhibitory neurons is also in agreement with the high spike 
thresholds of nest basket cells, which make up a high proportion of 
inhibitory neurons (Wang et al., 2002). We set the standard deviation to 
1, to reflect the partial overlap in the spike thresholds of excitatory and 
inhibitory neurons (Fig. 2b). Prior means of be and bi set firing thresholds 
of excitatory and inhibitory populations to 3 and 5 respectively (Fig. 2c). 

2.2.3. Prior distributions of wee, wei, wie and wii 
We set the prior distribution of wii, strength of connections within 

inhibitory neuronal populations, to 1 ± 0.2. These values reflected the 
strict biological constraint of sparse recurrent structural connectivity 
between inhibitory interneurons (Markram et al., 2004; Binzegger et al., 
2004). We set the prior distributions of wee, wei and wie, connection 
strengths within excitatory neuronal populations, from inhibitory to 
excitatory, and excitatory to inhibitory, to 20 ± 5, 18 ± 6 and 18 ± 6 
respectively. These reflected ranges of parameters values generating 
oscillatory dynamics, as defined by a standard deviation threshold 
(Fig. 2d-e). The higher value of the prior mean for wee compared to those 
of wei and wie reflected the biological constraint of dense structural 
connections between ‘layer 2/3 pyramidal neurons’ (Binzegger et al., 
2004; Douglas et al., 1989; Douglas and Martin, 2007; Jansen and Rit, 
1995). The wide standard deviations for wee, wei and wie reflected the 
uncertainty in their values due to differing reports on their relative 
magnitudes - anatomical studies report structural connections within 
excitatory populations to be much denser than those between excitatory 
and inhibitory populations (Binzegger et al., 2004; Douglas and Martin, 
2007), while physiological studies report functional connections within 
excitatory populations to have similar strength to functional connections 
between excitatory and inhibitory populations (Seeman et al., 2018; 
Campagnola et al., 2022). 

2.2.4. Prior distributions of ψ sigma, k, and IHscaling 
We set the prior distribution of ψ sigma, i.e., standard deviation of the 

noise input to excitatory and inhibitory populations, to 0.15 ± 0.05. The 
very low values assumed by ψsigma respected the biological constraint of 
negligibly small probability that a neuronal population fires solely due 
to noise input (Faisal et al., 2008). Further, these settings allowed ψ sigma 

to encompass values between 0.01 and 0.32 found to be optimal in 
previous MEG and fMRI modeling studies (Abeysuriya et al., 2018; 
Hellyer et al., 2016; Deco et al., 2009). We set the prior distribution of k, 
the scalar multiplier over the structural connectome, to 1.5 ± 0.5. These 
values respected the biological constraint that extrinsic sources of 
excitation to brain regions are substantially weaker than intrinsic 
sources (Douglas and Martin, 2007). Further, these settings allowed k to 
encompass values between 1 and 3 found to be optimal in previous MEG 
and fMRI modeling studies (Hadida et al., 2018; Hellyer et al., 2016; 
Cabral et al., 2014; Deco and Jirsa, 2012). We set the prior distribution 
of IHscaling, the inter-hemispheric scaling factor over the structural con
nectome, to 2.5 ± 0.5. These values reflected the known underestima
tion of long distance connections by diffusion MRI (Sotiropoulos and 
Zalesky, 2019). Further, these settings allowed IHscaling to encompass 
values between 1.5 and 3.5 found to be optimal in previous MEG 
modeling studies (Hadida et al., 2018). 

2.2.5. Prior distributions of v, delay, coeffvardelay and coeffbalance 
Across the three methods, we estimated the matrix of inter-regional 

delays by element-wise division of the matrix of inter-regional distances 
by the matrix of conduction velocities. However, each method had a 
different set of parameters to estimate their corresponding matrix of 
conduction velocities, in accordance with that method’s assumptions on 
spatial variation in conduction velocities (see Section 2.1). Hence, we set 
prior distributions for parameters specific to each of the three methods. 

For the “distance-dependent delays” method, we had conduction 
velocity parameter v. We set the prior distribution of v to 8 ± 2 m/s. We 
set the mean as 8 m/s to fall within the values between 5 and 11 m/s 
reported to be optimal across several MEG and fMRI modeling studies 
(Abeysuriya et al., 2018; Nakagawa et al., 2014; Cabral et al., 2014; 
Hellyer et al., 2016; Hadida et al., 2018). We set the standard deviation 
to 2 m/s, so that values from the prior distribution of v would encompass 
central tendency values between 1.1 m/s and 7.4 m/s reported across 
human electrophysiological (Trebaul et al., 2018; Lemaréchal et al., 
2022; Aboitiz et al., 1992), macaque electrophysiological (Swadlow 
et al., 1978) and macaque microscopy (Firmin et al., 2014) studies. For 
the “isochronous delays” method, we had the mean delay parameter, 
delay, and a parameter controlling the coefficient of variation, 
coeffvardelay. We set the prior distribution of delay to 10 ± 3 ms. We set 
the mean as 10 ms in line with the optimal “mean delay” across several 
MEG and fMRI modeling studies (Abeysuriya et al., 2018; Nakagawa 
et al., 2014; Cabral et al., 2014; Hellyer et al., 2016; Hadida et al., 2018). 
We set the standard deviation to 3 ms, so that values from the prior 
distribution fell within the 1.5–24.9 ms range of inter-hemispheric de
lays reported across human and macaque electrophysiological studies 
(Aboitiz et al., 1992; Swadlow et al., 1978). We set the prior distribution 
of coeffvardelay to 0.2 ± 0.05 respectively. We chose this setting so that 
low values from this parameter’s prior distribution would generate 
nearly identical conduction delays across connections, while high values 
would generate sets of inter-regional delays whose variation was similar 
to sets of distance-dependent delays. For the “mixed delays” method, we 
had the coeffbalance parameter. Values between 0 and 1 indicated the 
relative proportion of isochronous delays and distance-dependent de
lays, 0 indicating fully isochronous delays. We set the prior distribution 
of coeffbalance to 0.5 ± 0.15, so that values from this parameter’s prior 
distribution generated sets of delays traversing the intermediate space 
between “distance-dependent” and “isochronous” sets of delays. 

We refer the reader to our open dataset (Williams et al., 2023) for 
time constants and spike thresholds of single studies, from which we 
estimated prior distributions of τe, τi, be and bi. 

2.3. Prior predictive checks 

Prior Predictive Checks are performed to assess the suitability of the 
prior distributions and the model, before proceeding to fit the model to 
observed data (Gelman et al., 2013; van de Schoot et al., 2021; Gelman 
et al., 2020). In the Prior Predictive Checks, we used different test sta
tistics to determine if the range of dynamics generated by the BNM 
encompassed those we observed in the MEG resting-state data. We ran 
1000 simulations of each of the three BNMs with parameter values 
drawn from their respective joint prior distributions. Then, we estimated 
the values of four test statistics from the dynamics of each of the 1000 
simulations and compared the sample medians of these test statistics, to 
the values of those test statistics on MEG resting-state data. We esti
mated the following test statistics: i) median of alpha-band phase syn
chronization strengths between all pairs of 148 brain regions, to 
measure central tendency in the strengths of phase synchronization, ii) 
median absolute deviation (MAD) of alpha-band phase synchronization 
strengths between all pairs of 148 brain regions, to measure dispersion 
in the phase synchronization strengths, iii) mean of the Kuramoto order 
parameter (Kuramoto, 1984; Breakspear et al., 2010), to measure 
strength of zero-lag phase synchronization across the dataset, and iv) 
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standard deviation of the Kuramoto order parameter, to measure vari
ability in zero-lag phase synchronization across the dataset. Please see 
Section 2.3.2 for details. 

2.3.1. Processing experimental and simulated MEG data 
We used eyes-open experimental MEG resting-state data from 75 

subjects for ~600 s, at a sampling frequency of 1000 Hz. Data was 
collected with a 306-channel MEG system (204 planar gradiometers and 
102 magnetometers, Elekta-MEGIN Oy) at HUS BioMag laboratory, 
Helsinki. Ethics approval was obtained from the Ethics Committee of 
Helsinki University Central Hospital. The study was performed accord
ing to the guidelines in the Declaration of Helsinki. Written informed 
consent was obtained from each participant prior to the study. Please see 
Siebenhühner et al., 2020 for further details. 

We used temporal Signal Space Separation (Taulu and Hari, 2009) 
implemented in MaxFilter to suppress extra-cranial noise, and Inde
pendent Component Analysis (ICA) in FieldTrip (Oostenveld et al., 
2011), to remove artefacts of ocular, cardiac, or muscular origin. 

We estimated subject-specific forward and inverse operators to map 
between source space and MEG sensor space, based on individual T1- 
weighted anatomical MRI scans that we collected at a resolution of 1 
× 1 × 1 mm with a 1.5T MRI scanner (Siemens, Germany). We processed 
these MRIs with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and 
used the dynamic Statistical Parametric Mapping (dSPM) method (Dale 
et al., 2000) implemented in MNE (Gramfort et al., 2014) to estimate 
inverse operators based on subject-specific head conductivity models 
and cortically constrained source models. We applied fidelity weighting 
to these inverse operators to reduce the influence of MEG field spread 
(Korhonen et al., 2014). We applied these subject-specific inverse op
erators to MEG sensor-level data, to reconstruct dynamics at up to 7500 
sources per hemisphere for each subject. Next, we averaged the recon
structed dynamics within each brain region in the Destrieux atlas, to 
obtain the representative dynamics for each of the 148 regions. We then 
downsampled these source collapsed datasets of each subject to 250 Hz, 
before bandpass filtering in the alpha frequency band (8–12 Hz) with 
Morlet wavelets of peak frequency = 9.83 Hz and width parameter = 5. 
We chose a high value for the Morlet width parameter to account for 
subject-wise variability in the limits of the alpha frequency band (Hae
gens et al., 2014). These operations yielded 75 subject-specific alpha-
band experimental MEG datasets, at the level of brain regions. From 30 
of these subjects, we recorded another set of resting-state data. We used 
these 30 additional MEG datasets to choose between the three BNMs 
with ABC model comparison. Further, we recorded eyes-closed MEG 
resting-state data from 28 of the original cohort of 75 subjects. We used 
these 28 additional MEG datasets to choose between the three BNMs in 
eyes-closed MEG resting-state, where the compared BNMs had been fit 
to the original dataset of eyes-open MEG resting-state data from 75 
subjects. 

We generated simulated MEG data by first simulating the BNMs for 
65 s at a sampling frequency of 250 Hz, before removing data from the 
first 5 s to remove the effect of transient dynamics. Then, we successively 
projected the simulated data to sensor-level with the same 75 subject- 
specific forward operators whose MEG data we recorded, and applied 
the 75 subject-specific inverse operators to the simulated sensor-level 
MEG data, resulting in 75 simulated source-space MEG datasets. Next, 
we performed the source collapsing and bandpass filtering of the 
simulated source-space MEG data identically as to the experimental 
MEG resting-state data, yielding 75 subject-specific alpha-band datasets 
of simulated MEG, across 148 brain regions of the Destrieux brain atlas. 

2.3.2. Estimating test statistics for prior predictive checks 
For both simulated and experimental MEG datasets, we estimated the 

median and median absolute deviation (MAD) of phase synchronization 
strengths. To do this, we first estimated subject-specific matrices of 
phase synchronization between all pairs of 148 brain regions from the 
alpha-band source-space MEG datasets of each subject. We measured 

phase synchronization using weighted Phase Lag Index (wPLI), which is 
insensitive to the confounding influence of MEG field spread on esti
mates of phase synchronization (Vinck et al., 2011; Siebenhühner et al., 
2016; Palva et al., 2018). We estimated wPLI as: 

wPLI =
|E(|Imag(X)|sign(Imag(X))|

E(|Imag(X)|)
(3)  

where X is the cross-spectrum between a pair of signals and Imag(X) is its 
imaginary component. We then averaged these subject-specific matrices 
along the subject dimension to obtain group-level matrices of phase 
synchronization. We estimated the median of phase synchronization 
strengths from the upper triangular elements of the group-level matrix of 
phase synchronization. We estimated the median absolute deviation 
(MAD) of phase synchronization strengths as the median of absolute 
differences between each phase synchronization strength and the me
dian phase synchronization. 

For both simulated and experimental source-space MEG datasets, we 
estimated the mean and standard deviation of the Kuramoto order 
parameter R, by first estimating R at each time t: 

R(t) =

⃒
⃒
⃒
⃒
⃒

1
N

∑N

k=1
eϕk (t)

⃒
⃒
⃒
⃒
⃒

(4)  

where ϕk(t) is the instantaneous phase of the oscillator with index k, and 
N is the total number of oscillators. We estimated the mean and standard 
deviation of R(t) for the alpha-band MEG dataset of each subject and 
then averaged these estimates across subjects, to obtain group-level 
estimates of the strength and variability of zero-lag phase 
synchronization. 

Please refer Table 1 for an overview of the test statistics we used, how 
we estimated them and our purpose in using them. 

2.4. BNM fitting 

We used an ABC method, BOLFI (Bayesian optimization for 
Likelihood-Free Inference) (Gutmann and Corander, 2016) to fit each of 
the BNMs to experimental MEG data. We used the BOLFI implementa
tion in the Python package, Engine for Likelihood Free Inference (ELFI) 
(Lintusaari et al., 2018). We chose BOLFI to estimate BNM parameters 
since it is suitable for i) likelihood-free inference (LFI) settings where a 
model’s intractable likelihood function renders standard 
likelihood-based methods inapplicable (Lintusaari et al., 2017), and ii) 
high-dimensional inference, i.e. estimating more than ~10 model pa
rameters - standard LFI methods such as ABC-Sequential Monte Carlo 
(SMC) (Sisson et al., 2007; West et al., 2021) are only suitable to 

Table 1 
Descriptions of each test statistic, their estimation and purpose.  

Test statistic Estimation Purpose 

Central tendency in 
strengths of inter- 
regional phase 
synchronization 

Median of upper- 
triangular elements of 
group-level matrix of 
phase synchronization 

To measure overall 
strength of inter-regional 
phase synchronization 

Dispersion in strengths 
of inter-regional 
phase 
synchronization 

Median Absolute 
Deviation (MAD) of upper- 
triangular elements of 
group-level matrix of 
phase synchronization 

To measure overall 
variability of inter- 
regional phase 
synchronization 

Strength of aggregate 
phase 
synchronization 

Mean of subject-level 
means of Kuramoto order 
parameter 

To measure strength of 
simultaneous, zero-lag 
phase synchronization 
across dataset 

Temporal variability of 
aggregate phase 
synchronization 

Mean of subject-level 
standard deviations of 
Kuramoto order 
parameter 

To measure temporal 
variability of 
simultaneous, zero-lag 
phase synchronization 
across dataset  
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estimate a few model parameters and do not scale well to 
high-dimensional settings (Gutmann and Corander, 2016). BOLFI has 
been used to infer parameters of models in diverse fields, including 
genetics (Corander et al., 2017; McNally et al., 2019; Arnold et al., 
2018), cosmology (Leclercq, 2018), computational social science (Asi
kainen et al., 2020) and cognitive science (Kangasrääsiö et al., 2019). 
While a method similar to BOLFI has been used to estimate parameters 
of BNMs in Systems Neuroscience (Hadida et al., 2018), it does not 
perform Bayesian inference - limiting its ability to include existing e.g., 
neurophysiological constraints on values of BNM parameters, and to 
account for uncertainty in the values of BNM parameters when 
comparing BNMs. 

BOLFI estimates posterior distributions of BNM parameters using 
Bayes’ rule (Gelman et al., 2013) to combine prior distributions of BNM 
parameters with an approximation of the BNM’s likelihood function. We 
employed a Gaussian Process (GP)-based surrogate model to approxi
mate the BNM’s likelihood function. We trained the GP model with the 
results of multiple BNM simulations, to learn the mapping between 
combinations of parameter values and the corresponding discrepancies 
between BNM dynamics and MEG data. We used summary statistics to 
describe the BNM dynamics and MEG data. We used GPs due to their 
suitability in modeling smooth input-output relationships (Rasmussen 
and Williams, 2006) - we expected similar combinations of parameter 
values to generate similar BNM dynamics. Previously studied BNMs 
have demonstrated smooth input-output relationships (Hadida et al., 
2018; Perl et al., 2020). GPs acquire their smoothness constraint from 
their covariance matrix. We specify the functional form of the covari
ance matrix with a kernel, and we use a kernel lengthscale parameter to 
quantify the rate of decrease in covariance with increases in values of 
BNM parameters. When used with BOLFI, GP surrogate models have 
drastically reduced the number of model simulations required to accu
rately estimate values of model parameters (Gutmann and Corander, 
2016). Hence, we used BOLFI with GP surrogate models to fit 
high-dimensional BNMs of between 12 and 14 parameters in our study, 
to MEG data. 

2.4.1. BOLFI settings 
We employed the following procedure and settings to apply BOLFI to 

estimate joint posterior distributions of each of the three BNMs. We set 
the prior distributions of parameters for each BNM as per the values we 
had specified (Section 2.2). We used the 148 × 148 group-level matrix of 
static phase synchronization estimated from MEG resting-state (Section 
2.3.2) to represent experimentally observed dynamics, against which we 
compared BNM dynamics. We chose to compare the group-level 
matrices of static phase synchronization estimated from the MEG data 
and BNM dynamics rather than corresponding descriptions of time- 
varying phase synchronization, due to i) the stable inter-regional pat
terns of phase synchronization across time reported in recent human 
electrophysiological studies (Nentwich et al., 2020; Mostame and 
Sadaghiani et al., 2021, Sadaghiani et al., 2022), and ii) since comparing 
descriptions of time-varying phase synchronization returned by, e.g., a 
HMM (Hidden Markov Model)-based method (Vidaurre et al., 2018) 
would add a layer of complexity to the BNM fitting by increasing the 
dimensionality of the summary statistics (Lintusaari et al., 2017) by a 
multiplicative factor equal to the number of hidden states and intro
ducing problems of “state matching” between hidden states estimated 
from the MEG data and BNM dynamics. We simulated the BNM at 10, 
000 combinations of parameter values drawn from the BNM’s joint prior 
distribution. From the dynamics of each BNM simulation, we estimated 
148 × 148 group-level matrices of phase synchronization. We chose the 
summary statistics to be the vector of upper-triangular elements of the 
148 × 148 group-level matrices and used the Structural Similarity Index 
(SSI) (Wang et al., 2004) to measure the similarity between summary 
statistics of the BNM dynamics and those from MEG data. We used SSI to 
measure similarity due to i) it simultaneously comparing mean, standard 
deviation and pattern of values in two input vectors in contrast to 

alternative measures such as, e.g., Pearson Correlation which only 
compares the pattern of values in two input vectors, ii) its demonstrated 
effectiveness in comparing empirical brain functional networks to those 
generated by BNMs (Piccinini et al., 2021) and generative models (Perl 
et al., 2020), and iii) its reported good performance in comparing 
high-dimensional images in image processing applications (Ledig et al., 
2017; Dong et al., 2015), which is analogous to our comparing 
high-dimensional vectors of phase synchronization strengths. We esti
mated SSI as: 

SSI(x, y) =
(
2μxμy + C1

)(
2σxσy + C2y

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (5)  

where μx, μy, σx, σy and σxσy are local means, local standard deviations 
and cross-covariances of the vectors x and y respectively, and C1 =

0.012 and C2 = 0.032. x and y were respectively the vectors of phase 
synchronization strengths estimated from BNM dynamics and MEG data. 
SSI values typically fall between 0 and 1, values close to 1 indicating 
highly similar vectors (Wang et al., 2004). We expressed the discrepancy 
between summary statistics from MEG data and BNM dynamics as ln(1 −

SSI). Hence, the discrepancy value for identical vectors would be -∞. We 
applied the natural logarithm to provide finer resolution at low 
discrepancy values (Gutmann and Corander, 2016). A single BNM 
simulation can exceed 24 h, hence simulating BNMs at 10,000 combi
nations of parameter values in a serial manner would have prohibitively 
long run-time. We reduced computational run-time by exploiting the 
independence of BNM simulations, using an “embarrassingly parallel” 
paradigm on a HPC cluster to simulate BNMs at each of the 10,000 
samples. We used “array jobs” to run the 10,000 simulations in 2000 sets 
of 5 simulations, wherein we set the time limit for each set to 120 h and 
the RAM memory limit to 30 GB. However, note that running BNM 
simulations in this manner only permitted training the GP model with 
combinations of parameter values drawn from their joint prior distri
butions. We did not run BNM simulations at points suggested by a 
Bayesian optimization (BO) acquisition function, i.e., we did not have an 
active learning stage in the GP training. Since BNM simulations are not 
independent of each other during active learning, including an active 
learning stage would make computational run-times prohibitively long. 
We used an ARD (Automatic Relevance Determination) squared expo
nential kernel with a constant basis function to specify the functional 
form for the covariance matrix of the GP surrogate model. Algorithmic 
complexity of fitting the GP model scales as a cube of the number of 
simulations (Gutmann and Corander, 2016), hence fitting the GP model 
to ~10,000 points can be computationally expensive. To aid conver
gence, we first used the subset of data method (2000 points) to fit the GP 
model and used the residual noise variance estimated from this fit as a 
fixed parameter when fitting the GP model to ~10,000 points. Once the 
GP fitting was complete, we assessed the quality of the fit by estimating 
the Pearson Correlation between actual discrepancies and GP-predicted 
discrepancies. We also determined the relative importance of each BNM 
parameter in explaining the actual discrepancies, by computing 
exp− lengthscales of the estimated ARD kernel lengthscales. Next, we esti
mated the posterior distributions of BNM parameters by combining the 
GP-based likelihood function with prior distributions of the BNM pa
rameters. To estimate posterior distributions, we used the NUTS method 
(Hoffman and Gelman, 2014) to sample 1000 points each, from 4 chains, 
with half these points being used for warm-up. We set the posterior 
defining threshold as the minimum of the GP-based mean discrepancy 
function (Gutmann and Corander, 2016), and set 0.8 as the target 
probability, which is within the recommended range for this value 
(Betancourt et al., 2014). Finally, we assessed convergence of the pos
terior sampling stage by checking if the effective number of samples was 
>100 and R̂ <1.05, for each of the BNM parameters (Vehtari et al., 
2021). Effective number of samples indicates the number of samples 
from the posterior after accounting for autocorrelation between samples 
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(Geyer et al., 2011), while the R̂ diagnoses “chain mixing” by comparing 
between-chain and within-chain estimates of model parameters - values 
close to 1 suggest the absence of “chain mixing”. 

2.4.2. Assessing sensitivity of discrepancies to values of BNM parameters 
The accuracy of posterior distributions estimated by ABC methods 

are highly dependent on the sensitivity of the discrepancies between 
‘simulated’ and ‘observed’ dynamics, to the values of the BNM param
eters (Lintusaari et al., 2017; Sunnåker et al., 2013). For BOLFI, the 
accuracy of the posterior distributions are also dependent on the sensi
tivity of the GP-predicted discrepancies to the values of BNM parame
ters. We used fake-data simulations to assess the sensitivity of the actual 
and GP-predicted discrepancies, to values of two BNM parameters wee 
and wei. For these fake-data simulations, we used the same BNM as 
specified in Section 2.1, but with “instantaneous delays” or “zero delays” 
- using instantaneous delays allowed us to run the BNM simulations 
several orders of magnitude faster since we were solving ordinary dif
ferential equations rather than delay differential equations. We first 
generated a reference dataset of ‘observed’ dynamics by selecting a 
combination of parameter values producing oscillatory dynamics. We 
used the following values: wee = 12.9, wei = 13.4, wie = 12.4, wii = 0.85, 
be = 2.85, bi = 4.7, τe = 15.9, τi = 18.1, k = 1.6, IHscaling= 2.83 and 
ψ sigma= 0.13. We simulated the BNM with these parameter values 1000 
times with ODE45 (Bogacki and Shampine, 1996), other settings being 
identical to that specified in Section 2.1.2. For each of the 1000 simu
lations, we generated group-level matrices of phase synchronization, 
then averaged across these 1000 group-level matrices to generate the 
reference group-level matrix of phase synchronization. Next, we 
generated datasets of ‘simulated’ dynamics by running 20 BNM simu
lations at every point in the 100 × 100 grid defined by every pairwise 
combination of wee and wei values. We varied wee and wei across 100 
equally spaced points from 10 to 30 and from 6 to 30 respectively. We 
fixed values of all other BNM parameters to the same value as for the 
reference dataset. From the datasets of ‘simulated’ dynamics, we 
generated 20 group-level matrices of phase synchronization for every 
point in the 100 × 100 grid, and averaged across these 20 repetitions to 
obtain a single group-level matrix at each point in the 100 × 100 grid. 
Then, we estimated discrepancies between the reference ‘observed’ 
summary statistics and ‘simulated’ summary statistics at every point on 
the 100 × 100 grid. We then determined if the discrepancy surface 
reached a global minimum at the point on the grid representing the 
combination of true values of wee and wei. Further, we estimated a GP 
surrogate model relating the BNM parameter values to the correspond
ing discrepancies. We determined if the surface of GP-predicted dis
crepancies reached a global minimum at the point on the grid 
representing the combination of true values of wee and wei. These in
vestigations revealed if the actual and GP-predicted discrepancies were 
sensitive to the values of two BNM parameters, wee and wei. 

2.5. BNM evaluation 

We evaluated the three fitted BNMs by comparing the posterior 
distributions of each of the BNM parameters to their respective prior 
distributions. Comparing the posterior distributions of BNM parameters 
to their prior distributions revealed additional constraints on the values 
of these parameters learnt from the MEG data, through BOLFI model 
fitting. Further, we ran Posterior Predictive Checks to assess the simi
larity between dynamics from the fitted BNMs and those reflected by the 
phase synchronization phenomena in the observed MEG data. 

2.5.1. Posterior predictive checks 
We used Posterior Predictive Checks (Gelman et al., 2013; Gelman 

et al., 2020; van de Schoot et al. 2021) to determine if the dynamics 
generated by the three fitted BNMs correspond to those reflected by the 
phase synchronization phenomena in the MEG data. We ran 1000 

simulations of each of the three BNMs with parameter values drawn 
from their respective joint posterior distributions. Just as for the Prior 
Predictive Checks (Section 2.3), we then estimated the values of four test 
statistics from the dynamics of each of the 1000 BNM simulations and 
compared the sample medians of these test statistics to the values of 
those test statistics on experimental MEG resting-state data. We used the 
same set of test statistics as for the Prior Predictive Checks: i) median of 
alpha-band phase synchronization strengths between all pairs of 148 
brain regions, ii) median absolute deviation (MAD) of alpha-band phase 
synchronization strengths between all pairs of 148 brain regions, iii) 
mean of Kuramoto order parameter, and iv) standard deviation of Kur
amoto order parameter (see Table 1 for details). 

2.6. BNM comparison 

We used standard ABC model comparison to compare the fitted 
BNMs with “isochronous delays”, “mixed delays”, and “distance- 
dependent delays”. We simulated the three BNMs, each with 1000 sets of 
parameter values drawn from their respective joint posterior distribu
tions. We simulated the BNMs at samples from their joint posterior 
distributions rather than their joint prior distributions since the poste
riors represent probable values of BNM parameters after combining in
formation from both previous neurophysiology experiments and our 
own MEG data. In contrast, the priors represent probable values of BNM 
parameters based only on information from previous neurophysiological 
experiments. Hence, the posteriors are more likely than the priors to 
reflect values of the BNM parameters generating dynamics we observe in 
the MEG data. It follows from this that comparing the BNMs with 
samples from their respective posterior distributions enables isolating 
the influence of delays-related BNM parameters by reducing the 
potentially confounding effect of inaccurate estimates of other BNM 
parameters on the model comparison. For each of the three BNMs, we 
estimated discrepancies between dynamics from each of the 1000 sim
ulations to dynamics from an independent dataset of MEG resting-state 
data (N = 30). We estimated discrepancy as ln(1 − SSI), identical to the 
original BNM fitting (Section 2.4.1). SSI is the Structural Similarity 
Index between the vectors of inter-regional phase synchronization 
strengths from BNM dynamics and MEG data. We estimated probability 
of each BNM by the relative acceptance rate of discrepancies associated 
with that BNM, with respect to a specified minimum discrepancy 
(Beaumont, 2019). We estimated model probabilities for a range of 
minimum discrepancies between -1 and 0, where -1 corresponded to a 
conservative threshold accepting very few discrepancy values across 
BNMs while 0 corresponded to a liberal threshold. We then chose be
tween the three BNMs based on the model probabilities across a range of 
discrepancy thresholds. 

We refer the reader to our GitHub repository for the Python and 
MATLAB code, and SLURM scripts (https://github.com/nitinwilli 
ams/eeg_meg_analysis/tree/master/MEGMOD), that we used to simu
late, fit and compare the BNMs. Within the GitHub repository, please 
check file_descriptions.txt for names of files implementing 1.) MATLAB 
functions to simulate each of the three BNMs - we called each of these 
functions via “array jobs” implemented in SLURM scripts (to be run on 
HPC resources), which we also make available, 2.) MATLAB code to 
estimate the input set of parameter values and output set of discrep
ancies for BOLFI model fitting, for each BNM, 3.) Python code to use the 
ELFI toolkit to fit each of the BNMs to MEG resting-state data with 
BOLFI, 4.) MATLAB code to generate the set of posterior distributions 
returned by BOLFI in the correct order and scale, 5.) MATLAB functions 
to simulate each of the three BNMs with samples from their posterior 
distributions - we called each of these functions via “array jobs” 
implemented in SLURM scripts (to be run on HPC resources), which we 
also make available, and 6.) MATLAB code implementing ABC model 
comparison to compare the three fitted BNMs. 
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3. Results 

We compared the “isochronous delays”, “mixed delays”, and “dis
tance-dependent delays” methods of specifying inter-regional delays in 
BNMs of alpha-band networks of phase synchronization. We specified 
BNMs implementing each of the three methods and then used an ABC 
workflow to adjudicate between them. The steps we followed were: i) we 
employed constraints from previous human and animal electrophysio
logical studies as well as the MEG and fMRI modeling literature, to 
specify prior distributions for parameters of each BNM, ii) we used Prior 
Predictive Checks to determine whether each of the BNMs, constrained 
by their prior distributions, generated dynamics encompassing those 
reflected by the phase synchronization phenomena in the MEG data, iii) 
we used fake-data simulations to verify that the estimated discrepancies 
between BNM dynamics and MEG data, were sensitive to the values of 
two BNM parameters, iv) we applied BOLFI to fit each of three BNMs to 
MEG resting-state data (N = 75), yielding posterior distributions of their 
parameters, v) we employed Posterior Predictive Checks to verify that 
the fitted BNMs generated dynamics corresponding closely to those 
observed in the MEG dataset they were trained on, and vi) we applied 
ABC model comparison to determine which of the three fitted BNMs 
generated alpha-band networks of phase synchronization most similar 
to those observed in an independent MEG resting-state dataset (N = 30). 

3.1. Prior specification 

We combined the prior distribution of BNM parameters with an 
approximation of the BNM likelihood function to estimate the posterior 
distributions of BNM parameters. Hence, using biologically plausible, 
well-motivated prior distributions was important to accurately esti
mating the posterior distributions of BNM parameters. We set prior 
distributions of BNM parameters based on biological constraints, 
parameter values found to be optimal in the MEG and fMRI modeling 
literature, and ranges of values generating oscillatory dynamics. We set 
the priors to be Gaussian distributed and list their means and standard 
deviations below, along with brief rationales for choosing these values 
(Table 2). We refer the reader to Materials & Methods, Section 2.2 (see 
Fig. 2) for a detailed description of the prior specification. 

3.2. BNMs simulated at prior means generate alpha-band dynamics 

A pre-requisite for alpha-band phase synchronization is alpha-band 
oscillatory dynamics from individual brain regions. Hence, we investi
gated if the BNMs generated oscillatory dynamics at alpha-band fre
quencies. To do so, we ran 10 second simulations of BNMs with 
“isochronous delays”, “mixed delays”, and “distance-dependent delays” 
at their respective prior means. Then, we determined the peak fre
quencies of their dynamics - oscillations manifest as peaks in frequency 
spectra. We found that each of the three BNMs generated oscillatory 
dynamics (Fig. 3a-c) with mean amplitude of 0.15 and mean standard 
deviation of 0.08 across brain regions. These oscillatory dynamics had 
spectral peaks in alpha-band (Fig. 3d-f), with peak frequencies of 12.9 ±
0.07 Hz (mean±standard deviation), 12.9 ± 0.1 Hz and 12.8 ± 0.14 Hz 
for BNMs with “isochronous delays”, “mixed delays” and “distance- 
dependent delays” respectively, across regions (Fig. 3g-i). The mean 
peak frequencies of all BNMs fell within the 10.3 Hz ± 2.8 Hz distri
bution of alpha-band peak frequencies reported in experimental MEG 
data (Haegens et al., 2014). Hence, the three BNMs simulated at their 
respective prior means generated alpha-band oscillations, fulfilling a 
pre-requisite to investigate large-scale, alpha-band networks of phase 
synchronization. 

3.3. BNM dynamics encompass those observed in MEG data 

The BOLFI fitting method assumes the suitability of the prior dis
tributions of the BNM parameters and that the BNMs are not mis- 

Table 2 
Means and standard deviations of prior distributions for each of the BNM pa
rameters, along with brief rationales for choosing the specified values.  

Parameter 
(description) 

Mean ±
SD 
(units) 

Rationale 

wee(Connection strength within 
excitatory neuronal 
populations) 

20 ± 5 
(a.u.)  

i) Dense recurrent structural 
connectivity between ‘layer 
2/3 pyramidal neurons’ 
(Binzegger et al., 2004; 
Douglas et al., 1989; Douglas 
and Martin 2007; Jansen and 
Rit, 1995)  

ii) Similar strength of functional 
connections to those between 
excitatory and inhibitory 
neuronal populations i.e., wei 

and wie (Seeman et al., 2018; 
Campagnola et al., 2022)  

iii) Encompasses range of values 
generating oscillatory 
dynamics 

wei(Connection strength from 
inhibitory to excitatory 
neuronal populations) 

18 ± 6 
(a.u.)  

i) Weaker strength of structural 
connections compared to 
dense connectivity within 
excitatory neurons 
(Binzegger et al., 2004; 
Douglas and Martin, 2007)  

ii) Similar strength of functional 
connections to those within 
excitatory neurons and from 
excitatory to inhibitory 
neurons i.e., wee and wie 

(Seeman et al., 2018, 
Campagnola et al., 2022)  

iii) Encompasses range of values 
generating oscillatory 
dynamics 

wie(Connection strength from 
excitatory to inhibitory 
neuronal populations) 

18 ± 6 
(a.u.)  

i) Weaker strength of structural 
connections compared to 
dense connectivity within 
excitatory neurons 
(Binzegger et al., 2004; 
Douglas and Martin, 2007)  

ii) Similar strength of functional 
connections to those within 
excitatory neurons and from 
excitatory to inhibitory 
neurons i.e., wee and wie 

(Seeman et al., 2018; 
Campagnola et al., 2022)  

iii) Encompasses range of values 
generating oscillatory 
dynamics 

wii(Connection strength within 
inhibitory neuronal 
populations) 

1 ± 0.2 
(a.u.) 

Sparse recurrent structural 
connectivity between inhibitory 
neurons (Markram et al., 2004;  
Binzegger et al., 2004) 

be(Firing threshold of excitatory 
neuronal populations) 

3 ± 1 (a. 
u.) 

Low positive value since neurons 
fire in response to small, net 
excitation 

bi(Firing threshold of inhibitory 
neuronal populations) 

5 ± 1 (a. 
u.)  

i) Low positive value since 
neurons fire in response to 
small net excitation  

ii) Spike thresholds of inhibitory 
neurons are higher than spike 
thresholds of excitatory 
neurons, across all studies 
reported in NeuroElectro 
database 

τe(Time constant of excitatory 
neuronal populations) 

18.6 ±
3.6 (ms) 

Time constants of ‘layer 2/3 
pyramidal neurons’ across studies 
in NeuroElectro database 

τi(Time constant of inhibitory 
neuronal populations) 

15.1 ±
4.7 (ms) 

Time constants of ‘basket cells’, 
‘double bouquet cells’, ‘chandelier 
cells’, ‘Martinotti cells’, ‘bipolar 
cells’ and ‘interneurons from deep 

(continued on next page) 
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specified. Hence, we performed Prior Predictive Checks to assess the 
ability of the BNMs, constrained by their prior distributions, to generate 
the phase synchronization phenomena observed in MEG resting-state 
(Gelman et al., 2020; van de Schoot et al., 2021). In addition, the 
Prior Predictive Checks allowed us to assess the similarity of the phase 
synchronization phenomena generated by the three BNMs, when these 
BNMs were constrained by their respective prior distributions. We per
formed the Prior Predictive Checks by comparing the sample medians of 
four test statistics that we estimated from 1000 simulations of each of 
the BNMs, against the value of those same test statistics estimated on the 
experimental MEG dataset (N = 75). We simulated the three BNMs with 
parameter values drawn from their joint prior distributions. As the test 
statistics, we used the median and median absolute deviation (MAD) of 
phase synchronization strengths between all region pairs, to measure 
their central tendency and dispersion respectively. We also estimated 
the mean and standard deviation of the Kuramoto order parameter, to 
measure overall strength and variability of zero-lag phase synchroni
zation respectively (see Section 2.3.2 and Table 1 for details of each test 
statistic). We found that the values of each of the four test statistics 
estimated on the MEG dataset lay within the range of values of those test 
statistics estimated from the dynamics of each of the three BNMs 
(Fig. 4a-l). The dispersion in strengths of inter-regional phase synchro
nization estimated on the MEG dataset was 0.02, which was close to the 
median values of 0.03, 0.02 and 0.02 for this test statistic, for the 
“isochronous delays”, “mixed delays”, and “distance-dependent delays” 
methods, respectively (Fig. 4d-f). However, the central tendency of 0.09 
for the strengths of inter-regional phase synchronization estimated on 
the MEG dataset was distant from the median values of 0.7, 0.78 and 
0.79 for this test statistic, for the three methods, respectively (Fig. 4a-c). 
The mean and standard deviation of the Kuramoto order parameter had 
bimodal distributions for the sets of values estimated from dynamics of 
each of the three BNMs. Kuramoto mean and standard deviation close to 
0.08 and 0 respectively, reflected parameter combinations for which the 
BNMs did not generate oscillatory dynamics while values close to 0.05 
and 0.025 respectively, reflected parameter combinations for which the 
BNMs generated oscillatory dynamics. We found the values of 0.05 and 
0.03 respectively, of these test statistics on the MEG dataset, to be close 
to their values for cases when the BNMs generated oscillatory dynamics 
(Fig. 4g-l). The Prior Predictive Checks suggest that the three BNMs 
generate dynamics encompassing those reflected by the phase syn
chronization phenomena in MEG resting-state data. This suggests the 
suitability of the prior distributions of the BNM parameters and that the 
BNMs are not mis-specified, and hence can be fit to the MEG data with 
the BOLFI method. In addition, the correspondence between the three 
BNMs in the values of each of the test statistics (Fig. 4a-l), suggested that 
each of the BNMs, constrained by their prior distributions, generate 
similar phase synchronization phenomena. 

3.4. Discrepancies between BNM dynamics and MEG data are sensitive to 
values of BNM parameters 

BOLFI returning accurate posterior distributions is highly dependent 
on whether the estimated discrepancies between BNM dynamics and 
MEG data are sensitive to values of the BNM parameters (Lintusaari 
et al., 2017; Sunnåker et al., 2013). In the asymptotic case, BOLFI as
sumes the surface of discrepancies between summary statistics of BNM 

Table 2 (continued ) 

Parameter 
(description) 

Mean ±
SD 
(units) 

Rationale 

cortical layers’ reported across all 
studies in NeuroElectro database 

k(Scalar multiplier over structural 
connectome) 

1.5 ±
0.5 (a. 
u.)  

i) Low positive value since 
extrinsic input to excitatory 
population much lower than 
intrinsic input (Douglas and 
Martin, 2007)  

ii) Encompassing range of values 
reported in MEG and fMRI 
modeling literature (Hadida 
et al., 2018; Hellyer et al., 
2016; Cabral et al., 2014; 
Deco and Jirsa, 2012) 

IHscaling(Inter-hemispheric scaling 
factor over structural 
connectome) 

2.5 ±
0.5 (a. 
u.)  

i) Known under-estimation of 
long-distance connections by 
diffusion MRI (Sotiropoulos 
and Zalesky, 2019)  

ii) Encompassing range of values 
reported in MEG modeling 
literature (Hadida et al., 2018) 

ψsigma(Standard deviation of noise 
to excitatory and inhibitory 
populations) 

0.15 ±
0.05 (a. 
u.)  

i) Positive value, much lower 
than firing thresholds of 
excitatory (be) and inhibitory 
(bi) populations, since 
negligible probability of 
population firing due to noise 
input (Faisal et al., 2008)  

ii) Encompassing range of values 
reported in MEG and fMRI 
modeling literature 
(Abeysuriya et al., 2018; 
Hellyer et al., 2016; Deco 
et al., 2009) 

v(Conduction velocity) 8 ± 2 
(m/s)  

i) Within range of conduction 
velocities and corresponding 
axonal diameters reported in 
human and animal 
neuroanatomical and 
neurophysiological studies 
(Trebaul et al., 2018; 
Lemaréchal et al., 2022; 
Swadlow et al., 1978), Aboitiz 
et al., 1992; Firmin et al., 
2014)  

ii) Encompassing range of values 
reported in MEG and fMRI 
modeling literature 
(Abeysuriya et al., 2018; 
Nakagawa et al., 2014; Cabral 
et al., 2014; Hellyer et al., 
2016; Hadida et al., 2018) 

delay(Mean conduction delay) 10 ± 3 
(ms)  

i) Within range of inter- 
hemispheric delays reported in 
human and animal electro
physiological studies 

(Aboitiz et al., 1992; Swadlow 
et al., 1978)  
i) Encompassing range of values 

reported in MEG and fMRI 
modeling literature 
(Abeysuriya et al., 2018; 
Nakagawa et al., 2014; Cabral 
et al., 2014; Hellyer et al., 
2016; Hadida et al., 2018) 

coeffvardelay(Coefficient of 
variation in conduction delays) 

0.2 ±
0.05 (a. 
u.)  

i) Low values of parameter 
would generate sets of nearly 
identical inter-regional delays  

ii) High values of parameter 
would generate sets of inter- 
regional delays with similar 
variation to sets of “distance- 
dependent delays”  

Table 2 (continued ) 

Parameter 
(description) 

Mean ±
SD 
(units) 

Rationale 

coeffbalance(Coefficient of balance 
between “distance-dependent” 
and “isochronous” delays) 

0.5 ±
0.15 (a. 
u.) 

Specified to enable the “mixed 
delays” method to traverse the 
intermediate space between the 
“distance-dependent delays” and 
“isochronous delays” methods  
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dynamics and MEG data to have a global minimum at the combination of 
true parameter values. We used fake-data simulations to assess this for 
two BNM parameters, wee and wei. To do so, we first generated the 
‘observed’ summary statistics as the vector of phase synchronization 
strengths between all region pairs, averaged across 1000 BNM simula
tions. We ran the BNM simulations with a pre-chosen set of parameters 
values, with wee = 12.9 and wei = 13.4. Then, we generated ‘simulated’ 
summary statistics as the vector of phase synchronization strengths, 
averaged across 20 BNM simulations. We generated ‘simulated’ sum
mary statistics at every point on a 100 × 100 grid defined by every pair 
of wee and wei values, where we varied wee from 10 to 30 and wei from 6 
to 30. We fixed values of other BNM parameters to the same values used 
to generate the ‘observed’ summary statistics. Finally, we estimated the 
discrepancies as ln(1 − SSI) between the reference ‘observed’ summary 
statistics and the ‘simulated’ summary statistics at each point on the 100 

× 100 grid. SSI is the Structural Similarity Index. We also estimated a set 
of Gaussian Process (GP)-predicted discrepancies from a GP model 
trained with the set of actual discrepancies and corresponding BNM 
parameter values. We found that the surface of actual discrepancies 
reached a global minimum at the combination of the true parameter 
values, i.e., wee=12.9, wei=13.4 (Fig. 5). In addition, we found low dis
crepancies at points on the grid corresponding to high values of wee and 
wei, but these values were higher than the discrepancy value at the 
combination of true parameter values. For example, we estimated a 
discrepancy of -2.48 at the combination of true values (wee=12.9, 
wei=13.4), while we estimated a discrepancy of -2.06 at wee=27.6, 
wei=24.2. Notably, the surface of GP-predicted discrepancies also 
reached a global minimum at the combination of the true parameter 
values (Figure S4). These results demonstrate the sensitivity of the dis
crepancies to the values of wee and wei, suggesting that BOLFI can return 

Fig. 3. BNMs simulated at prior means generate alpha-band oscillatory dynamics. a-c. 10 s time course of dynamics from ‘left fronto-marginal gyrus and sulcus’ of 
BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays” respectively. D-f. Frequency spectra of dynamics from ‘left fronto-marginal gyrus 
and sulcus’, of all three BNMs. g-i. Alpha-band peak frequencies of each region, of all three BNMs, in dorsal view. Plots on brain surface were visualised with BrainNet 
Viewer (Xia et al., 2013). 
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accurate posterior distributions of at least these two BNM parameters. 

3.5. BOLFI yields BNM parameter estimates informed by MEG data 

The behavior of BNMs is highly dependent on the parameter values 
with which they are simulated. So, we first constrained values of the 
parameters of each of the three BNMs with MEG data, before proceeding 
to compare the three BNMs. To do so, we applied the high-dimensional 
inference method BOLFI (Gutmann and Corander, 2016), to fit each of 
the BNMs to MEG resting-state data (N = 75). BOLFI uses standard 
Bayesian inference to combine the prior distributions of BNM parame
ters with an approximation of the BNM’s likelihood function, to estimate 
posterior distributions of BNM parameters. BNMs typically have 
intractable likelihood functions, so BOLFI approximates these with 
Gaussian Process (GP) models trained on parameters values of multiple 
BNM simulations and the corresponding discrepancies between BNM 

dynamics and MEG data. We ran 10,000 simulations of each of the three 
BNMs and trained GPs parameterised with ARD squared exponential 
kernels, on values of the BNM parameters and the corresponding dis
crepancies. We estimated discrepancies as ln(1 − SSI) between the vec
tors of inter-regional phase synchronization strengths estimated from 
BNM dynamics and MEG data. SSI is the Structural Similarity Index 
(Wang et al., 2004). 

The multiple BNM simulations yielded 9004, 9063, and 9093 
completed simulations of BNMs with “isochronous delays”, “mixed de
lays”, and “distance-dependent delays” respectively, the others 
exceeding the time limit or crossing the memory limit. These “out of 
memory” errors likely reflect the excessive memory demand due to very 
small step sizes taken by the solver when dealing with discontinuities in 
the solution of the system of differential equations representing each 
BNM. For the completed simulations, we found Pearson Correlations 
between actual and GP-predicted discrepancies of 0.58, 0.67 and 0.67, 

Fig. 4. BNM dynamics encompass those observed in MEG data. a-c. Histograms of median of alpha-band phase synchronization strengths from multiple BNM 
simulations, where parameter values were drawn from joint prior distributions of BNMs with “isochronous delays”, “mixed delays”, and “distance-dependent delays” 
respectively. D-f. Histograms of median absolute deviation (MAD) of alpha-band phase synchronization strengths from multiple BNM simulations, of the three BNMs 
respectively. g-i. Histograms of mean of Kuramoto order parameter from multiple BNM simulations, of the three BNMs respectively. j-l. Histograms of standard 
deviation (SD) of Kuramoto order parameter from multiple BNM simulations, of the three BNMs respectively. For all panels, the red line indicates the corresponding 
value of that test statistic estimated from the MEG dataset. 
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for BNMs with “isochronous delays”, “mixed delays”, and “distance- 
dependent delays” respectively (Figure S5a-c). These close correspon
dences suggested the GP-based models of each BNM to suitably 
approximate their likelihood functions. For all three BNMs, we found 
that parameters governing dynamics of individual brain regions had a 
strong influence on predicting the discrepancies between BNM dynamics 
and MEG data (Figure S5d-f). In particular, the strength of connections 
within excitatory neuronal populations (wee), between excitatory and 
inhibitory populations (wei and wie), and the firing thresholds of excit
atory (be) and inhibitory populations (bi), had a strong influence. The 
influence of these parameters is consistent with neurophysiological 
studies on, e.g., the role of reciprocal interaction between excitatory and 
inhibitory populations, in generating the oscillatory dynamics necessary 
for inter-regional phase synchronization (Buzsáki, 2006; Traub et al., 
1997). We also found that the parameter controlling the strength of 
inter-regional anatomical connections (k) had an influence on predicting 
the discrepancies between BNM dynamics and MEG data. This is also 
consistent with understanding on the role of these connections in pro
moting inter-regional phase synchronization (Gray, 1994). 

BOLFI yielded reliable posterior distributions of parameters of all 
three BNMs. R̂ values were lower than 1.05 for all parameters and 
effective numbers of samples exceeded 100 (Vehtari et al., 2021) for all 
but one parameter, i.e., bi in the BNM with “isochronous delays” which 
had 91 effective samples. For all three BNMs, the mass of the posterior 
distributions of be shifted toward lower values compared to their prior 
distributions while the mass of the posterior distributions of bi shifted 
toward higher values (Fig. 6a-c). For the BNM with “isochronous delays” 
for example, prior means for be and bi were 3 and 5 respectively, while 
their posterior means were 2.7 and 5.4 (Fig. 6a). These posterior dis
tributions of be and bi across BNMs, are in agreement with neurophysi
ological constraints that spike thresholds of inhibitory neurons are 
higher than spike thresholds of excitatory neurons (see Fig. 2b and 
Section 2.2 on Prior Specification). For all three BNMs, we also observed 
the mass of the posterior distributions of τi, time constant of inhibitory 
neuronal populations, to shift toward higher values compared to their 

prior distributions (Fig. 6a-c). For the BNM with “isochronous delays” 
for example, prior mean for τi was 15.1 ms while its posterior mean was 
16.4 ms (Fig. 6a). For BNMs with “mixed delays” and “dis
tance-dependent delays”, mass of the posterior distributions of wee and 
wie shifted toward lower values (Fig. 6b-c). For the BNM with the “dis
tance-dependent delays” for example, prior means for wee and wie were 
20 and 18 respectively, while their posterior means were 18.5 and 14.5 
(Fig. 6c). Notably, the lower values of wee were in better agreement with 
empirical estimates of functional connectivity within excitatory 
neuronal populations (Seeman et al., 2018; Campagnola et al., 2022) 
than corresponding estimates of structural connectivity (Jansen and Rit, 
1995; Douglas and Martin, 2007; Douglas et al., 1989; Binzegger et al., 
2004). We also inspected posterior distributions of BNM parameters 
relating to inter-regional delays. For BNMs with “isochronous delays” 
and “mixed delays”, the posterior means of the delay parameter delay 
were shifted to 9.5 ms and 9.6 ms respectively, from their prior means of 
10 ms (Fig. 6a-b). Taken together, we found that applying BOLFI yielded 
reliably estimated posterior distributions of parameters of the three 
BNMs, which were in agreement with neurophysiological results. Hence, 
we could use these BNMs, constrained by MEG data, to choose between 
the three methods to specify inter-regional delays. 

We note that the estimated posterior distributions could be used to 
specify BNMs in future modeling efforts. We refer the reader to our open 
dataset (Williams et al., 2023), where we have made available the joint 
posterior distribution of each of the three BNMs, from which the mar
ginal distributions that we report here, as well as their conditional dis
tributions and joint distributions can be used to specify values of BNM 
parameters. 

3.6. Fitted BNM dynamics correspond to those observed in MEG data 

The procedure we used to compare the three BNMs assumed the 
absence of computational problems when the BNMs were fit to MEG 
data. Hence, we used Posterior Predictive Checks (Gelman et al., 2020; 
van de Schoot et al. 2021) to evaluate the fitted BNMs, before comparing 
them in the next stage. In addition, we used the Posterior Predictive 
Checks to assess the similarity of the phase synchronization phenomena 
generated by the three BNMs, when these BNMs were constrained by 
their respective posterior distributions. We performed the Posterior 
Predictive Checks by comparing sample medians of four test statistics 
that we estimated from 1000 simulations of each of the fitted BNMs, 
against the value of those test statistics estimated on the MEG dataset. 
Identical to the Prior Predictive Checks (Section 3.3), the test statistics 
that we used were the median and median absolute deviation (MAD) of 
phase synchronization strengths between all region pairs, to measure 
their central tendency and dispersion respectively. We also estimated 
the mean and standard deviation of the Kuramoto order parameter, to 
measure overall strength and variability of zero-lag phase synchroni
zation respectively (see Section 2.3.2 and Table 1 for details of each test 
statistic). We found the sample medians of the four test statistics esti
mated on the dynamics of all three BNMs to correspond closely to the 
values of those test statistics on the MEG dataset (Fig. 7a-l). Just as for 
the Prior Predictive Checks, the value of 0.02 for dispersion in phase 
synchronization strengths in the MEG dataset was close to the median 
values of 0.03 for this test statistic across the three methods (Fig. 7d-f). 
In contrast to the Prior Predictive Checks however, the value of 0.09 for 
central tendency in phase synchronization strengths in the MEG dataset 
was close to the values of 0.35, 0.27 and 0.17 for this test statistic, for the 
“isochronous delays”, “mixed delays”, and “distance-dependent delays” 
methods respectively (Fig. 7a-c). The corresponding values from the 
Prior Predictive Checks were 0.7, 0.78 and 0.79. These results suggest 
that compared to the mean strengths of phase synchronization generated 
by the BNMs before fitting, those generated by the fitted BNMs were 
more similar to those we observed in the MEG dataset while also being 
more different across BNMs. Just as for the Prior Predictive Checks, the 
mean and standard deviation of the Kuramoto order parameter had a 

Fig. 5. Discrepancies are sensitive to values of BNM parameters 100 × 100 grid 
of discrepancies between summary statistics of BNM dynamics at every pair of 
wee and wei values, and BNM dynamics at wee=12.9, wei=13.4. wee is the 
strength of connections within excitatory neuronal populations, wei is the 
strength of connections from inhibitory to excitatory neuronal populations. Red 
lines indicate ground-truth values of wee and wei. Discrepancies were measured 
by ln(1 − SSI). SSI is the Structural Similarity Index. 
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bimodal distribution for the set of values estimated from the dynamics of 
all three BNMs. In contrast to the Prior Predictive Checks however, the 
sample medians of these test statistics were close to their values in the 
MEG dataset. The value for mean of the Kuramoto order parameter was 
0.06, 0.05 and 0.05 for the “isochronous delays”, “mixed delays”, and 

“distance-dependent delays” methods respectively, which was close to 
0.05 for this test statistic in the MEG dataset (Fig. 7g-i). Similarly, the 
value for standard deviation of the Kuramoto order parameter was 0.02 
across the three methods, close to the value of 0.03 for this test statistic 
in the MEG dataset (Fig. 7j-l). Compared to the values of the test 

Fig. 6. BOLFI yields BNM parameter estimates informed by MEG data a. Marginal posterior distributions of BNM with “isochronous delays” b. Marginal posterior 
distributions of BNM with “mixed delays” c. Marginal posterior distributions of BNM with “distance- dependent delays”. Black lines indicate prior distributions, while 
red lines indicate kernel density estimates of posterior distributions. 
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statistics estimated on the dynamics of the BNMs before fitting, their 
values estimated on the dynamics of the fitted BNMs corresponded more 
closely to the values of those test statistics in the MEG dataset. This 
suggests that compared to the prior distributions of the BNM parame
ters, their posterior distributions more accurately reflected values of the 
BNM parameters generating dynamics we observe in the MEG data. 
Hence, the Posterior Predictive Checks suggested that all three BNMs 
were fit to the MEG data without computational problems, and that they 
could be used to choose between the three methods with ABC model 
comparison. 

3.7. BNM with “distance-dependent delays” more probable than BNMs 
with “isochronous delays” and “mixed delays” 

Finally, we compared the three methods to specify inter-regional 
delays in BNMs of large-scale networks of phase synchronization 
observed in MEG resting-state. Having fitted BNMs implementing each 
of the methods to an MEG dataset (N = 75), we used ABC model com
parison (Beaumont, 2019; Sunnåker et al., 2013) to choose between the 
fitted BNMs with a separate MEG dataset (N = 30). To do so, we first ran 
1000 simulations of each of the three BNMs, with parameter values 
drawn from their respective joint posterior distributions. For each of the 
three BNMs, we estimated discrepancies between BNM dynamics from 
each of the simulations, and MEG data. We computed discrepancy as 
ln(1 − SSI) between vectors of phase synchronization strengths from 

Fig. 7. Fitted BNM dynamics correspond to those observed in MEG data. a-c. Histograms of median of alpha-band phase synchronization strengths from multiple 
BNM simulations, where parameter values were drawn from joint posterior distributions of BNMs with “isochronous delays”, “mixed delays”, and “distance- 
dependent delays” respectively. D-f. Histograms of median absolute deviation (MAD) of alpha-band phase synchronization strengths from multiple BNM simulations, 
of the three BNMs respectively. g-i. Histograms of mean of Kuramoto order parameter from multiple BNM simulations, of the three BNMs respectively. j-l. Histograms 
of standard deviation (SD) of Kuramoto order parameter from multiple BNM simulations, of the three BNMs respectively. For all panels, the red line indicates the 
corresponding value of that test statistic estimated from the MEG dataset. 
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BNM dynamics and MEG data. We then estimated model probability of 
each BNM by the relative acceptance rate of discrepancies associated 
with that BNM, with respect to a range of minimum discrepancies from 
-1 to 0. Model probabilities represented how likely each of the BNMs 
were, to describe the generation of large-scale, alpha-band, networks of 
phase synchronization seen in MEG resting-state data. The multiple 
simulations yielded 807, 767 and 779 completed simulations for BNMs 
with “isochronous delays”, “mixed delays”, and “distance-dependent 
delays” respectively, the others exceeding the time limit or crossing the 
memory limit. The model comparison method assumes equal numbers of 
simulations across BNMs, so we used only the first 767 completed sim
ulations of the three BNMs, i.e., lowest number of completed simulations 
across BNMs. Model probabilities of the BNM with “distance-dependent 
delays” were higher than those of the BNMs with “isochronous delays” 
and “mixed delays”, across thresholds from -0.7 to -0.2 (Fig. 8). For a 
threshold of -0.5 for example, the BNM with “distance-dependent de
lays” had a probability of 0.54, while the BNM with “mixed delays” had 
a probability of 0.32 and the BNM with “isochronous delays” had the 
lowest probability of 0.14. We found the higher probabilities of the BNM 
with “distance-dependent delays” to be driven by the similarity between 
its mean strengths of phase synchronization to that observed in the MEG 
data, rather than the similarity in its standard deviation or its pattern of 
phase synchronization strengths to those observed empirically 
(Figure S6). We found the three BNMs to be similarly probable at low 
thresholds close to 0 and high thresholds close to 1. However, the very 
low and very high numbers of accepted simulations at these thresholds 
respectively, render their probabilities non-informative. Notably, we 
observed an identical pattern of results at intermediate discrepancy 
thresholds when using eyes-closed MEG resting-state data in the ABC 
model comparison, inspite of the BNMs being fit to eyes-open MEG 
resting-state data (Figure S7). Hence, the ABC model comparison 
revealed the BNM with “distance-dependent delays” as the most prob
able and the BNM with “isochronous delays” as the least probable, of 
describing the generating of large-scale networks of phase synchroni
zation seen in MEG. 

While the three BNMs differed in the extent to which distance be
tween brain regions determined the inter-regional delays, they also 
differed in the variability or heterogeneity of their delays. BNMs with 
“distance-dependent delays” had the highest delay heterogeneity. 
Hence, we performed a control analysis to assess whether the corre
spondence between phase synchronization strengths of the BNM with 
“distance-dependent delays” and those in MEG data arose merely from 
delay heterogeneity. To do so, we ran 1000 simulations of a BNM with 
“randomised delays”, where we used randomly resampled (without 
replacement) versions of “distance-dependent delays” used in the ABC 
model comparison. We simulated the BNM with “randomised delays” at 
the same parameter values we had used to simulate the BNM with 
“distance-dependent delays” in the ABC model comparison. Then, we 
estimated discrepancies between dynamics of the BNMs with “rando
mised delays” and MEG data, and used a Wilcoxon rank-sum test to 
compare these to the corresponding discrepancies for the BNMs with 
“distance-dependent delays”. We found the discrepancies for the BNM 
with “distance-dependent delays” to be much lower (p = 4.5e− 46) than 
those for the BNM with “randomised delays” (Figure S8). The sample 
median of discrepancies for the BNM with “distance-dependent delays” 
was -0.41, while the sample median of discrepancies for the BNM with 
“randomised delays” was -0.22. Hence, the control analysis revealed 
that mere delay heterogeneity does not account for the correspondence 
between inter-regional phase synchronization strengths of the BNM with 
“distance-dependent delays” and those in MEG data. These results rule 
out alternative explanations for the BNM with “distance-dependent de
lays” being more probable than BNMs with “isochronous delays” and 
“mixed delays”, of describing the generation of large-scale networks of 
phase synchronization seen in MEG. 

4. Discussion 

Large-scale networks of phase synchronization are considered to 
regulate communication between brain regions, but the relationship to 
their structural substrates remains poorly understood. In this study, we 
used an ABC workflow to compare the “isochronous delays”, “mixed 
delays”, and “distance-dependent delays” methods of specifying inter- 
regional delays in BNMs of phase synchronization. Prior Predictive 
Checks revealed BNMs of all three methods to generate phase synchro
nization phenomena encompassing those observed in MEG resting-state. 
Fitting the BNMs to MEG resting-state data yielded reliable posterior 
distributions of parameters of all the three BNMs. Finally, ABC model 
comparison of the fitted BNMs revealed the BNM with “distance- 
dependent delays” to be the most probable to describe the generation of 
large-scale networks of phase synchronization seen in MEG. 

Previous modeling studies have demonstrated the role of distance- 
dependent inter-regional delays in generating power spectra of MEG 
activity from individual brain regions (Cabral et al., 2022), alpha-band 
inter-regional networks of amplitude correlation (Cabral et al., 2014; 
Nakagawa et al., 2014), and the observed bimodal distribution (Dotson 
et al., 2014; Dotson et al., 2015) in angles of inter-regional phase syn
chronization (Petkoski et al., 2018; Petkoski and Jirsa, 2019). However, 
networks of phase synchronization are physiologically distinct from 
networks of amplitude correlation (Engel et al., 2013) and exhibit 
different patterns of connectivity (Siems and Siegel, 2020). Similarly, 
angles of phase synchronization are distinct from the strengths of phase 
synchronization that we modelled. In contrast to these studies, we 
demonstrated the role of distance-dependent conduction delays in 
generating alpha-band inter-regional networks of phase synchronization 
observed in MEG resting-state. 

Those few modeling studies which use BNMs with distance- 
dependent delays to generate networks of phase synchronization only 
contrast them to BNMs with “zero delays”. These studies (Abeysuriya 
et al., 2018; Finger et al., 2016) have demonstrated BNMs with 
distance-dependent delays to generate alpha-band networks of phase 
synchronization more similar to those in MEG or EEG resting-state, than 

Fig. 8. BNM with “distance-dependent delays” more probable than BNMs with 
“isochronous delays” and “mixed delays”. Model probabilities of BNMs with 
“isochronous delays”, “mixed delays”, and “distance-dependent delays”, for a 
range of minimum discrepancies between phase synchronization strengths of 
BNM dynamics and MEG data. Discrepancies are estimated as ln(1 − SSI), 
where SSI is the Structural Similarity Index. 
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networks from BNMs with “zero delays”. However, “zero delays” are 
biologically implausible, implying infinite conduction velocities. In 
contrast, we demonstrate that BNMs with distance-dependent delays 
generate networks more similar to those in MEG resting-state than those 
from BNMs implementing two biologically plausible methods account
ing for spatially varying conduction velocities. 

The generation of phenomena observed in MEG, e.g., power spectra, 
amplitude correlations (Cabral et al. ,2022, Cabral et al., 2014) by BNMs 
with distance-dependent delays has been linked to the variability or 
heterogeneity of these delays (Lee et al., 2009; Touboul, 2012). We 
demonstrate that inter-regional distances rather than delay heteroge
neity per se, explain the similarity between alpha-band networks of 
phase synchronization generated by BNMs with distance-dependent 
delays, and those observed in MEG resting-state. 

Previous neurophysiological and modeling studies have contributed 
to our understanding of the structure-function relationship underlying 
phase synchronization. For example, studies have demonstrated the role 
of excitatory-inhibitory connections in generating local oscillatory dy
namics (Buzsáki, 2006; Traub et al., 1997) required for phase synchro
nization, and the role of anatomical connections in promoting 
inter-regional phase synchronization (Gray, 1994; Finger et al., 2016). 
In our study, intermediate diagnostics from BOLFI model fitting 
corroborated these previous results. For example, we found supporting 
evidence for the role of intra-regional connections between excitatory 
and inhibitory populations in generating local oscillatory dynamics, and 
for the role of inter-regional anatomical connections in promoting 
inter-regional phase synchronization. In addition to these previous 
studies, we furnish new understanding on the role of inter-regional de
lays in generating large-scale networks of phase synchronization 
observed in MEG resting-state. Our results suggest that the dynamics of 
brain regions interact though inter-regional anatomical connection via 
distance-dependent delays to generate large-scale networks of phase 
synchronization. 

Inter-regional conduction delays reported in human and animal 
neurophysiological studies provide a basis for comparison to the 
distance-dependent conduction delays suggested by our modeling study. 
Human studies have reported correlations of 0.44 between tract length 
and the onset latency of the stimulation-based evoked potential in intra- 
cranial EEG recordings (Trebaul et al., 2018), which is consistent with 
the linear relationship between inter-regional distance and 
inter-regional delays suggested by our study. Inter-regional delays esti
mated with a model-based approach on intra-cranial EEG recordings 
(Lemaréchal et al., 2022) also reported a linear relationship between 
tract length and estimated delays for most brain regions, consistent with 
the distance-dependent delays suggested by our study. 

In contrast to the distance-dependent conduction delays reported for 
most brain regions with intra-cranial EEG recordings (Lemaréchal et al., 
2022), some brain regions present highly similar conduction delays with 
several other regions. For example, the right insula has highly similar 
conduction delays between 6 and 8 ms with several ipsilateral brain 
regions (Lemaréchal et al., 2022). Animal neurophysiological studies 
have also presented evidence for isochronous delays, in specific brain 
regions. For example, efferent connections of layer V neurons from re
gions in the rat ventral temporal cortex had largely isochronous con
duction delays with several ipsilateral brain regions (Chomiak et al., 
2008), and afferent connections of layer IV neurons from thalamus also 
had highly similar delays with a number of cortical brain regions 
(Salami et al., 2003). These highly similar delays for a few brain regions 
might be due to regulation in conduction velocities by 
activity-dependent myelination (Noori et al., 2020), in response to 
specialised roles of these regions in functions involving fine temporal 
coordination, e.g., sensory cue processing (Chomiak et al., 2008; Pajevic 
et al., 2014). We propose that future work could investigate methods to 
specify inter-regional delays, which account for the region-specific na
ture of their distance-dependence. 

Due to their high delay heterogeneity, BNMs with distance- 

dependent delays might be prone to the dynamical regime of ampli
tude death, i.e., cessation of oscillations (Atay, 2003). Phase synchro
nization cannot occur in regimes of amplitude death due to absence of 
oscillations and in fact, dynamically adjusting conduction velocities by 
activity-dependent myelination regulation has been suggested as a 
means of avoiding this regime (Pajevic et al., 2014). However, our 
Posterior Predictive Checks revealed oscillatory dynamics from several 
simulations of the fitted BNM with distance-dependent delays, despite 
the highly heterogeneous nature of these delays. Further, BNMs from 
previous studies (Cabral et al., 2022) report regimes of reduced ampli
tude rather than amplitude death, despite using distance-dependent 
conduction delays which are highly heterogeneous by nature. 

Distance-dependent conduction delays predict long inter-regional 
delays between spatially distant brain regions. These long delays 
might be deleterious to inter-regional communication through phase 
synchronization, particularly when the lag of phase synchronization is 
close to the oscillatory time period (Aboitiz et al., 2003; Pajevic et al., 
2014). However, modeling studies have demonstrated several means by 
which phase synchronization lags might be adjusted, enabling rapid 
inter-regional communication despite long conduction delays. For 
example, the presence of a common relay region between two inter
acting regions (Vicente et al., 2008), driving currents (Tiesinga et al., 
2010), or local inhibition (Battaglia et al., 2007) can adjust the lag of 
phase synchronization towards zero. Hence, temporally precise 
inter-regional communication can occur despite the presence of long 
inter-regional delays. 

We mention some limitations of our study and propose approaches to 
addressing these. First, we used the Euclidean distance between regions 
divided by conduction velocity to estimate inter-regional delays. Using 
Euclidean distance to specify tract length facilitated comparison to 
several previous modeling studies on brain functional networks (Abey
suriya et al., 2018; Hadida et al., 2018; Cabral et al., 2014; Nakagawa 
et al., 2014; Deco et al., 2009; Ghosh et al., 2008), which also used this 
measure. However, any spatially varying errors in tract length estima
tion introduced by Euclidean distance could mask the contribution of 
spatially varying conduction velocities in determining inter-regional 
delays. Diffusion MRI-based tractography can potentially provide 
more accurate estimates of the tract length, but current methods are also 
prone to error from seeding and termination biases (Girard et al., 2014; 
Sotiropoulos and Zalesky, 2019). Future work could employ the ABC 
workflow we used, to compare different methods to specify tract 
lengths, thereby further constraining BNMs of inter-regional networks of 
phase synchronization. Second, we focused only on alpha-band fre
quencies due to the clear evidence for alpha-band oscillations both in 
our own MEG dataset and in previous MEG resting-state studies (Mah
joory et al., 2020), oscillations being a pre-requisite for phase synchro
nization. Hence, our findings are only relevant to phase synchronization 
in alpha-band frequencies. However, we note that brain regions also 
generate oscillatory activity in delta, low-beta and high-beta frequency 
bands (Mahjoory et al., 2020). Future modeling work could study phase 
synchronization in multiple frequency bands by, e.g., including multiple 
generators per brain region (Deco et al., 2017). Note that broadening the 
range of frequencies studied would change the values of the summary 
statistics we use to describe the BNM dynamics and those in MEG data, 
likely resulting in changes to the posterior distributions of the BNM 
parameters to those we have reported here. Third, we assumed that all 
brain regions generate oscillations, in line with empirically observed 
cortex-wide alpha-band spectral peaks both in our own MEG dataset and 
in previous MEG resting-state studies (Mahjoory et al., 2020). However, 
we acknowledge recent evidence from intra-cranial EEG and MEG data 
suggesting that not all brain regions might generate oscillations (Myrov 
et al., 2023). Future modeling studies could examine the role of sparse 
oscillation generators across cortex, including the interaction between 
sparsity and inter-regional delays, in the structure-function relationship 
of large-scale networks of phase synchronization. Finally, we assumed 
BNM parameters governing local dynamics to be identical across brain 
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regions. This was effective in limiting the number of BNM parameters to 
be estimated, while introducing region-wise variation in BNM parame
ters would have exponentially increased the volume of parameter space 
resulting in much higher numbers of BNM simulations required to 
sample the parameter space (Gutmann and Corander, 2016). However, 
we acknowledge empirical evidence for region-wise variation in struc
tural and functional properties of brain regions (Markello et al., 2022), 
and modeling work suggesting the utility of informing BNMs with this 
region-wise variation (Demirtaş et al., 2019; Sanz-Perl et al., 2022) to 
emulate empirically observed dynamics. Hence, including region-wise 
variation could indeed affect our conclusions about the role of 
distance-dependent delays in generating large-scale networks of phase 
synchronization. Future BNMs of inter-regional phase synchronization 
could parameterise region-wise variation with only a few parameters, 
by, e.g., expressing the variation in terms of empirically observed spatial 
gradients (Mahjoory et al., 2020; Markello et al., 2022). 

The ABC workflow that we employed for model fitting and model 
comparison naturally accounted for uncertainty in values of BNM pa
rameters. We also employed a number of recommended best practices 
(Gelman et al., 2020; van de Schoot et al., 2021) as we proceeded from 
specifying the three BNMs through to fitting these BNMs and comparing 
the fitted BNMs. In particular, we i) used prior distributions of BNM 
parameters informed by the aggregated neurophysiology literature and 
the literature on modeling brain functional networks, ii) verified suit
ability of the prior distributions and specification of the BNMs with Prior 
Predictive Checks, iii) verified assumptions underlying the BOLFI model 
fitting with fake-data simulations, iv) used diagnostics of the GP-based 
surrogate modeling to assess intermediate stages of the BOLFI model 
fitting, v) employed established convergence diagnostics to assess reli
ability of the estimated posterior distributions of BNM parameters, vi) 
verified that BOLFI fitting had completed without error using Posterior 
Predictive Checks, vii) performed ABC model comparison across a range 
of discrepancy thresholds, and viii) completed a control analysis to rule 
out alternative explanations for the results of the ABC model compari
son. We therefore propose that our results are robust. In conclusion, we 
found evidence that distance-dependent delays likely contribute to the 
generation of alpha-band inter-regional networks of phase synchroni
zation observed in MEG resting-state. 
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