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A B S T R A C T   

Merchant ship operations in the ice-covered Arctic waters may encounter traditional navigational accident risks 
(i.e., grounding, collision, etc.) and risks from sea ice, such as ship besetting in ice. However, describing, 
modeling, and quantifying the multiple risks in ice navigation are challenges from maritime risk assessment 
perspective. This paper proposes an object-oriented Bayesian network (OOBN) model for the quantitative risk 
assessment of multiple navigational accidents in ice-covered Arctic waters. The OOBN model makes use of the 
accident database from Lloyd’s intelligence and maritime accident investigation reports. The proposed model 
decomposes navigational accidents into five levels based on accident causation theory: environment, unsafe 
condition, unsafe act, probability of navigational accident, and consequence of the navigational accident. 
Consequently, collision, grounding, ship besetting in ice, and ship–ice collision accidents are selected as the cases 
to interpret the quantitative risk assessment for navigational risk factors identification, risk analysis, and eval
uation. The results demonstrate that (1) the risk is the highest in grounding accidents, followed by besetting in 
ice, collision, and ship–ice collision in ice-covered Arctic waters; (2) unsafe speed and unsafe condition are the 
critical mutual factors of these four accident scenarios; (3) and the critical risk influencing factors for the specific 
navigational accidents are identified to propose corresponding risk control options. The proposed OOBN model 
can be used for quantitative risk assessment of navigational accidents in ice-covered Arctic waters.   

1. Introduction 

In recent years, with global climate change and the melting of the 
Arctic sea ice, the volume of maritime traffic in Arctic waters has 
increased rapidly. The increase in ship activities has resulted in more 
navigational accidents in Arctic shipping. According to the 2021 Safety 
and Shipping Review issued by Allianz Global Corporate and Specialty 
[1], 520 maritime accidents occurred in Arctic Circle waters from 2011 
to 2020. Grounding and collision accidents are still the typical naviga
tional accidents corresponding to global maritime accident character
istics [2,3]. At the same time, ship operations in ice-covered waters may 
encounter risks from the harsh and rapidly changing sea ice environ
ment. Ship besetting in ice and ship–ice collisions are common occur
rences in Arctic shipping [4–6]. Therefore, describing, modeling, and 
quantifying the risks from multiple navigation accidents are essential for 
the safety management of Arctic shipping. 

To date, the research on the risk analysis of navigational accidents in 
ice-covered waters has focused on (1) risk modeling for single naviga
tional accident, (2) risk identifying and analyzing for typical accident 
scenarios in Arctic waters. 

Regarding collision accidents in ice-covered waters, the major risk 
origin arises from collisions between the escorting and the icebreaking 
ship. As well as open sea causes, the human factor is a significant risk 
influencing factor (RIF) for collision accidents in ice navigation. Zhang 
et al. [7] incorporated a human factors analysis and classification system 
(HFACS) and a fault tree analysis (FTA) to explore the impacts of unsafe 
acts and conditions on collision accidents during escort operations in 
icebreaker assistance. Khan et al. [8] proposed a cellular automation 
model for predicting the probability of a collision between a ship and its 
assisting icebreaker during convoy operations. Regarding grounding 
accidents in Arctic waters, their root causes are not due to the sea ice; 
most of the studies have analyzed the risks of grounding accidents 
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Fig. 1. Research framework for the risk analysis of Arctic shipping.  
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together with some other scenarios in Arctic shipping [3], and only a few 
studies have focused solely on grounding accidents. Fu et al. [9] pro
posed a framework for quantitative analysis of the causes of grounding 
accidents in Arctic shipping by developing an accident map–Bayesian 
network (BN) model. For independent voyages in ice-covered waters, 
ships may be beset in ice when the vessels’ ice class cannot withstand the 
harsh sea ice [10]. How to accurately predict the probability of ship 
besetting in ice is a practical issue for the risk management of ice nav
igation in the Northern Sea Route. Fu et al. [6,11], Vanhatalo et al. [4], 
and Xu et al. [5] used dynamic ship voyage data to estimate the prob
ability of ship besetting in ice. Regarding ship–ice collision accident 
analysis in Arctic waters, Afenyo et al. [12] and Khan et al. [13] used BN 
to assess the risk of ship–ice collision accidents. Obisesan and Sriramula 
[14] used an efficient surrogate model and FTA to estimate the proba
bility of ship–iceberg collision accidents. Oil spills, the noteworthy 
secondary accident in Arctic waters, have also attracted research 
attention [15]. Currently, studies have focused on identifying causes, 
predicting the probability, or simulating the potential consequences of 
navigational accidents in ice-covered waters. However, less attention 
has been paid to a comprehensive quantitative risk assessment by 
aggregating the occurrence probability and severity of the accident 
scenarios. 

Some studies have attempted to analyze the risks from multiple 
navigational accidents in Arctic waters. For example, Kum and Sahin [3] 
determined the root causes of collision and grounding accidents based 
on maritime accident investigation reports (MAIRs) from 1993 to 2011. 
Baksh et al. [16] proposed a BN to predict the probability of collision, 
foundering, and grounding accidents. Aziz et al. [17] established a 
bow-tie model to assess the risk of fire/explosion and machinery failure 
accidents under the influences of ship failure and human error. Zhang 
et al. [18] proposed a comprehensive risk assessment model for two 
main accident scenarios in ice-coved Arctic waters, i.e., ship besetting in 
ice and ship–ice collision. Fu et al. [19,20] summarized the critical RIFs 
that induced collision, grounding, ship besetting in ice, and ship–ice 
collision accidents in terms of environmental, technical (i.e., ice-class 
ships [21], mechanical equipment [12], internal communication fail
ure [7]), human, and organizational aspects. Browne et al. [22] pro
posed a framework for rating the severity of the total consequences by 
considering the multiple consequences of accidents in ice-covered Arctic 
waters. Furthermore, Ma et al. [23], Qiao et al. [24], and Panahi et al. 
[25] discussed the safety of Arctic maritime transportation systems from 
a resilience perspective. These studies have discussed the effect mech
anism of navigational accidents in Arctic waters and have focused on the 
coupling effects of complex sea ice environmental RIFs in ice operations. 
However, human and organizational factors (HOFs) as the primary RIFs 
that induce navigational accidents [26], the coupling effects of HOFs for 
voyaging ships, and navigational accidents should be given more 
attention and further discussed. 

Accident causation theory acts as the foundation of safety science 
analysis and has assisted researchers and practitioners in comprehend
ing and analyzing why accidents occur and how to prevent them [27]. 
Since 1919, many accident causation theories have been put forward. 
Greenwood and Woods [28] proposed the accident-prone tendency, 
which claims that accidents frequently happen to individuals that are 
more accident-prone. Heinrich [29] suggested that the occurrence of a 
casualty accident was not an isolated event but a process similar to 
collapsing dominoes. Namely, accidents result from a series of causal 
events occurring in succession. According to Heinrich’s domino theory, 
accidents are directly caused by unsafe human acts and unsafe object 
conditions caused by the social environment and ancestry [30]. Like 
Heinrich’s domino theory, Reason [31] proposed the Swiss cheese 
model, which establishes a relationship between unsafe acts, unsafe 
conditions, and organizational factors. In general, accident causation 
theory focuses more on the human factor in accidents and suggests that 
the direct cause of accidents is unsafe object conditions and unsafe acts. 
However, using accident causation theory to quantify the risk of 

navigational accidents is complicated. 
The object-oriented Bayesian network (OOBN) is an extension of the 

BN. Compared to a standard BN, the OOBN is simple to construct, 
flexible to modify and provides a modular approach, all of which 
effectively reflect the complexity among factors in accident evolution 
[32]. This method has been applied to numerous fields, including the 
aviation [33], oil spills [34,35], and system risk assessment [36,37]. For 
example, Obeng et al. [38] used an OOBN to identify the RIFs for small 
fishing trawler capsizing accidents. In addition, Khan et al. [39] pro
posed an OOBN model to dynamically predict the probability of oil 
tanker–ice collision accidents in ice-covered Arctic waters. 

This study aims to develop a quantitative risk assessment model to 
analyze the risk of multiple navigational accidents in ice-covered Arctic 
waters by utilizing an OOBN and risk metrics. The proposed model is 
based on the accident causation theory and decomposes four typical 
navigational accidents in Arctic shipping into five levels, including 
environment, unsafe condition, unsafe act, probability of navigational 
accident, and consequence of navigational accident. To quantitatively 
analyze the model, the related literature and historical accident data are 
utilized. Moreover, a risk metrics analysis is employed to determine the 
risk levels of multiple navigational accidents. The proposed risk 
assessment model is entirely driven by objective data, which effectively 
avoids the subjectivity of expert judgment and accurately reflects the 
risk level of ship navigational accidents in ice-covered Arctic waters. 

The proposed OOBN has several advantages that contribute to the 
accuracy of the risk assessment. By using a data-driven approach, the 
model can capture important factors that may not have been identified 
using traditional expert-driven approaches, improving the accuracy of 
the risk assessment and reducing the potential for subjective biases or 
oversights. The OOBN model can also reflect the relationship between 
RIFs in the same and different classifications and integrates RIFs and 
accident scenarios in ice-covered Arctic waters. Additionally, the model 
can integrate various data sources, including historical accident data, 
environmental conditions, and vessel characteristics, capturing the re
lationships between these factors, and quantifying their impact on the 
risk of navigational accidents in ice-covered Arctic waters. By utilizing 
risk metrics, the proposed model can provide quantitative estimates of 
the probability and consequences of different types of accidents. The 
model’s structured and objective approach allows for informed decision- 
making in risk management, providing a probabilistic estimate of the 
probability and consequences of different scenarios. Overall, the pro
posed OOBN provides a comprehensive and structured approach to 
modeling complex risk factors and improves the accuracy and reliability 
of quantitative risk assessments in ice-covered Arctic waters. 

The rest of this paper is organized as follows. Section 2 introduces the 
framework and associated methods for the quantitative risk assessment 
of multiple navigational accidents. Section 3 interprets the risk- 
modeling process using the OOBN. Section 4 validates the OOBN 
model in terms of data and model and describes the results of the risk 
metrics. Finally, Section 0 summarizes this study and proposes relevant 
conclusions. 

2. Methods 

This section first introduces the framework for the risk assessment of 
navigational accidents in ice-covered Arctic waters (Section 2.1). Then, 
the methods are introduced that were used to construct the model 
(Section 2.2) and calculate the results of the risk aggregation (Section 
2.3). 

2.1. Quantitative risk assessment framework 

Fig. 1. 
The framework for the quantitative risk assessment of multiple 

navigational accidents in ice-covered waters can be decomposed into 
four steps with respect to the risk management regulation [40], through 
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a combination of Heinrich’s accident causation theory, an OOBN, and 
risk metrics. 

Step 1: Risk identification - identify the OOBN model nodes. The po
tential RIFs are identified by an in-depth analysis of the collected 
MAIRs and the literature from environmental, technical (ship- 
related), human, and organizational aspects. Then, the critical RIFs 
are selected by a statistical analysis of the frequency of the potential 
RIFs involved in the MAIRs and the related literature. The critical 
RIFs are then reclassified according to Heinrich’s accident causation 
theory [29]. 
Step 2: Qualitative risk analysis - construct the OOBN model structure. 
Under the Step 1, based on the identified critical RIFs in ice-covered 
Arctic waters, an OOBN model is established with five subnetwork 
levels. The model describes the complex relationship between the 
different RIFs and navigational accidents. The relevant literature also 
informs these RIF relationships. The subnetwork levels are environ
ment (Level 1), unsafe condition (Level 2), unsafe act (Level 3), 
probability of navigational accident (Level 4), and consequence of 
navigational accident (Level 5). 
Step 3: Quantitative risk analysis - calculate the conditional probability 
tables (CPTs). This step uses the literature and historical accident 
reports to calculate the CPTs in the OOBN model proposed under 
Step 2. The maritime accident data include the accident database 
from Lloyd’s intelligence and the MAIRs from the Global Integrated 
Shipping Information System, Transportation Safety Board of Can
ada, Danish Maritime Accident Investigation Board, and Accident 
Investigation Board Norway. The probability and consequence of 
multiple navigational accidents are evaluated by OOBN inference. 
Step 4: Navigational risk evaluation in ice-covered waters. Based on the 
International Maritime Organization’s formal safety assessment 
(FSA) guidelines [41], each accident’s occurrence probability and 
consequence severity identified under the Step 3 are rated and their 
logarithmic indices are calculated. The combination of these indices 
is represented in the form of risk index, which are then compared 
with the risk acceptance criteria to make decisions. 

2.2. OOBNs 

BNs have been widely used as uncertainty modeling methods by 
transforming complex problems into probabilistic graphical models [42, 
43]. As the network structure expands, BNs become inefficient at man
aging the variables in a single network simultaneously with respect to 
the occurrence probability and consequences of navigational accidents 
[32]. Therefore, the complex network must be decomposed into smaller 
subnetworks or submodels, which comprise the OOBN. Similar to a 
normal BN, OOBN modeling consists of three parts: nodes analysis, 
structural analysis, and the CPTs estimation, which are described in 
Section 2.2.3. 

2.2.1. Nodes analysis 
The basic element in an OOBN is the class, which is a fragment of a 

BN with three nodes: input, output, and internal [32]. The input and 
output nodes are visible and act as class interfaces. The internal nodes 
are hidden inside the class and cannot be observed from the outside. 
OOBNs have the characteristics of object-oriented modeling, such as 
abstraction, modularity, interface, and encapsulation. The instance node 
in an OOBN is a single-unit abstraction of a network fragment, which can 
transmit all the properties of the network fragment (encapsulation). 
Thus, OOBNs can be considered hierarchical problem descriptions. 

2.2.2. Structural analysis 
OOBNs are complex models consisting of many subnetworks. Fig. 2 

depicts a simple illustration of an OOBN. As shown in Fig. 2, the sub
networks are interconnected by the input and output nodes, and each 
subnetwork class can be viewed as a classical BN. Similar to a BN, each 
subnetwork represents the dependent and independent relationships 
between different variables through a directed acyclic graph consisting 
of directed arcs and nodes. The node can represent a variable involved in 
the event’s consequence, indicating the event’s state. The variable can 
be a Boolean, an integer, or a continuous value. The directed arcs which 
point from the parent node(s) to the child node(s), can express the 
dependent relationships between the nodes by connecting them. The 
input node cannot have parent nodes in each class and can be connected 
only to an output node of the other class. Moreover, loops are not 
allowed, either in a class or between classes, so the OOBN can only 
propagate forward. 

2.2.3. CPTs estimation 
In determining the OOBN structure, each input node is assigned a 

marginal probability table, and the other nodes are assigned CPTs. CPTs 
can reflect the node relationship strength. CPTs contain all known in
formation about the variable states from the available data and expert 
options. On the basis of the Bayes rule, the Eq. (1) of conditional 
probability distributions P is as follows: 

P(V) =
∏

X∈V
P(X|parents(X)), (1)  

where V means a set of variables (RIFs), V = {x1,x2,…,xn}, P is a set of 
conditional probability distributions of V, and parents(X) represents all 
the variables that point directly to X. 

BNs can update the conditional probability of each node based on the 
obtained information. CPTs can describe the node states under different 
conditions and can be calculated by observational data, expert knowl
edge, or a combination of both. The Eqs. (2) and (3) for the conditional 
posterior probability distribution and joint probability distribution are 
as follows: 

P
(
Xi = xi

⃒
⃒Xj = xi

)
=

P(Xi = xi)P
(
Xj = xj

⃒
⃒Xi = xi

)

p
(
Xj = xi

) (2)  

P
(
Xi = xi, Xj = xj

)
= P(Xi = xi)P

(
Xj = xj

⃒
⃒Xi = xi

)
(3) 

Fig. 2. Conceptual graph of the OOBN model.  
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Eqs. (2) and (3) can be used to calculate and infer the CPTs for 
predicting the occurrence probabilities and consequences for multiple 
navigational accidents in ice-covered waters. 

2.3. Risk metrics 

Many measures can be used to quantify risk. Traditionally, the 
probability and severity of adverse effects [44], the combination of the 
probability and magnitude of the consequences [45], or the magnitu
de/severity of the consequences [46] are all necessary measures of risk. 
Thus, the risk can be expressed as [41]: 

Risk = probability ∗ consequence. (4) 

Operatively, risk can be seen as a combination of various risk sce
narios si, i = 1, 2, …, n. Risk contribution ri, from scenario si, can be 
described by three elements: si, ci and pi. Among them, si is the ith 
scenario, pi is the probability (frequency/likelihood) of the ith scenario, 
and ci is the consequence of the ith scenario. Thus, the risk contribution 
ri, from scenario si can be expressed as: 

Risk = ri = pi ∗ ci. (5) 

For a quantitative analysis of the risk scenarios, a risk index (logr) RI 
can be introduced, the Eq. (6) for calculating on a logarithmic scale 
which follows: 

RIi = logri = log(pi ∗ ci) = logpi + logci, (6)  

where ri represents the risk of scenario si, pi represents the probability/ 
frequency of si, ci represents the consequences of si, logpi means the 
logarithmic probability/frequency index, and logci means the logarith
mic severity index of consequences. 

Based on the FSA [41], the logarithmic probability/frequency (logp) 
and the logarithmic severity of accident consequences (logc) can be 
defined as PI and CI. The scale criteria for PI and CI are given in Tables 1 
and 2. The values of PI and CI can be integers or decimals when quali
tative or quantitative approaches are used, respectively. 

Since the accident probability is continuous value, while the value in 
Table 1 is discrete, the equation for calculating PI needs to be derived. 

According to Table 1, when the frequency/probability equals to value 
10−5, the logarithmic probability equals to -5. In order to make the PI 
equal to value 1, a constant 6 needs to be added to the logarithmic 
probability. Therefore, the equation for calculating the PI can be derived 
as shown: 

PIi = 6 + log10pi, PIi ∈ [1, 7], (7)  

where PIi is the logarithmic probability index of the si, and pi is the 
probability of occurrence of the si. log10pi plus 6 causes the distribution 
of PIi to belong to [1,7]. 

Table 2 shows that the consequences are divided into four categories, 
corresponding to the four scales. In this paper, the consequence severity 
includes the latter three categories—catastrophic, severe, and sig
nificant—corresponding to Scales 4, 3, and 2 in Table 2, since the re
cords for minor accidents are often underreporting [47]. Moreover, an 
accident scenario can be calculated by aggregating the occurrence 
probability of accident consequences and its corresponding scale. Thus, 
the RI can be calculated in the aggregate. Eq. (8) for calculating the RI 
follows: 

RIi = PIi + CIi = 6 + log10pi +
∑

qijcj, RIi ∈ [2, 11] (8)  

where RIi is the logarithmic risk index under si, qij is the probability of 
the consequence with scale cj under the si and cj is the value represented 
by the severity of the jth consequence. 

3. Risk modeling 

3.1. Step 1: Model nodes analysis 

The data used for the quantitative risk assessment were acquired 
from the global MAIRs in Arctic waters and the related literature. The 
selected MAIRs conform to two criteria:  

• The location of the maritime accident was in Arctic waters (above 
66◦34’ N);  

• The MAIRs were written in English. 

Based on the collected MAIRs and the literature, the potential RIFs 
were identified by an in-depth analysis of these documents from envi
ronmental, technical (ship-related), human, and organizational aspects. 
Then, the critical RIFs were selected by a statistical analysis of the fre
quency of the potential RIFs involved in the MAIRs and the related 
literature. By an in-depth analysis of the selected 28 MAIRs (the detailed 
information of 28 MAIRs is listed in Appendix A) and the related liter
ature, 32 potential RIFs were identified, as shown in Table 3. According 
to Heinrich’s accident causation theory, these RIFs correspond to the 
environmental, unsafe condition, and unsafe act levels. Each RIF in 
Table 3 is represented as a single node in the OOBN model, and the node 
states are listed in the Appendix B. 

3.2. Step 2: Model structural analysis for the qualitative risk analysis 

The RIFs in Table 3 constitute the subnetworks in the OOBN: (Level 
1) environment, (Level 2) unsafe condition, and (Level 3) unsafe act. These 
subnetworks are combined to form the models (Level 4) probability of 
navigational accidents and (Level 5) consequence of navigational accidents. 
The relationship among the nodes in each subnetwork is structured 
based on the MAIRs and literature. The directed arcs between the nodes 
in the subnetworks are shown in the following subsections, and the 
structure of the whole OOBN is shown in Fig. 3. 

3.2.1. Level 1: Environment 
Waterway, ice, and weather conditions are the main factors affecting 

navigational safety in ice-coved Arctic waters [51]. Thus, a subnetwork 

Table 1 
The logarithmic probability/frequency index (PI), adapted from the FSA [41].  

Scale Frequency Definition Frequency (per 
ship year) 

1 Extremely 
remote 

Likely to occur once in the lifetime 
(20 years) of a world fleet of 5,000 
ships 

10−5 

3 Remote Likely to occur once per year in a 
fleet of 1,000 ships 

10−3 

5 Reasonably 
probable 

Likely to occur once per year in a 
fleet of 10 ships 

0.1 

7 Frequent Likely to occur once per month on 
one ship 

10  

Table 2 
The logarithmic severity index of the consequences (CI), adapted from the FSA 
[41].  

Scale Severity Effects on human 
safety 

Effects on ship S (Equivalent 
fatalities) 

1 Minor Single or minor 
injuries 

Local 
equipment 
damage 

0.01 

2 Significant Multiple or severe 
injuries 

Non-severe 
ship damage 

0.1 

3 Severe Single fatality or 
multiple severe 
injuries 

Severe damage 1 

4 Catastrophic Multiple fatalities Total loss 10  
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is established, retaining waterway, ice, and weather conditions as the 
output nodes to represent the environmental conditions in ice-coved 
Arctic waters. Moreover, the input nodes in this model are fog, rain, 
air temperature, strong wind, sea current, sea temperature, ice types, 
channel depth, and environment obstacles. The other nodes in this level 
are internal and act as child nodes influenced by their associated parent 
nodes in the subnetwork, as shown in Table 4. 

3.2.2. Level 2: Unsafe condition 
Mechanical equipment failure and unsafe speed are the main output 

nodes of the unsafe condition level [5]. Among them, communication 
equipment failure, as one of the parent nodes of mechanical equipment 
failure, is marked as an output node due to its relevance to the RIFs at 
the next level. Ship type and gross tonnage are connected to the input 
nodes of the consequence of navigational accidents level as the output 
nodes. The arc directions are presented in Table 5. 

3.2.3. Level 3: Unsafe act 
Unsafe act, as an output node, is mainly influenced by human error 

(e.g., negligence and judgment/decision failure) and organizational 
factors (e.g., lack of safety measures and prevention action and charts 
and publications not updated) [54]. The internal node judgment/deci
sion failure is dependent on inadequate knowledge, lack of situational 

awareness, and lack of communication/ miscommunication. Research 
and surveys have shown that fatigue is a main factor in navigational 
accidents [55]. Fatigue can reduce the seafarer’s concentration and 
cause them to be poorly aware of risks and situations. The arc directions 
are presented in Table 6. 

3.2.4. Level 4: Probability of navigational accidents 
In the probability of navigational accidents level, P_collision, 

P_grounding, P_besetting in ice, and P_ship–ice collision are the output 
nodes that represent the probability of different navigational accidents. 
According to Heinrich’s accident causation theory, the direct causes of 
accidents are unsafe acts and unsafe conditions. The special weather 
condition in Arctic waters is also one of the main causes of navigational 
accidents. Thus, these three nodes are connected to each output node. 
Among them, unsafe condition is dependent on mechanical equipment 
failure and unsafe speed. Waterway condition is related only to 
grounding accidents, while ice condition is related to the other three 
accidents. The arc directions are presented in Table 7. 

3.2.5. Level 5: Consequences of navigational accidents 
The severity of accident consequences is mainly influenced by ship 

type and gross tonnage. Therefore, in this model, ship type and gross 
tonnage are directly connected to the accident consequences as input 

Table 3 
RIFs collected from the MAIRs and related literature.  

Level Category RIFs Scenarios** MAIR Literature 

Environment Weather condition Fog A4 √ [13,14,39]   
Rain A1, A4 √ [7,12,13,39]   
Strong wind A1, A2, A3, 

A4 
√ [6,12,14,16, 

39]   
Visibility A1, A3, A4 √ [6,7,12-14,39]   
Air temperature A3, A4 N/A [6,13]  

Waterway condition Sea current A4 √ [14]   
Sea temperature A3 N/A [6]   
Channel depth A1, A2, A3 N/A [3,20]   
Environmental obstacles A1, A2, A3 √ [16,20]  

Ice condition Drift ice A1, A2, A3, 
A4 

N/A [13,14,16,20, 
39]   

Ice thickness A3, A4 N/A [6,39]   
Ice concentration A3, A4 N/A [6,12,13]   
Ice type A1, A3, A4 N/A [5,7,39]   
Ice strength A2, A4 √ [13,39] 

Unsafe condition Mechanical equipment 
failure 

Steering failure A1, A2 √ [3]   

Propeller failure A1, A2 √ [16]   
Power failure A1, A2, A4 √ [3,7,12,16,17]   
Radar failure A1, A2 N/A [16]   
Navigator failure A1, A2 N/A [16]  

Internal communication 
failure 

Communication equipment failure A1, A2, A3, 
A4 

N/A [3,7,12,16,20, 
39]   

Navigational aid failure A1, A2, A4 √ [3,12,14,16, 
39]  

Others Unsafe speed A1, A2, A3, 
A4 

√ [6,7,12-14,39]   

Gross tonnage A1, A2, A3, 
A4 

N/A [48,49]   

Ship type A1, A2, A3, 
A4 

N/A [48,50,51] 

Unsafe act Human factors Fatigue A4 √ [39]   
Negligence A1, A4 √ [7,12]   
Lack of situational awareness A1, A2 √ [3,7]   
Inadequate knowledge A1, A2, A4 √ [12,39]   
Judgment/decision failure A1, A2, A4 √ [7,39]  

Organizational factors Charts and publications not being 
updated 

A1, A2 √ [16]   

Lack of communication/ 
miscommunication 

A1, A4 √ [3,7,12,39]   

Lack of safety measures and 
preventive action 

A1, A2, A4 √ [7,39] 

Note: **A1: collision, A2: grounding, A3: ship besetting in ice, 
A4: ship–ice collision.       
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nodes. Furthermore, the C_collision, C_grounding, C_besetting in ice, and 
C_ship–ice collision, which represents the severity of navigational acci
dent consequences, are the output nodes of this level and one of the 
output results of the whole OOBN model. 

The structure of the whole OOBN model is shown in Fig. 3. The five 
subnetworks are linked and embedded in the higher-level model. This 
model encapsulates the internal nodes to display the input and output 
nodes for each subnetwork. The model can be updated by adding or 

Fig. 3. Complete top-level view of the OOBN.  

Table 4 
Arc directions used at the environment level.  

Child node Parent node(s) Reference 

Waterway condition Channel depth, environment obstacles [24] 
Ice condition Ice strength, ice concentration, drift ice [5,39] 
Weather condition Strong wind, air temperature, visibility [24] 
Ice strength Ice thickness, ice type [39] 
Ice thickness Sea temperature [6] 
Ice concentration Sea temperature [6] 
Drift ice Sea current, strong wind [14] 
Visibility Rain, fog [39]  

Table 5 
Arc directions used in the unsafe condition level.  

Child node Parent node (s) Reference 

Mechanical 
equipment failure 

Aid navigation failure, communication 
equipment failure, power failure 

[7] 

Unsafe speed Power failure [6] 
Aid navigation 

failure 
Radar failure, navigator failure [52] 

Power failure Steering failure, propeller failure [9,53]  

Table 6 
Arc directions used in the unsafe act level.  

Child node Parent node(s) Reference 

Unsafe act Negligence, judgment/decision failure, 
lack of safety measures and prevention 
action, charts and publications not being 
updated 

[7] 

Judgment/decision failure Inadequate knowledge, lack of 
situational awareness, lack of 
communication/ miscommunication 

[39,56] 

Lack of situational 
awareness 

Fatigue [57] 

Lack of communication/ 
miscommunication 

Communication equipment failure [5]  

Table 7 
Arc directions used in the probability of navigational accidents level.  

Child node Parent node(s) Reference 

Unsafe condition Mechanical equipment failure, unsafe speed [5] 
P_collision Unsafe condition, unsafe act, weather condition, 

ice condition 
[19,48,50] 

P_grounding Unsafe condition, unsafe act, weather condition, 
waterway condition 

[3,9,58, 
59] 

P_besetting in 
ice 

Unsafe condition, unsafe act, weather condition, 
ice condition 

[4,5] 

P_ship–ice 
collision 

Unsafe condition, unsafe act, weather condition, 
ice condition 

[39,52]  
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subtracting any input and output nodes. 

3.3. Steps 3-4: CPTs estimation and navigational risk evaluation 

The CPTs of each node in the OOBN model were calculated according 
to the 28 MAIRs and literature, see more in Table 3. The detailed CPTs 
for the BN model are listed in Appendix. According to the results of the 
ISOPE proceeding paper [60], the frequency of RIFs appearing in the 
MAIRs is approximated as the edge distribution probability of the input 
nodes in this paper. In addition, because of the lack of MAIRs, related 
literature was used as a reference to supplement the missing data in the 
CPTs of some nodes. For the output nodes in the environment, unsafe 
conditions, and unsafe act levels for each subnetwork, the available data 
cannot be sufficient to populate the CPTs for all the nodes. Therefore, the 
CPTs of some nodes in the OOBN model were calculated by hypothetical 
data. For example, this paper defined that when there are no 

environmental obstacles in the channel and the channel depth is 
adequate, the state of the waterway condition is ‘Good’; when there are 
environmental obstacles in the channel and the channel depth is inad
equate, the state of waterway condition is ‘Poor’. Thus, the probability 
of poor waterway condition was assumed to be 1 when the channel 
depth is inadequate, and the state of environmental obstacles is yes; the 
probability of good waterway condition was assumed to be 1 when the 
channel depth is adequate, and the state of environmental obstacles is 
no, and the probabilities for the other condition are shown in Table 8. 

In addition, due to the small number of MAIRs, to ensure the accu
racy of the results, Lloyd’s maritime accident data and the literature 
were used to calculate the probability of navigational accidents and the 
severity of the consequences. The accident probability was defined as 
0 when all the parent nodes connected directly to the accident nodes 
were positive. Compared with other ship types, a general cargo ship is 
more likely to experience a total loss, while icebreaker and passenger 
ships rarely experience total losses in ice-covered Arctic waters. 

For Level 1, Fig. 4 presents the resulting probabilities of environment 
nodes in the OOBN model. The resulting negative probabilities of the 
output nodes of waterway condition, ice condition, and weather con
dition are 5.289%, 14.143%, and 18.294%, respectively. 

For Level 2, Fig. 5 presents the resulting probabilities of unsafe 
condition nodes in the OOBN model. The resulting negative probabilities 

Table 8 
CPTs for waterway condition in the OOBN model.   

Channel depth Inadequate Adequate  
Environmental obstacles No Yes No Yes 

Waterway condition Poor 0.90 1.00 0.00 0.70  
Good 0.10 0.00 1.00 0.30  

Fig. 4. Probability of environment (Level 1).  

Fig. 5. Probability of unsafe condition (Level 2).  
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of the output nodes of mechanical equipment failure and unsafe speed 
are 0.0125%, and 40.019%, respectively. 

For Level 3, Fig. 6 presents the resulting probabilities of unsafe act 

nodes in the OOBN model. The resulting negative probability of the 
output node of unsafe act are 40.1115%. 

For Level 4, Fig. 7 presents the resulting probabilities of navigational 

Fig. 6. Probability of an unsafe act (Level 3).  

Fig. 7. Probability of a navigational accident (Level 4).  

Fig. 8. Probability of the consequence of a navigational accident (Level 5).  
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accidents nodes in the OOBN model. The resulting negative probabilities 
of the output nodes of P_collision, P_grounding, P_besetting in ice, and 
P_ship ice collision are 1.569%, 8.407%, 2.169%, and 1.028%, 
respectively. 

For Level 5, Fig. 8 presents the resulting probabilities of the conse
quences of navigational accident nodes in the OOBN model. The 
resulting probabilities for the (significant, severe, catastrophic) states of 
the output nodes of C_collision, C_grounding, C_besetting in ice, and 
C_ship ice collision are (90.573%, 8.093%, 1.334%), (55.291%, 38.05%, 
6.658%), (94.717%, 4.3%, 0.983%), and (92.502%, 6.05%, 1.449%), 
respectively. 

4. Results 

4.1. Validation 

Validation is a critical component of any modeling methodology as it 
serves to confirm the accuracy of the data analysis and the soundness of 
the model design. In this section, the paper presents a comprehensive 
validation of the OOBN model proposed in Section 3, which entails 
scrutinizing both the data and the model itself. By subjecting the model 
to a rigorous validation process, the paper establishes the model’s reli
ability and robustness in accurately capturing the intricate relationships 
among various risk factors and estimating the probability and conse
quences of different types of navigational accidents in ice-covered Arctic 
waters. 

4.1.1. Data validation 
The reliability of data constitutes a fundamental aspect of conducting 

rigorous risk assessment modeling studies. In this paper, objective data 
sources such as MAIRs and relevant literature were primarily utilized. As 
opposed to subjective data, such as expert knowledge, objective data has 
the capacity to reflect the evolution of an accident more accurately. By 
avoiding the potential influence of subjective data on the model results, 
objective data can enhance the validity and reliability of the model. To 
ensure the authenticity, accuracy, and integrity of the data, a total of 28 
MAIRs were collected from official investigation organizations. The 
detailed information regarding these MAIRs is listed in Appendix A. The 
use of official MAIRs in this study can provide greater confidence in the 
reliability of the data sources and enhance the credibility of the study’s 
findings. By employing objective data sources, this study reinforces the 
importance of employing a rigorous and systematic approach to data 
collection and analysis in risk assessment modeling studies. 

4.1.2. Model validation 
Sensitivity analysis is a commonly used method to assess the validity 

and reliability of a model, by evaluating the degree of influence of the 
relevant variables on the target variable [42,18]. In this study, sensi
tivity analysis was conducted to verify the reliability of the proposed 

model by assessing the impact of various parameters on the target var
iable, namely, P_collision, P_grounding, P_besetting in ice, and 
P_ship-ice collision. The top 10 parameters with the highest absolute 
sensitivity values and their corresponding values are presented in 
Tables 9–12. 

Table 9 demonstrates that unsafe speed and unsafe condition have 
the most significant impact on P_collision, which are direct causes of 
accidents. Organizational factors such as the lack of safety measures and 
preventive action and outdated charts and publications also have a 
substantial influence. Negligence, ship equipment failure, ice condition, 
and weather conditions such as visibility also contribute to the proba
bility of a collision. Table 10 reveals that channel depth is the most 
important parameter affecting P_grounding, followed by environmental 
obstacles, visibility, weather conditions, and unsafe speed. These factors 
are also major contributors to grounding accidents. In Table 11, ice 
condition, unsafe speed, and unsafe condition are the most significant 
factors that cause besetting in ice accidents, followed by ice concen
tration, steering failure, and propeller failure. Finally, Table 12 shows 

Table 9 
Maximum absolute sensitivity values for the variables and corresponding pa
rameters in the OOBN model when P_collision is set as the target variable.  

Rank RIFs Maximum sensitivity 

1 Unsafe speed 0.01 
2 Unsafe condition 0.008 
3 Lack of safety measures and preventive action 0.007  

Charts and publications not being updated 0.007 
5 Negligence 0.006  

Propeller failure 0.006  
Steering failure 0.006  
Communication equipment failure 0.006  
Ice condition 0.006 

10 Radar failure 0.005  
Navigator failure 0.005  
Visibility 0.005  
Weather condition 0.005  

Table 10 
Maximum absolute sensitivity values for the variables and corresponding pa
rameters in the OOBN model when P_grounding is set as the target variable.  

Rank RIFs Maximum sensitivity 

1 Channel depth 0.050 
2 Environmental obstacles 0.039 
3 Visibility 0.036 
4 Weather condition 0.034  

Unsafe speed 0.034 
6 Unsafe condition 0.029 
7 Fog 0.028  

Lack of safety measures and preventive action 0.028 
9 Charts and publications not being updated 0.026 
10 Rain 0.024  

Table 11 
Maximum absolute sensitivity values for the variables and corresponding pa
rameters in the OOBN model when P_besetting in ice is set as the target variable.  

Rank RIFs Maximum sensitivity 

1 Ice condition 0.033 
2 Unsafe speed 0.025 
3 Unsafe condition 0.021 
4 Ice concentration 0.018 
5 Steering failure 0.016  

Propeller failure 0.016 
7 Communication equipment failure 0.015 
8 Radar failure 0.013  

Navigator failure 0.013 
10 Ice strength 0.011  

Table 12 
Maximum absolute sensitivity values for the variables and corresponding pa
rameters in the OOBN model when P_ship–ice collision is set as the target 
variable.  

Rank RIFs Maximum sensitivity 

1 Ice condition 0.025 
2 Ice concentration 0.014 
3 Ice strength 0.008 
4 Unsafe speed 0.007 
5 Unsafe condition 0.006  

Ice type 0.006 
7 Drift ice 0.004  

Sea temperature 0.004  
Steering failure 0.004  
Propeller failure 0.004  
Navigator failure 0.004  
Radar failure 0.004  
Communication equipment failure 0.004  
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that ice condition and concentration are the primary factors responsible 
for ship–ice collision accidents, followed by ice strength, unsafe speed, 
unsafe condition, and ice type. 

The results of the sensitivity analysis provide valuable insights into 
the model and highlight the significant factors that contribute to the 
target variables. These findings can assist in risk management decisions 
and prioritize strategies to reduce the probability and consequences of 
navigational accidents in ice-covered Arctic waters. The sensitivity 
analysis is a crucial step in verifying the reliability and accuracy of the 
proposed model and adds to the robustness of the study. 

4.2. Risk metrics 

The probability of consequence severity for different accidents is 
shown in Fig. 9. At the severity Scale 2 (significant), the ranking of the 
probability of the four navigational accidents is collision>besetting in 
ice>ship-ice collision>grounding. At the severity Scale 3 (severe), the 
ranking of the probability of the four navigational accidents is groun
ding>collision>besetting in ice>ship-ice collision. Finally, at the 
severity Scale 4 (catastrophic), the ranking of the probability of the four 
navigational accidents is grounding>ship-ice collision >collision 
>besetting in ice. It should be noted that the probability of grounding 
accident consequences is significantly higher than the other three acci
dents at each severity scale. 

To classify the comprehensive accident risk levels, we calculated a 
risk index for each accident scenario based on the results of the OOBN 
model. The risk index for each navigational accident scenario can be 
calculated using Eq. (8). Taking a collision accident as an example, the 
calculation method of the risk index is shown in Eq. (9) and the risk 
indices for all accident scenarios are shown in Table 13. 

RI = 0.0157 + (0.9057 ∗ 2 + 0.0809 ∗ 3 + 0.0133 ∗ 4) = 6.3031 (9) 

It can be found that the risk of grounding accidents is the highest, 
followed by the risk of ship besetting in ice, collision, and ship–ice 
collision. This result is because environmental obstacles are difficult to 

Fig. 9. Probability curve of accident consequence severity.  

Table 13 
Occurrence probability and risk index of different consequence severities (RIi).  

Scenario Probability Severity Risk 
index (RI)     

Significant Severe Catastrophic    
(Scale 2) (Scale 3) (Scale 4)  

Collision 0.0157 0.9057 0.0809 0.0133 6.3031 
Grounding 0.0841 0.5529 0.3805 0.0666 7.4383 
Besetting in 

ice 
0.0217 0.9472 0.0430 0.0098 6.3990 

Ship–ice 
collision 

0.0103 0.9250 0.0605 0.0145 6.1013  

Fig. 10. Annual distribution of ship navigation accidents in in the ice-covered Arctic waters.  
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detect and ship traffic in the Arctic waters has a relatively low density. 
Moreover, although the ice concentration and thickness in Arctic sum
mer waters are low, large sea ice or icebergs still exist in Arctic summer 
waters. 

Based on Lloyd’s maritime accident data from 2013-2022, the annual 
distribution of ship navigation accidents in the ice-coved Arctic waters 
can be obtained, as shown in Fig. 10. According to Fig. 10, it can be 
found that besides machinery damage accidents, the main accident 
scenario in the Arctic waters in the last 10 years were grounding with 83 
in total, followed by fire/explosion, collision and contact accidents with 
48, 25 and 21 accidents, respectively. According to the IMO definition of 
accident types, both ship besetting in ice and ship-ice collision are 
considered to be contact accidents. Thus, the results in Fig. 10 are 
consistent with the risk level of ship navigation accidents in the ice- 
coved Arctic waters calculated in this paper. It can also prove the val
idity and reasonableness of the risk assessment method proposed in this 
paper. 

5. Conclusion 

This paper developed a quantitative risk assessment method using 
the OOBN model to assess the risk of multiple navigational accidents in 
ice-covered Arctic waters. The OOBN model is decomposed into five 
levels of navigational accidents by the accident causation analysis: 
environment (Level 1), unsafe condition (Level 2), unsafe act (Level 3), 
probability of navigational accident (Level 4), and consequence of 
navigational accident (Level 5). Each level has a large number of RIFs, 
which are identified from 28 MAIRs and the related literature. First, the 
structure of each level is assessed in terms of the dependencies between 
the RIFs, which are determined from the literature. Then, the OOBN 
model is used to calculate the probability and consequence of multiple 
navigational accidents, including collision, grounding, ship besetting in 
ice, and ship–ice collision. Finally, the risk levels of multiple naviga
tional accidents are further determined by a risk metrics analysis. 

The results show that the risk is the highest of grounding accidents, 
followed by besetting in ice, collision and ship–ice collision in ice- 
covered Arctic waters. The critical factors for multiple navigational ac
cidents are identified through a sensitivity analysis of the OOBN model. 
Unsafe speed and unsafe conditions, as direct accident causes, are the 
important factors for these four typical navigational accidents. In 
addition, HOFs—such as the lack of safety measures and preventive 
action, charts and publications not being updated, and negligence and 
ship equipment failures such as propeller and steering failures—are the 
critical factors for collision accidents. Channel depth, environmental 
obstacles, and visibility are the critical factors for grounding accidents. 
Ship besetting in ice and ship–ice collision accidents are mainly related 
to the ice conditions. 

The risk level obtained through the proposed method can be used to 
make decisions that are beneficial to improving the safety level of ship 
navigation in ice-covered Arctic waters. Future work is needed to extend 
this model and integrate it with decision-making techniques for the 
evaluation of the effectiveness of risk control options in minimizing the 
risk of navigational accidents in ice-covered Arctic waters. 
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of a ship becoming beset in ice along the Northern Sea Route – a Bayesian analysis 
of real-life data. Cold Reg Sci Technol 2021;184:103238. 

[5] Xu S, Kim E, Haugen S, Zhang M. A Bayesian network risk model for predicting ship 
besetting in ice during convoy operations along the Northern Sea Route. Reliab Eng 
Syst Saf 2022;223:108475. 

[6] Fu S, Zhang D, Montewka J, Yan X, Zio E. Towards a probabilistic model for 
predicting ship besetting in ice in Arctic waters. Reliab Eng Syst Saf 2016;155: 
124–36. 

[7] Zhang M, Zhang D, Goerlandt F, Yan X, Kujala P. Use of HFACS and fault tree 
model for collision risk factors analysis of icebreaker assistance in ice-covered 
waters. Saf Sci 2019;111:128–43. 

[8] Khan B, Khan F, Veitch B. A cellular automation model for convoy traffic in Arctic 
waters. Cold Reg Sci Technol 2019;164:102783. 

[9] Fu S, Yu Y, Chen J, Xi Y, Zhang M. A framework for quantitative analysis of the 
causation of grounding accidents in arctic shipping. Reliab Eng Syst Saf 2022;226: 
108706. 

[10] Montewka J, Goerlandt F, Kujala P, Lensu M. Towards probabilistic models for the 
prediction of a ship performance in dynamic ice. Cold Reg Sci Technol 2015;112: 
14–28. 

[11] Fu S, Zhang D, Montewka J, Zio E, Yan X. A quantitative approach for risk 
assessment of a ship stuck in ice in Arctic waters. Saf Sci 2018;107:145–54. 

[12] Afenyo M, Khan F, Veitch B, Yang M. Arctic shipping accident scenario analysis 
using Bayesian network approach. Ocean Eng 2017;133:224–30. 

[13] Khan B, Khan F, Veitch B. A dynamic Bayesian Network model for ship-ice collision 
risk in the Arctic waters. Saf Sci 2020;130:104858. 

[14] Obisesan A, Sriramula S. Efficient response modelling for performance 
characterisation and risk assessment of ship-iceberg collisions. Appl Ocean Res 
2018;74:127–41. 

[15] Afenyo M, Ng AKY, Jiang C. A multiperiod model for assessing the socioeconomic 
impacts of oil spills during Arctic shipping. Risk Anal 2022;42:614–33. 

[16] Baksh A, Abbassi R, Garaniya V, Khan F. Marine transportation risk assessment 
using Bayesian network: application to Arctic waters. Ocean Eng 2018;159: 
422–36. 

[17] Aziz A, Ahmed S, Khan F, Stack C, Lind A. Operational risk assessment model for 
marine vessels. Reliab Eng Syst Saf 2019;185:348–61. 

[18] Zhang C, Zhang D, Zhang M, Lang X, Mao W. An integrated risk assessment model 
for safe Arctic navigation. Transp Res Part A Policy Pract 2020;142:101–14. 

[19] Fu S, Goerlandt F, Xi Y. Arctic shipping risk management: a bibliometric analysis 
and a systematic review of risk influencing factors of navigational accidents. Saf Sci 
2021;139:105254. 

[20] Fu S, Yan X, Zhang D, Zhang M. Risk influencing factors analysis of Arctic maritime 
transportation systems: a Chinese perspective. Marit Policy Manag 2018;45: 
439–55. 

[21] Kujala P, Goerlandt F, Way B, Smith D, Yang M, Khan F, et al. Review of risk-based 
design for ice-class ships. Mar Struct 2019;63:181–95. 

[22] Browne T, Taylor R, Veitch B, Helle I, Parviainen T, Khan F, et al. A general method 
to combine environmental and life-safety consequences of Arctic ship accidents. 
Saf Sci 2022;154:105855. 

[23] Ma X, Zhou Q, Liu Y, Liu Y, Qiao W. Security of the Arctic route from the resilience 
perspective: the ideal state, influencing factors, and evaluation. Marit Policy 
Manag 2021;48:846–59. 

[24] Qiao W, Ma X, Liu Y, Lan H. Resilience assessment for the Northern Sea Route 
based on a fuzzy Bayesian network. Appl Sci 2021;11:3619. 

[25] Panahi R, Afenyo M, Ng AKY. Developing a resilience index for safer and more 
resilient arctic shipping. Marit Policy Manag 2022:1–15. https://doi.org/10.1080/ 
03088839.2022.2061059. ahead-of-print. 

[26] Wu B, Yip TL, Yan X, Guedes Soares C. Review of techniques and challenges of 
human and organizational factors analysis in maritime transportation. Reliab Eng 
Syst Saf 2022;219:108249. 

[27] Ge J, Zhang Y, Chen S, Xu K, Yao X, Li J, et al. Accident causation models 
developed in China between 1978 and 2018: review and comparison. Saf Sci 2022; 
148:105653. 

[28] Greenwood M, Woods HM. The incidence of industrial accidents individuals with 
special reference to multiple accidents. Industrial Fatigue Rearch Board 1919. 
Report no. 4. 

[29] Heinrich HW. Industrial accident prevention: a scientific approach. New York & 
London: McGraw-Hill Book Company; 1931. 

[30] Fu G, Xie X, Jia Q, Li Z, Chen P, Ge Y. The development history of accident 
causation models in the past 100 years: 24Model, a more modern accident 
causation model. Process Saf Environ Prot 2020;134:47–82. 

[31] James R. Human error. New York: Cambridge University Press; 1990. 
[32] Liu Q, Pérès F, Tchangani A. Object oriented Bayesian network for complex system 

risk assessment. IFAC PapersOnLine 2016;49:31–6. 
[33] Ersin Ancel A. Predictive safety analytics: inferring aviation accident shaping 

factors and causation. J Risk Res 2015;4:428–51. 
[34] Afenyo M, Khan F, Veitch B, Ng AKY, Sajid Z, Fahd F. An explorative object- 

oriented Bayesian network model for oil spill response in the Arctic Ocean. Saf 
Extreme Environ. 2020;2:3–14. 

[35] Sajid Z, Khan F, Veitch B. Dynamic ecological risk modelling of hydrocarbon 
release scenarios in Arctic waters. Mar Pollut Bull 2020;153:111001. 

[36] Sarwar A, Khan F, James L, Abimbola M. Integrated offshore power operation 
resilience assessment using object oriented Bayesian network. Ocean Eng 2018; 
167:257–66. 

[37] Dong Y, Sun B, Wang G. Research on modeling method of power system network 
security risk assessment based on object-oriented Bayesian network. Energy Rep 
2021;7:289–95. 

[38] Obeng F, Domeh V, Khan F, Bose N, Sanli E. Capsizing accident scenario model for 
small fishing trawler. Saf Sci 2022;145:105500. 

[39] Khan B, Khan F, Veitch B, Yang M. An operational risk analysis tool to analyze 
marine transportation in Arctic waters. Reliab Eng Syst Saf 2018;169:485–502. 

[40] ABS. Risk assessment applications for the marine and offshore industries. American 
Bureau of Shipping (ABS); 2020. 

[41] IMO. Revised guidelines for formal safety assessment (FSA) for use in the IMO rule- 
making process. MSC-MEPC.2/Circ.12/Rev.2. London, UK: International Maritime 
Organization (IMO); 2018. 

[42] Khan RU, Yin J, Mustafa FS, Anning N. Risk assessment for berthing of hazardous 
cargo vessels using Bayesian networks. Ocean Coast Manag 2021;210:105673. 

[43] Groth KM, Mosleh A. Deriving causal Bayesian networks from human reliability 
analysis data: a methodology and example model. Proc Inst Mech Eng O J Risk 
Reliab 2012;226:361–79. 

[44] Lowrance W. Of acceptable risk—science and the determination of safety. J Am 
Statist Assoc 1976;123(11):180. https://doi.org/10.1149/1.2132690. 

[45] Ale BJM. Risk assessment practices in the Netherlands. Saf Sci 2002;40:105–26. 
[46] Zio E, Aven T. Uncertainties in smart grids behavior and modeling: What are the 

risks and vulnerabilities? how to analyze them? Energy Policy 2011;39:6308–20. 
[47] Li G, Weng J, Wu B, Hou Z. Incorporating multi-scenario underreporting rates into 

MICE for underreported maritime accident record analysis. Ocean Eng 2022;246: 
110620. 

[48] Li G, Weng J, Hou Z. Impact analysis of external factors on human errors using the 
ARBN method based on small-sample ship collision records. Ocean Eng 2021;236: 
109533. 

[49] Zhang Y, Hu H, Dai L. Real-time assessment and prediction on maritime risk state 
on the Arctic Route. Marit Policy Manag 2020;47:352–70. 

[50] Li Z, Yao C, Zhu X, Gao G, Hu S. A decision support model for ship navigation in 
Arctic waters based on dynamic risk assessment. Ocean Eng 2022;244:110427. 

[51] Xu S, Kim E, Haugen S. Review and comparison of existing risk analysis models 
applied within shipping in ice-covered waters. Saf Sci 2021;141:105335. 

[52] Li Z, Hu S, Gao G, Xi Y, Fu S, Yao C. Risk reasoning from factor correlation of 
maritime traffic under Arctic Sea ice status association with a Bayesian belief 
network. Sustainability 2021;13:147. 

[53] Li Z, Hu S, Zhu X, Gao G, Yao C, Han B. Using DBN and evidence-based reasoning 
to develop a risk performance model to interfere ship navigation process safety in 
Arctic waters. Process Saf Environ Prot 2022;162:357–72. 

[54] Fan S, Blanco-Davis E, Yang Z, Zhang J, Yan X. Incorporation of human factors into 
maritime accident analysis using a data-driven Bayesian network. Reliab Eng Syst 
Saf 2020;203:107070. 

[55] Marine Transportation Research Board. Human error in merchant marine safety. 
Washington, DC: National Academy of Science; 1976. 

[56] TSB. Marine occurrence report M97L0019, oil tanker "IRVING ARCTIC" striking in. 
Traverse Cap-Santé: St. Lawrence River, Quebec; 1997. on 07 March 1997. 

[57] TSB. Marine investigation report M14C0219, tanker Nanny bottom contact in Deer 
Island. Chesterfield Inlet; 2014. Nunavut on 14 October 2014. 

[58] Zhang M, Kujala P, Hirdaris S. A machine learning method for the evaluation of 
ship grounding risk in real operational conditions. Reliab Eng Syst Saf 2022;226: 
108697. 

[59] Zhang M, Kujala P, Musharraf M, Zhang J, Hirdaris S. A machine learning method 
for the prediction of ship motion trajectories in real operational conditions. Ocean 
Eng 2023;283:114905. 

[60] Fu S, Zhang Y, Hu Z, Xi Y, Han B, Hu S. A text-based approach for identification of 
RIFs in Arctic shipping. In: Proceedings of the Thirty-second International Ocean 
and Polar Engineering Conference; 2022. p. 1310–6. 

S. Fu et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0022
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0022
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0022
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0024
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0024
https://doi.org/10.1080/03088839.2022.2061059
https://doi.org/10.1080/03088839.2022.2061059
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0028
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0029
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0029
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0031
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0035
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0035
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0043
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0043
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0043
https://doi.org/10.1149/1.2132690
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0045
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0052
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0052
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0052
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0055
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0055
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0057
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0057
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0058
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0058
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0058
http://refhub.elsevier.com/S0951-8320(23)00373-3/opttrrM5ZIOVr
http://refhub.elsevier.com/S0951-8320(23)00373-3/opttrrM5ZIOVr
http://refhub.elsevier.com/S0951-8320(23)00373-3/opttrrM5ZIOVr
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0059
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0059
http://refhub.elsevier.com/S0951-8320(23)00373-3/sbref0059

