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Optimally-weighted Estimators of the Maximum Mean Discrepancy for
Likelihood-Free Inference

Ayush Bharti 1 Masha Naslidnyk 2 Oscar Key 2 Samuel Kaski 1 3 François-Xavier Briol 2

Abstract

Likelihood-free inference methods typically make
use of a distance between simulated and real
data. A common example is the maximum mean
discrepancy (MMD), which has previously been
used for approximate Bayesian computation, min-
imum distance estimation, generalised Bayesian
inference, and within the nonparametric learn-
ing framework. The MMD is commonly esti-
mated at a root-m rate, where m is the number of
simulated samples. This can lead to significant
computational challenges since a large m is re-
quired to obtain an accurate estimate, which is
crucial for parameter estimation. In this paper,
we propose a novel estimator for the MMD with
significantly improved sample complexity. The
estimator is particularly well suited for computa-
tionally expensive smooth simulators with low- to
mid-dimensional inputs. This claim is supported
through both theoretical results and an extensive
simulation study on benchmark simulators.

1. Introduction
Many domains of science, medicine and engineering use
our mechanistic understanding of real-world phenomena to
create simulators that can represent system behaviour in dif-
ferent circumstances. Such simulator-based models define a
stochastic procedure that can generate (possibly complex)
synthetic data-sets, and are widely used in fields such as pop-
ulation genetics (Beaumont, 2010), ecology (Wood, 2010),
astronomy (Cameron & Pettitt, 2012; Akeret et al., 2015),
epidemiology (Kypraios et al., 2017), atmospheric contami-
nation (Kopka et al., 2016), radio propagation (Bharti et al.,
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Figure 1. Estimating the MMD requires approximating the embed-
ding µk,Pθ of the model Pθ in a reproducing kernel Hilbert space
Hk. The classical approach consists of doing this from m equally-
weighted independent samples from Pθ (denoted µEW

k,Pm
θ

), but we
show in this paper that it is possible to improve this estimator by
using optimally-weighted samples (denoted µOW

k,Pm
θ

).

2022a), and agent-based modelling (Jennings, 1999). How-
ever, the ease of simulating data from the model comes at
the cost of an intractable likelihood function, rendering most
standard statistical inference methods inapplicable to such
models. To solve this issue, a host of likelihood-free infer-
ence methods have been developed that circumvent the need
to evaluate the likelihood or its derivatives, see Lintusaari
et al. (2017); Cranmer et al. (2020) for an overview.

A common approach for likelihood-free inference involves
comparing simulated observations from the model and the
observed data, with respect to some notion of distance. Ac-
curately estimating the distance is essential for inference
but doing so usually requires simulating large amounts of
synthetic data. This can be a computational bottleneck, espe-
cially for expensive simulators, which in the most extreme
cases can take up to hundreds or thousands of CPU hours
per simulation; see Niederer et al. (2019) for an example in
cardiac modelling. Other examples include tsunami mod-
els based on shallow water equations that require several
GPU hours per run (Behrens & Dias, 2015), runaway elec-
tron analysis models for nuclear fusion devices that require
24 CPU hours per run (Hoppe et al., 2021), and models
of large-scale wind farms that require 100 CPU hours per
run (Kirby et al., 2022). Naturally, the discrepancies pop-
ular for likelihood-free inference are those which can be
efficiently estimated given samples from two distributions,
such as the KL divergence (Jiang, 2018), Wasserstein dis-
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tance (Peyré & Cuturi, 2019; Bernton et al., 2019), Sinkhorn
divergence (Genevay et al., 2018), energy distance (Nguyen
et al., 2020), classification accuracy (Gutmann et al., 2017),
or the maximum mean discrepancy, the latter of which is the
topic of this paper. Here, “efficiently estimated” is defined
in terms of sample complexity, which is the rate of conver-
gence at which a statistical distance can be estimated from
samples. The faster an estimator converges in the number of
samples, the less we need to simulate from the model, and
hence, the smaller the computational cost.

We focus on the maximum mean discrepancy (MMD) (Gret-
ton et al., 2006; 2012), a probability metric which mea-
sures the distance between distributions through the dis-
tance between their embeddings in a reproducing kernel
Hilbert space; see Figure 1 for an illustration. A number
of advantages of this distance are commonly put forward
in the literature: (i) it has relatively low sample complex-
ity when compared to its alternatives listed above, (ii) it
has desirable statistical properties, such as leading to con-
sistent and robust estimators, (iii) it is applicable on any
data-type for which a kernel can be defined, and does not
require hand-crafted summary statistics. Due to these at-
tractive properties, the MMD has been used in a range of
frameworks for likelihood-free inference, including for ap-
proximate Bayesian computation (ABC) (Park et al., 2015;
Mitrovic et al., 2016; Kajihara et al., 2018; Bharti et al.,
2022a; Legramanti et al., 2022), for minimum distance es-
timation (MDE) (Briol et al., 2019a; Chérief-Abdellatif &
Alquier, 2022; Alquier & Gerber, 2020; Niu et al., 2023; Key
et al., 2021), for generalised Bayesian inference (Chérief-
Abdellatif & Alquier, 2020; Pacchiardi & Dutta, 2021), for
Bayesian nonparametric learning (Dellaporta et al., 2022),
and for training generative adversarial networks (Dziugaite
et al., 2015; Li et al., 2015; 2017a; Bińkowski et al., 2018).

In this paper, we do not revisit the question of whether the
MMD is the best choice of distance for a particular prob-
lem. Instead, we assume that the MMD has been chosen,
and focus on constructing estimators with strong sample
complexity for this distance. The most common estima-
tors for the MMD are U-statistic or V-statistic estimators,
and these have sample complexity of O(m− 1

2 ), under mild
conditions (Briol et al., 2019a), where m is the number of
samples. In recent work, Niu et al. (2023) showed that this
can be improved to O(m−1+ϵ) for any ϵ > 0 through the
use of a V-statistic estimator and randomised quasi-Monte
Carlo (RQMC) sampling. This significant improvement
does come at the cost of restrictive assumptions — the simu-
lator must be written in a form where the inputs are uniform
random variables, and must satisfy stringent smoothness
conditions which are difficult to verify in practice.

In this paper, we propose a novel set of optimally-weighted
estimators with sample complexity of O(m− νc

s − 1
2 ) where

s is the dimension of the base space and νc is a parameter
depending on the smoothness of the kernel and the simula-
tor. This leads to significantly improved sample complexity
against both U- or V-statistic and independent samples for
any νc, and against RQMC when νc > s/2. Additionally,
the optimality of the weights guarantees that even if this
condition is not satisfied, the order of the sample complexity
is still at least as good as that for existing estimators.

The remainder of the paper is structured as follows. Sec-
tion 2 recalls existing estimators for the MMD, and how
these are used in likelihood-free inference. Section 3
presents our estimators, and Section 4 provides a theoreti-
cal analysis of their sample complexity. Finally, Section 5
demonstrates strong empirical performance on a range of
simulators, and Section 6 discusses future research.

2. Background
Throughout the paper, X will denote some set, and P(X )
will be the set of all Borel probability measures on X .

Likelihood-free inference. We consider the classic pa-
rameter estimation problem, where we assume that we ob-
serve some independent and identically distributed (iid) re-
alisations {xi}ni=1 ⊆ X from some data-generating mech-
anism Q ∈ P(X ). Given {xi}ni=1 and a parametric family
of distributions {Pθ : θ ∈ Θ} ⊂ P(X ) (i.e. the model)
with parameter space Θ, we are interested in recovering the
parameter value θ∗ ∈ Θ such that Pθ∗ is either equal, or in
some sense closest, to Q.

The challenge in likelihood-free inference is that the like-
lihood associated with Pθ is intractable, meaning it cannot
be evaluated pointwise. This prevents the use of classical
methods such as maximum likelihood estimation or (exact)
Bayesian inference. Instead, we assume that we are able to
simulate iid realisations from Pθ, and such models are hence
called generative models or simulator-based models. Such
models are characterised through their generative process, a
pair (Gθ,U) consisting of a simple distribution U (such as
a multivariate Gaussian or uniform distribution) on a space
U and a map Gθ : U → X called the generator or simulator.
We will call U a base measure and U the base space, and
consider U ⊂ Rs and X ⊆ Rd. To sample y ∼ Pθ, one can
first sample u ∼ U, then apply the generator y = Gθ(u).
To perform parameter estimation for these models, it is com-
mon to repeatedly sample simulated data from the model
for different parameter values and compare them to {xi}ni=1

using a distance. We now recall the distance which will be
the focus of this paper.

Maximum mean discrepancy (MMD). Let Hk be a re-
producible kernel Hilbert space (RKHS) associated with the
symmetric and positive definite function k : X × X → R
(Berlinet & Thomas-Agnan, 2004), called a reproducing
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kernel, and denote by ∥ · ∥Hk
and ⟨·, ·⟩Hk

the corresponding
norm and inner product. Additionally, let Pk(X ) := {P ∈
P(X ) :

∫
X

√
k(x, x)P(dx) < ∞}; whenever k is bounded,

Pk(X ) = P(X ). As illustrated in the sketch in Figure 1, any
distribution P ∈ Pk(X ) can be mapped into Hk via its ker-
nel mean embedding, defined as µk,P =

∫
X k(·, x)P(dx).

Then, the MMD between P and Q is the distance between
their embeddings in Hk:

MMDk(P,Q) = ∥µk,P − µk,Q∥Hk
, (1)

see Muandet et al. (2017) for a review. Alternatively,
the MMD can also be expressed as MMDk(P,Q) =
sup∥f∥Hk

≤1

∣∣∫
X f(x)P(dx)−

∫
X f(x)Q(dx)

∣∣ , where the
supremum is taken over all the functions in the unit-
ball of the RKHS Hk. Whenever k is a characteristic
kernel, the MMD is a probability metric, meaning that
MMDk(P,Q) = 0 if and only if P = Q. This condition is
satisfied for kernels including the squared-exponential (SE)
kSE(x, y) = η exp(−∥x− y∥22/l2), the Matérn kν(x, y) =

η
Γ(ν)2ν−1 (

√
2ν
l ∥x− y∥2)νKν(

√
2ν
l ∥x− y∥2), where Kν is

the modified Bessel function of the second kind, and the
inverse-multiquadric kernels on X = Rd (Sriperumbudur
et al., 2010). Matérn kernels are of particular interest: the
order parameter ν uniquely determines the smoothness of
Hk, and for half-integer orders ν ∈ { 1

2 ,
3
2 , . . . }, the ker-

nel kν can be written as a product of an exponential and a
polynomial of order ⌊ν⌋ (Rasmussen & Williams, 2006).

Unfortunately, the expression in (1) usually cannot be com-
puted directly since µk,P will not be available in closed
form outside of a limited number of (k,P) pairs. Instead,
using the reproducing property (i.e. f(x) = ⟨f, k(·, x)⟩Hk

∀f ∈ Hk), we can write

MMD2
k(P,Q) =

∫
X
∫
X k(x, y)P(dx)P(dy)

− 2
∫
X
∫
X k(x, y)P(dx)Q(dy)

+
∫
X
∫
X k(x, y)Q(dx)Q(dy). (2)

This expression is convenient to work with as it can be
estimated through approximations of the integrals. Let
{yi}mi=1 ∼ P, {xi}ni=1 ∼ Q and let Pm = 1

m

∑m
j=1 δyj

and Qn = 1
n

∑n
i=1 δxi

, where δxi
is a Dirac measure at

xi. The squared-MMD can be approximated through a V-
statistic as

MMD2
k(Pm,Qn) = 1

m2

∑m
i,j=1 k(yi, yj)

− 2
nm

∑n
i=1

∑m
j=1 k(xi, yj) +

1
n2

∑n
i,j=1 k(xi, xj).

This is equivalent to approximating µk,P using µEW
k,Pm(x) =

1
m

∑m
i=1 k(x, xi). Alternatively, one can use an unbiased U-

statistic approximation (Gretton et al., 2012). Both of these
estimates can be calculated straightforwardly via evaluations
of the kernel k at a computational cost O(m2 +mn+ n2).

Likelihood-free inference with the MMD. The MMD
has been used within a range of frameworks. In a frequen-
tist setting, the MMD was proposed for minimum distance
estimation by Briol et al. (2019a):

θ̂n = argmin
θ∈Θ

MMD2
k(Pθ,Qn). (3)

In practice, the minimiser is computed through an optimisa-
tion algorithm, which requires evaluations of the squared-
MMD or of its gradient. Such evaluations are intractable, but
any estimator can be used within a stochastic optimisation
algorithm. Similar optimisation problems and stochastic ap-
proximations also arise when using the MMD for generative
adversarial networks (Dziugaite et al., 2015; Li et al., 2015)
and for nonparametric learning (Dellaporta et al., 2022).

In a Bayesian setting, the MMD has been used to create
several pseudo-posteriors by updating a prior distribution
p on Θ using data. For example, the K2-ABC posterior of
Park et al. (2015) is a pseudo-posterior of the form:

pABC(θ|x1 . . . , xn) ∝
∫
· · ·

∫
Πm

j=11{MMD2
k(Pθ,Qn)<ε}(θ)

p(yj |θ)p(θ)dy1, . . . , dym. (4)

where the indicator function 1{A} is equal to 1 if event A
holds. Here, the MMD is used to determine whether a partic-
ular instance of the parametric model is within an ε distance
from the data. The K2-ABC algorithm approximates this
pseudo-posterior through sampling of the model Pθ which
leads to the use of an estimator of the squared-MMD.

Finally, the MMD has also been used for generalised
Bayesian inference, where it is used to construct the MMD-
Bayes posterior (Chérief-Abdellatif & Alquier, 2020)

pGBI(θ|x1 . . . , xn) ∝ exp(−MMD2
k(Pθ,Qn))p(θ).

Once again, this pseudo-posterior is intractable, but it can be
approximated through pseudo-marginal MCMC, in which
case an unbiased estimator is used in place of the squared-
MMD (Pacchiardi & Dutta, 2021).

Sample complexity of MMD estimators. As highlighted
above, the performance of these likelihood-free inference
methods relies heavily on how accurately we can estimate
the MMD using samples; that is, how fast our estimator
approaches MMDk(Pθ,Q) as a function of n and m, the
number of observed and simulated data points, respectively.
Let M̂MDk(Pm

θ ,Qn) be any estimator of the MMD based
on m simulated data points. Using the triangle inequality,
this error can be decomposed as follows:

|MMDk(Pθ,Q)− M̂MDk(Pm
θ ,Qn)|

≤ |MMDk(Pθ,Q)− MMDk(Pθ,Qn)|
+ |MMDk(Pθ,Qn)− M̂MDk(Pm

θ ,Qn)| (5)
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where the first term describes the approximation error due to
having a finite number of data points n, and the second term
describes the error due to a finite number m of simulator
evaluations. To understand the behaviour of the first term,
we can use the following sample complexity result for the
V-statistic. The proof is a direct application of the triangle
inequality together with Lemma 1 in (Briol et al., 2019a).

Theorem 1. Suppose that supx,x′ k(x, x′) < ∞ and let Qn

consist of n iid realisations from Q ∈ Pk(X ). Then, for any
P ∈ Pk(X ), we have with high probability

|MMDk(P,Q)− MMDk(P,Qn)| = O(n− 1
2 ).

When M̂MDk(Pm
θ ,Qn) is also a V-statistic approximation,

both terms in (5) can be tackled with this result and the
overall error is of size O(n− 1

2 + m− 1
2 ). This shows that

we should take m = O(n) to ensure a good enough approx-
imation of the MMD. Though this rate has the advantage
of being independent of the dimension of X , it is relatively
slow in m. We therefore require a large number of simulated
data points, which can be computationally expensive.

Niu et al. (2023) recently proposed an alternate approach
based on randomised quasi-Monte Carlo (RQMC) (Dick
et al., 2013) samples within a V-statistic. Using stronger
assumptions on U, k and Gθ, they are able to obtain an
estimator with improved sample complexity. We now state
their assumptions and result below.

For f : X → R and a multi-index α = (α1, . . . αd) ∈ Nd,
we denote the |α| =

∑d
i=1 αi order partial derivative

∂αf = ∂|α|f/∂α1x1 . . . ∂
αdxd by ∂αf . We say f ∈

Cm(X ), for m ∈ N, if ∂αf exists and is continuous for any
|α| ∈ [0,m]. For two-variable f : X×X → R, ∂α,αf is the
α-partial derivative in each variable. The norm ∥·∥Lp(X ) for
f : X → R is defined as ∥f∥Lp(X ) = (

∫
X |f(x)|pdx)1/p.

The notation av : b−v represents a point u ∈ [a, b]s with
uj = aj for j ∈ v, and uj = bj for j /∈ v.

Assumption A1’. The base space U = [0, 1]s, the base
measure U is uniform on U , and {ui}mi=1 ⊂ U forms an
RQMC point set.

Assumption A2’. The generator Gθ : [0, 1]s → X is s.t.:

1. ∂(1,...,1)Gθ,j ∈ C([0, 1]s) for all j = 1, . . . , d.
2. for all j = 1, . . . , d and v ∈ {0, 1}s \ (0, . . . , 0), there

is a pj ∈ [1,∞],
∑d

j=1 p
−1
j ≤ 1, such that for g(·) =

∂vGθ,j(· : 1−v) it holds that ∥g∥Lpj ([0,1]|v|) < ∞.

Assumption A3’. For any x ∈ X , k(x, ·) ∈ Cs(X ) and
∀t ∈ Nd, |t| ≤ s, supx∈X ∂t,tk(x, x) < Ck where Ck is
some universal constant depending only on k.

Theorem 2. Under A1’ to A3’ and Q ∈ Pk(X ),

|MMDk(Pθ,Q)− MMDk(Pm
θ ,Q)| = O(m−1+ϵ).

In this case, the second term in (5) decreases at a faster
rate than the first term and the overall error decreases as
O(n− 1

2 + m−1+ϵ) for any ϵ > 0. As a result, (ignoring
log-terms) we can take m = O(n− 1

2 ), meaning a much
smaller number of simulations are required. However, the
technical conditions required are either very restrictive (U
must be uniform), or will be difficult to verify in practice
(the conditions on Gθ are not very interpretable and difficult
to verify). Hence, the range of cases where RQMC can be
applied is limited. Additionally, when both k and Gθ are
smooth, faster rates can be obtained using our optimally-
weighted estimator presented in the next section.

3. Optimally-Weighted Estimators
We now present our estimator, which weighs simulated
data. To that end, we denote the empirical measure of the
simulated data as Pm,w

θ =
∑m

i=1 wiδyi
where yi = Gθ(ui),

and wi ∈ R is the weight associated with yi ∈ X for all
i ∈ {1, . . . ,m}. Assuming for a moment that these weights
are known, then we have

MMD2
k(P

m,w
θ ,Qn) =

∑m
i,j=1 wiwjk(yi, yj) (6)

− 2
n

∑n
i=1

∑m
j=1 wjk(xi, yj) +

1
n2

∑n
i,j=1 k(xi, xj).

Clearly, wi = 1/m for all i recovers the V-statistic approxi-
mation of the squared-MMD, but here we have additional
flexibility in how to select these weights and not impose any
constraints on them beyond being real-valued. To identify
our choice of weights, we will make use of a tight upper
bound on the approximation error.

Theorem 3. Let c : U × U → R be a reproducing kernel
such that k(x, ·)◦Gθ ∈ Hc and Q ∈ Pk(X ). Then, ∃K > 0
independent of {ui, yi, wi}mi=1 but dependent on c, k and
Gθ such that:

|MMDk(Pθ,Q)− MMDk(Pm,w
θ ,Q)|

≤ K × MMDc (U,
∑m

i=1 wiδui
) ,

Additionally, the weights minimising this upper bound can
be obtained in closed-form; i.e.

w∗ = argmin
w∈Rm

MMDc (U,
∑m

i=1 wiδui
)

= c(U,U)−1z(U) (7)

where z(U)i = µc,U(ui) =
∫
U c(ui, u)U(du) is the kernel

mean embedding of U in the RKHS Hc and (c(U,U))ij =
c(ui, uj) for all i, j ∈ {1, . . . ,m}.

Our optimally-weighted (OW) estimator is the weighted
estimator in (6) with the optimal weights in (7). This cor-
responds to estimating µk,Pθ

with a weighted approxima-
tion µOW

k,Pm
θ

=
∑n

i=1 w
∗
i k(x, xi) =

∑n
i=1 w

∗
i k(x,Gθ(ui))

where w∗
i represents the importance of xi = Gθ(ui) for

4
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our approximation. To calculate these weights, we need to
evaluate µc,U pointwise in closed-form. The key insight is
that although µk,Pθ

will usually not be available in closed-
form, the same is not true for µc,U. This is because, unlike
Pθ, U is usually a simple distribution such as a uniform,
Gaussian, Gamma or Poisson. Additionally, we have full
flexibility in our choice of c so long as k(x, ·) ◦Gθ ∈ Hc.
We refer to Table 1 in (Briol et al., 2019b) or the ProbNum
Python package (Wenger et al., 2021) for a list of known
closed-form kernel embeddings.

The proof of this result (see Appendix A.1) relies on two
inequalities which make the overall result tight. The first
is a reverse triangle inequality, which allows us to remove
dependence on the true data-generating distribution Q, a
quantity which is always unknown to us. In this sense, the
bound is “worst-case optimal” over Q, a desirable property
for likelihood-free inference. The second inequality allows
us to use the kernel c instead of cθ(u, v) = k(Gθ(u), Gθ(v))
to construct our weights. Of course, this bound is attained
if c = cθ and is therefore tight. However, in practice this
choice will often be infeasible due to lack of closed-form
kernel embeddings µcθ,U. We therefore choose c such that
the RKHS it induces contains the RKHS induced by cθ. At
a high-level, the smaller the gap between these spaces, the
better the bound will be. This choice of c will be explored
further through theory (in Section 4) and experiments (in
Section 5).

Related methods. The optimal weights in Theorem 3 are
equivalent to Bayesian quadrature (BQ) weights (Diaconis,
1988; O’Hagan, 1991; Rasmussen & Ghahramani, 2002;
Briol et al., 2019b). BQ is a method for numerical integra-
tion based on Gaussian process regression (in our case with
prior mean zero and prior covariance function c). We can
therefore think of our estimator as performing BQ to ap-
proximate all integrals against P in (2). This interpretation
is helpful for selecting c — the kernel should be chosen so
that the corresponding Gaussian process is a good prior for
the integrands in (2). This correspondence will also help us
derive sample complexity results in the next section.

Our estimator minimises MMDc (U,
∑m

i=1 wiδui) over the
choice of weights, but we also have flexibility over the
choice of {ui}mi=1. Unfortunately, this optimisation cannot
be solved in closed-form, and is in fact usually not con-
vex. There is a wide range of methods which have been
proposed to do point selection so as to minimise an MMD
with equally-weighted points. Kernel thinning (Dwivedi &
Mackey, 2021), support points (Mak & Joseph, 2018) and
Stein thinning (Riabiz et al., 2022) are methods based on
the MMD to subsample points given a large dataset. Kernel
herding (Chen et al., 2010; Bach et al., 2012) and Stein
points (Chen et al., 2018; 2019) are sequential point selec-
tion methods which use an MMD as objective. In addition,

similar point selection methods have also been proposed for
BQ (Gunter et al., 2014; Briol et al., 2015; Belhadji et al.,
2019) and these are therefore closest to our OW setting.

4. Theoretical Guarantees
Sample complexity. The following theorem establishes
a sample complexity of O(m− νc

s − 1
2 ) for our optimally-

weighted estimator, where νc is a parameter depending on
the smoothness of k and Gθ. We achieve a better rate than
RQMC under milder conditions, as discussed below.

Assumption A1. The base space U ⊂ Rs is bounded,
open, and convex, the data space X is the entire Rd or
is bounded, open, and convex. The base measure U has a
density fU : U → [CU, C

′
U] for some CU, C ′

U > 0, and Pθ

has a density bounded above. The point set {ui}mi=1 ⊂ U
has a fill distance of asymptotics hm = O(m− 1

s ), where
hm = supu∈U mini∈[1,m] ∥u− ui∥2.

Our assumptions on U and U are milder than those of A1’,
which requires U to be uniform. The assumptions on X and
Pθ are likely to hold for simulators in practice. We replace
the requirement that the point set {ui}mi=1 is RQMC with
a milder assumption on the fill distance, which quantifies
how far any point in U can get from the set {ui}mi=1. The fill
distance asymptotics is a standard assumption that ensures
the coverage of U ; for example, it holds for regular grids,
and in expectation for independent samples. For further
examples of point sets that guarantee small fill distance, see
Wynne et al. (2021).

Assumption A2. The generator is a map Gθ : U → X
such that for some integer l > s/2, any j ∈ [1, d] and any
multi-index α ∈ Nd of size |α| ≤ l, the partial derivative
∂αGθ,j exists and is bounded from above.

Assumption A2 is more interpretable and easier to check
than A2’ (specifically part 2) as it just requires knowing how
many derivatives Gθ has. As stated in Niu et al. (2023), a
simpler condition that implies A2’ needs Gθ to be smooth
up to the order l ≥ s, which rules out the standard choices
of ν ∈ { 1

2 ,
3
2 ,

5
2} for large enough s. In contrast, we only

ask that l > s/2.

Assumption A3. k is a Matérn kernel on X of order νk
such that ⌊νk + d/2⌋ > s/2, or an SE kernel, and c is a
Matérn kernel on U of order νc ≤ min(⌊νk + d/2⌋, l).

A3 places less restrictions on the choice of k than A3’.
Although both allow for k to be the SE kernel, as a corollary
of the Sobolev embedding theorem (Adams & Fournier,
2003, Theorem 4.12), A3’ only holds for a Matérn k if
⌈νk⌉ ≥ s+ 1 (i.e. smooth k), while our lower bound on νk
is much less restrictive. The conditions on c are needed to
ensure k(x, ·)◦Gθ ∈ Hc. Note that these could be weakened
using the work of (Kanagawa et al., 2020; Teckentrup, 2020;
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Table 1. Average and standard deviation (in parenthesis) of estimated MMD2 (×10−3) between Pm
θ and Pn

θ computed over 100 runs for
the V-statistic and our optimally-weighted (OW) estimator. Settings: n = 10, 000, m = 256.

Model s d References IID V-stat IID OW (ours) RQMC V-stat RQMC OW (ours)

g-and-k 1 1 (Bharti et al., 2022b; Niu et al., 2023) 2.25 (1.52) 0.086 (0.049) 0.060 (0.037) 0.059 (0.037)
Two moons 2 2 (Lueckmann et al., 2021; Wiqvist et al., 2021) 2.36 (1.94) 0.057 (0.054) 0.056 (0.044) 0.055 (0.044)

Bivariate Beta 5 2 (Nguyen et al., 2020; Niu et al., 2023) 2.13 (1.17) 0.555 (0.227) 0.222 (0.111) 0.193 (0.088)
MA(2) 12 10 (Marin et al., 2011; Nguyen et al., 2020) 2.42 (0.80) 0.705 (0.107) 0.381 (0.054) 0.322 (0.052)

M/G/1 queue 10 5 (Pacchiardi & Dutta, 2021; Jiang, 2018) 2.52 (1.19) 1.71 (0.568) 0.595 (0.134) 0.646 (0.202)
Lotka-Volterra 600 2 (Briol et al., 2019a; Wiqvist et al., 2021) 2.13 (1.10) 2.04 (0.956) 1.44 (0.955) 1.42 (0.942)

Simulator
costly?

Use optimal
weights (ours)

Yes

Use V-statistic

Yes

NoNo

Figure 2. Guidelines on when to use our optimally-weighted esti-
mator over the V-statistic: a) when the simulator is costly relative
to the cost of MMD estimation, or , b) when νc is large and the
dimension s is low.

Wynne et al., 2021), but at the expense of more restrictive
conditions on {ui}mi=1 in A1.

Theorem 4. Under A1 to A3, k(x, ·) ◦Gθ ∈ Hc holds, and
for any and Q ∈ Pk(X ):

|MMDk(Pθ,Q)− MMDk(Pm,w
θ ,Q)| = O(m− νc

s − 1
2 ).

The result shows that our method has improved sample com-
plexity over the V-statistic for any νc and s. Additionally, it
is better than RQMC when νc > s/2. In practice, we should
pick a kernel c that is as smooth as possible whilst not being
smoother than Gθ or k, as per A3. Hence, we should take
νc to be smaller than l and νk, the smoothness of Gθ and
k, respectively. In case the smoothness of Gθ is unknown,
the conservative choice is to take a smaller value of νc to
ensure A3 is satisfied.

Computational Cost. The total computational cost of
our method is the sum of (i) the cost of simulating from
the model, which is O(mCgen), where Cgen is the cost
of sampling one data point, and (ii) the cost of estimating
MMD, which is O(m2 +mn+ n2) for the V-statistic and
O(m3 +mn + n2) for the OW estimator. Our method is
hence slightly more expensive when m is large. However,
the cost of the simulator is often the computational bottle-
neck, sometimes taking up to tens or hundreds of CPU hours
per run; see Behrens & Dias (2015); Kirby et al. (2022). As
a result, proposing data efficient likelihood-free inference
methods (Beaumont et al., 2009; Gutmann & Corander,

2016; Greenberg et al., 2019) is still an active research area.
In cases where O(mCgen) ≫ O(m3), the OW estimator
is more efficient than the V-statistic as it requires fewer
simulations to estimate the MMD. If the simulator is not
more expensive than estimating the MMD and assuming a
fixed computational budget, then the OW estimator achieves
lower error than the V-statistic if νc/s > 1/4 and assump-
tions A1 to A3 hold. This result is straightforwardly derived
from Theorem 4, see Appendix A.4 for details. Figure 2
summarises the cases in which one should opt for our OW
estimator instead of the V-statistic estimator.

We remark that the cost of inverting the kernel matrix in our
method (Equation (7)) could be reduced by using specific
pairs of kernel and point sets; see Jagadeeswaran & Hick-
ernell (2019); Karvonen et al. (2019); Karvonen & Särkkä
(2019). In this case, significant gains could be observed for
even cheaper simulators.

5. Numerical Experiments
We now illustrate the performance of our OW esti-
mator on various benchmark simulators and on chal-
lenging likelihood-free inference tasks. The length-
scale of kernels k and c is set using the me-
dian heuristic (Garreau et al., 2017), unless other-
wise stated. The closed-form kernel mean embeddings
used in the experiments are derived in Appendix A.5.
Our code is available at https://github.com/
bharti-ayush/optimally-weighted_MMD.

5.1. Benchmarking on popular simulators

We begin by comparing the V-statistic with our OW estima-
tor on a number of popular benchmark simulators having
different dimensions for U ⊆ Rs and X ⊆ Rd. The experi-
ments are conducted for {ui}mi=1 being iid as well as RQMC
points. We fix θ for each model (see Appendix B.1 for exact
values) and estimate the MMD2 between Pm

θ and Pn
θ , with

k and c both being the SE kernel. We set n = 10, 000 to
be large in order to make Pn

θ an accurate approximation of
Pθ, and m = 28 so as to facilitate comparison with RQMC,
which requires m to be a power of 2.
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: Uniform
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10 2 10 1 100

Total cost [seconds]
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Figure 3. Error in estimating MMD2 for the multivariate g-and-k distribution. (a) Error of our OW estimator for different choices of k and
c. Increasing the smoothness of k improves the performance. (b) Comparison of V-statistic and OW estimator as a function of dimension.
OW performs better for both parametrisations of U, with the Gaussian giving lowest error. (c) Value of θ4 also impacts the performance of
the OW estimator. (d) Error vs. total computation cost for different n. OW performs better than V-statistic for similar cost: m = n for
V-statistic, whereas m = (68, 126, 200, 317) for OW.

The results are reported in Table 1. For RQMC points, the
errors are generally either similar for the two estimators
(g-and-k, two moons, and Lotka-Volterra models) or smaller
for the OW estimator (bivariate Beta and MA(2)), with the
OW estimator achieving lower errors in all cases barring
the M/G/1 queuing model. This is not surprising since the
M/G/1 model has a discontinuous generator, and our theory
therefore does not hold. It is also important to note that
although RQMC performs very well here even without the
optimal weights, the simulators were chosen in order to
make this comparison feasible. In many cases, U will not
be uniform and therefore the RQMC approach will not be
possible to implement and only the iid approach is feasible.

For the iid points, the improvement in performance is much
more significant. The OW estimator achieves the lowest
error for all the models when {ui}mi=1 are taken to be iid
uniforms. Its error is reduced by a factor of around 20 and
40 for the g-and-k and the two moons model, respectively,
compared to the V-statistic. As expected from our sample
complexity results, the magnitude of this improvement re-
duces as s (the dimension of U ) increases. However, the OW
estimator still performs slightly better than the V-statistic
for the Lotka-Volterra model where s = 600.

5.2. Multivariate g-and-k distribution

We now assess the impact of various practical choices on
the performance of our method. To do so, we consider the
multivariate extension of the g-and-k distribution introduced
in (Drovandi & Pettitt, 2011) and used as a benchmark in
(Li et al., 2017b; Jiang, 2018; Nguyen et al., 2020). This
flexible parametric family of distributions does not have a
closed-form likelihood, but is easy to simulate from. We

define a distribution in this family through (Gθ,Uθ), where

Gθ(u) = θ1+ θ2

[
1+0.8 1−exp(−θ3z(u))

1+exp(−θ3z(u))

](
1+z(u)2

)θ4
z(u),

with θ = (θ1, θ2, θ3, θ4, θ5), z(u) = Σ
1
2u and U =

N (0, Is), where Σ ∈ Rd×d is a symmetric tri-diagonal
Toeplitz matrix such that Σii = 1 and Σij = θ5. The param-
eters θ1,θ2,θ3, and θ4 govern the location, scale, skewness,
and kurtosis respectively, and s = d. An alternative for-
mulation is through (Ũ, G̃θ) where Ũ = Unif(0, 1)s, and
G̃θ = Gθ ◦ Φ−1 where Φ is the cumulative distribution
function of a N (0, 1).

Varying choice of k and c. We first investigate the perfor-
mance of our OW estimator for different combinations of k
and c, the choices being either the SE or the Matérn kernel.
We estimate the squared-MMD for each of these combi-
nations as a function of m, with d = 10 and n = 10, 000.
The Lebesgue measure formulation is used while computing
the embeddings for both the kernels. The Matérn kernel
is set to order νk = νc = 2.5, and the parameter value to
θ0 = (3, 1, 0.1, 0.1, 0.1). The resulting curves are shown
in Figure 3a. Our method performs best when k is the SE
kernel, i.e., when it is infinitely smooth. The performance
degrades slightly when k is Matérn, while the combination
of c as SE and k as the Matérn kernel is the worst. This is
expected from our theory, and is because the composition
of Gθ and k is not smooth, but we approximate it with an
infinitely smooth function. Hence, from a computational
viewpoint, it is always beneficial to take k to be very smooth.

Varying dimensions s and d. We now analyse the im-
pact of the choice of measure, either Gaussian or uniform.
Figure 3b shows the OW and V-statistic estimators as the di-
mension s = d varies. The parameter values are the same as
before, m = 500, and the SE kernel is used for both k and
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2.6 3.1θ1

↔ 2

0.9 1.1θ2

↔ 3

−0.2 0.5θ3

↔ 10

−0.05 0.25θ5

↔ 2

Figure 4. Histogram of parameter estimates obtained using Equation (3) with the V-statistic estimator (blue) and the OW estimator (orange)
over 100 runs during the composite goodness-of-fit test. The black vertical lines denote the true value of the parameter. ↔ indicates the
number of estimates for each parameter from the V-statistic that are outliers and hence not included in the plot. For the OW estimator, all
estimates are within the x-axis range. The parameter estimates obtained using the OW estimator are more concentrated around the true
parameter value, whereas the estimates obtained using the V-statistic have higher variance.

c. We observe that the OW estimator performs better than
the V-statistic even in dimensions as high as 100. In lower
dimensions, the Gaussian embedding achieves lower error
than the uniform for this model, with their performance
converging around d = 60. This is likely due to the fact that
G̃θ is an easier function to approximate than Gθ, but this
is harder to assess a-priori for the user and highlights some
open questions not yet covered by our theory.

Varying model parameters. Building on the previous re-
sult, we show that the performance of the OW estimation
is also impacted by θ. In Figure 3c, we analyse the perfor-
mance of the estimators as a function of parameter θ4. The
SE kernel is used for both k and c. While the V-statistic is
not impacted by the choice of θ4, the performance of our
estimators degrade as θ4 increases. The behaviour is similar
on varying θ3, albeit not as drastic as θ4, see Appendix B.2
for the plot. We expect that this difference in performance
is due to the regularity of the generator varying with θ.

Performance vs. computational cost. Finally, since the
OW estimator tends to be more computationally expensive
and this simulator is relatively cheap (≈ 1 ms to generate
one sample), we also compare estimators for a fixed com-
putational budget. To that end, we vary n and take m = n
for the V-statistic and m = 2n2/3 for the OW estimator.
Figure 3d shows their performance with respect to their
total computational cost, including the cost of simulating
from the model (d = s = 5). We see that the OW estimator
achieves lower error on average than the V-statistic. Hence,
it is preferable to use the OW estimator even for a computa-
tionally cheap simulator like the multivariate g-and-k.

Composite goodness-of-fit test. We demonstrate the
performance of our method when applied to composite
goodness-of-fit testing, using the method proposed by Key
et al. (2021) with a test statistic based on the squared-MMD.
Given iid draws from some distribution Q, the test con-
siders whether Q is an element of some parametric family
{Pθ : θ ∈ Θ} (null hypothesis) or not (alternative hypothe-
sis). The approach uses a parametric bootstrap (Stute et al.,
1993) to estimate the distribution of the squared-MMD un-

Table 2. Fraction of repeats for which the null was rejected. An
ideal test would have 0.05 when the null holds, and 1 otherwise.

Cases IID V-stat IID OW (ours)

θ4 = 0.1 (null holds) 0.040 0.047
θ4 = 0.5 (alternative holds) 0.040 0.413

der the null hypothesis, which can then be used to decide
whether or not to reject. This requires repeatedly perform-
ing two steps: (i) estimating a parameter value through an
MMD estimator of the form in Equation (3), and (ii) esti-
mating the squared-MMD between Q and the model at the
estimated parameter value. See Appendix B.4 for the full
algorithm. This needs to be done up to B times, where B
can be in the hundreds or thousands, which can be a signifi-
cant challenge computationally. This limits the number of
simulated samples m that can be used at each step, and is
therefore a prime use case for our OW estimator.

We performed this test with a level of 0.05 using the V-
statistic and OW estimator, using B = 200. We considered
the multivariate g-and-k model with unknown θ1, θ2, θ3, and
θ5 but fixed θ4 = 0.1. We used m = 100 and n = 500 and
considered two cases: Q is a multivariate g-and-k with θ4 =
0.1 (null holds) or θ4 = 0.5 (alternative holds). When the
null hypothesis holds, we should expect the tests to reject the
null at a rate close 0.05, whereas when the alternative holds,
we should reject at a rate close to 1. Table 2 shows that our
test based on the OW estimator performs significantly better
in that respect than the V-statistic. This is due to the fact
that the OW estimator is able to improve both the estimate
of the parameter (see Figure 4), and the estimate of the test
statistic, thus improving the overall performance.

Figure 4 shows that the estimates of the parameters com-
puted using the OW estimator are more concentrated around
the true parameter value, whereas the estimates computed
using the V-statistic have higher variance. Therefore, when
using the V-statistic, the distribution of the test statistic ap-
proximated by the bootstrap has higher variance, thus the
estimated critical value is more conservative, and the test is
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not sensitive to smaller departures from the null hypothesis.
In contrast, when using the OW estimator, the estimated
critical value is less conservative and the test has higher
performance.

5.3. Large scale offshore wind farm model

Finally, we consider a low-order wake model (Niayifar &
Porté-Agel, 2016; Kirby et al., 2023) for large-scale offshore
wind farms. The model simulates an estimate of the farm-
averaged local turbine thrust coefficient (Nishino, 2016),
which is an indicator of the energy produced. The parameter
θ is the angle (in degrees) at which the wind is blowing. The
turbulence intensity is assumed to have zero-mean additive
Gaussian noise (i.e. U = N (0, 10−3)), which then goes
through the non-linear mapping of the generator. Although
this model is an approximation of the state-of-the-art mod-
els that can take around 100 CPU hours per run (see e.g.
(Kirby et al., 2022)), one realisation from this model takes
≈ 2 mins, which is still computationally prohibitive for
likelihood-free inference. This example is indicative of the
expensive simulators which are widely used in science, and
is thus suitable for our method.

We apply the ABC method of (4) to estimate θ with both the
OW estimator and the V-statistic. The tolerance threshold
ε is taken in terms of percentile, i.e., the proportion of the
data that yields the least MMD distances. We use 1000
parameter values from the Unif(0, 30) prior on Θ. As the
cost of the model far exceeds that of estimating the MMD,
we take m = 10 for both estimators. With few m, setting
the lengthscale of c using median heuristic is difficult, so we
fix it to be 1. The simulated datasets took ≈ 245 hours to
generate, while estimating the MMD took around 0.13 s and
0.36 s for the V-statistic and the OW estimator, respectively.

The resulting posteriors, which are approximations of the
ABC posterior obtained if the MMD was computable in
closed-form, are in Figure 5. We observe that the OW
estimator’s posterior is much more concentrated around
the true value than that of the V-statistic for both values
of ε. This is because the OW estimator approximates the
MMD more accurately than the V-statistic for the same
m. Hence, our method can achieve similar performance
as the V-statistic with much smaller m, saving hours of
computation time.

6. Conclusion
We proposed an optimally-weighted MMD estimator which
has improved sample complexity than the V-statistic when
the generator and kernel are smooth and the dimension-
ality is small or moderate. Thus, our estimator requires
fewer data points than alternatives in this setting, making
it especially advantageous for computationally expensive
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Figure 5. ABC posteriors for the wind farm model. Our OW esti-
mator yields posterior samples that are more concentrated around
the true θ0 than the V-statistic. Performance of the U-statistic
estimator is similar to the V-statistic, see Appendix B.5. Settings:
n = 100, θ0 = 20.

simulators which are widely used in the natural sciences,
biology and engineering. However, a number of open ques-
tions remain, and we highlight the most relevant below.

The parameterisation of a simulator through a generator Gθ

and a measure U is usually not unique, and it is often unclear
which parameterisation is most amenable to our method.
One approach would be to choose a parameterisation where
the dimension of U is small so as to improve the convergence
rate. However, our result in Theorem 4 also contains rate
constants which are difficult to get a handle on, and it is
therefore difficult to identify which parameterisation is best
amongst those with fixed smoothness and dimensionality.

Finally, our sample complexity result could be extended.
One limitation is that we focus on the MMD and not its gra-
dient, meaning that our results are not directly applicable for
gradient-based likelihood-free inference such as the method
used for our g-and-k example (Briol et al., 2019a). A future
line of work could also investigate if our ideas translate to
other distances used for likelihood-free inference, such as
the Wasserstein distance (Bernton et al., 2019) and Sinkhorn
divergence (Genevay et al., 2018; 2019).
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Supplementary Materials
In Appendix A, we present the proofs and derivations of all the theoretical results in our paper, while Appendix B contains
additional details regarding our experiments.

A. Proof of Theoretical Results
In this section, we prove Theorems 3 and 4 and intermediate results required, and expand on the technical background.

A.1. Proof of Theorem 3

Proof. Let Pm,w
θ =

∑m
i=1 wiδyi

=
∑m

i=1 wiδGθ(ui). Using the fact that the MMD is a metric, we can use the reverse
triangle inequality to get

|MMDk(Pθ,Q)− MMDk(Pm,w
θ ,Q)| ≤ MMDk(Pθ,Pm,w

θ ).

Define a kernel cθ on U as cθ(u, u′) = k(Gθ(u), Gθ(u
′)). As Pθ is a pushforward of U under Gθ, it holds that:

MMD2
k(Pθ,Pm,w

θ ) =
∫
X
∫
X k(x, x′)Pθ(dx)Pθ(dx′)− 2

∑m
i=1 wi

∫
X k(xi, x)Pθ(dx) +

∑m
i,j=1 wiwjk(xi, xj)

=
∫
X
∫
U k(Gθ(u), Gθ(u

′))U(du)U(du′)− 2
∑m

i=1 wi

∫
U k(Gθ(ui), Gθ(u))U(du)

+
∑m

i,j=1 wiwjk(Gθ(ui), Gθ(uj))

= MMD2
cθ
(U,

∑m
i=1 wiδui

).

Since cθ(u, ·) ∈ Hc for all u ∈ U—by the assumption that k(x, ·) ◦Gθ ∈ Hc for all x ∈ X—it holds that Hcθ ⊆ Hc. If
Hcθ = Hc, we have MMDk(Pθ,Pm,w

θ ) = MMDc(U,
∑m

i=1 wiδui), and the result holds for K = 1.

Suppose Hcθ ⊂ Hc. Then, by Aronszajn (1950, Theorem I.13.IV), for any f ∈ Hcθ there is a constant K independent of f
such that ∥f∥Hc ≤ K∥f∥Hcθ

. Together with the fact that MMDcθ is an integral-probability metric with underlying function
class being the unit-ball in Hcθ , this gives

MMDcθ (U,
∑m

i=1 wiδui
) = sup∥f∥Hcθ

≤1

∣∣∫
U f(u)U(du)−∑m

i=1 wif(ui)
∣∣

= K × sup∥f∥Hcθ
≤1/K

∣∣∫
U f(u)U(du)−∑m

i=1 wif(ui)
∣∣

≤ K × sup f∈Hcθ

∥f∥Hc≤1

∣∣∫
U f(u)U(du)−∑m

i=1 wif(ui)
∣∣

≤ K × sup∥f∥Hc≤1

∣∣∫
U f(u)U(du)−∑m

i=1 wif(ui)
∣∣

= K × MMDc(U,
∑m

i=1 wiδui),

where the second equality is simply a reparametrisation from f to Kf , and the inequalities use the fact that supremum of a
set is not greater than supremum of its superset, and

{f ∈ Hcθ |K∥f∥Hcθ
≤ 1} ⊆ {f ∈ Hcθ | ∥f∥Hc

≤ 1} ⊆ {f ∈ Hc | ∥f∥Hc
≤ 1}.

Note that the tightness of the bound will depend on the gap between Hcθ and Hc; the smaller this gap, the tighter the bound
will be. This is illustrated in Figure 6.

To prove the result about the exact form of w, we note that

argmin
w∈Rm

MMDc (U,
∑m

i=1 wiδui
) = argmin

w∈Rm

MMD2
c (U,

∑m
i=1 wiδui

) ,

and

MMD2
c (U,

∑m
i=1 wiδui) =

∫
U
∫
U c(u, v)U(du)U(dv)− 2

∑m
i=1 wi

∫
U c(ui, u)U(du) +

∑m
i,j=1 wiwjc(ui, uj).

The latter is a quadratic form in w, meaning it can be minimised in closed-form over w and the optimal weights are given by
w∗. This completes the proof of the second part of the theorem.
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Figure 6. Pictorial representation of the gap between the RKHS induced by the kernels c and cθ = k(Gθ(u), Gθ(v)). The size of the gap
affects the tightness of the bound in Theorem 3, and consequently Theorem 4.

A.2. Chain rule in Sobolev spaces

The proof of Theorem 4, specifically the result k(x, ·) ◦Gθ ∈ Hc for Matérn k and c, will use a specific form of a chain
rule for Sobolev spaces. We justify the choice of Matérn kernels—or more generally, kernels the RKHS of which is
norm-equivalent to the well-studied Sobolev space—and prove the form of the chain rule for Sobolev spaces that will imply
k(x, ·) ◦Gθ ∈ Hc.

For general c and k, k(x, ·) ◦Gθ ∈ Hc is non-trivial to check. Here, we introduce sufficient conditions on c, k, and Gθ that
are easily interpretable and correspond to common practical settings. Specifically, we consider c and k the RKHS of which,
Hc and Hk, are Sobolev spaces, and Gθ of a certain degree of smoothness—which reduces the problem to a form of a chain
rule for Sobolev spaces.1 The rest of the section proceeds as follows: first, we introduce the background definitions and
results, then show that the required form of the chain rule holds for first order derivatives (Lemma 1), and finally extend the
result to higher order derivatives (Theorem 6).

Background. We consider the well-studied Sobolev kernels (see e.g. Wendland, 2005, Chapter 10), which are kernels
that induce a reproducing kernel Hilbert space (RKHS) that is norm-equivalent to a Sobolev space W l,2(X ), X ⊆ Rd, for
some integer l > d/2. We give the definition of W l,2 Sobolev spaces below, and refer to Adams & Fournier (2003) for an
in-depth treatment of Sobolev spaces and Berlinet & Thomas-Agnan (2004) for general RKHS theory.

Definition 1 (Sobolev spaces). Suppose X is an open subset of Rd. The Sobolev space W l,2(X ), l > d/2, is a space of
functions f : X → R such that ∥f∥2L2(X ) =

∫
X f2(x)dx < ∞, and for any multi-index α ∈ Nd with |α| = ∑d

i=1 αi ≤ l,
the weak derivative Dαf = Dα1

x1
. . . Dαd

xd
f exists and ∥Dαf∥L2(X ) < ∞.

A weak derivative is a generalisation of the concept of a derivative to functions that are not differentiable. A locally integrable
function Dxi

f is a weak derivative of f in xi if it closely resembles the behavior of the ordinary derivative on any open
U ⊆ X : for any infinitely continuously differentiable function with a compact support, the integration chain rule holds with
f and Dxi

f—as it would for an ordinary derivative. As the definition is only concerned with equality of the integrals in the
chain rule, a weak derivative is not uniquely defined: two functions g1 and g2 can be weak derivatives of f in xi if (and only
if) they only differ on a zero-volume set, meaning a set the Lebesgue measure of which is zero. As such, by Dxif we will
refer to any function that satisfies the definition of a weak derivative. For a multi-index α = (α1, . . . αd) ∈ Nd, by Dαf we
denote the |α| order weak derivative Dαf = Dα1

x1
. . . Dαd

xd
f , where

Dnxif = Dxi
. . . Dxi︸ ︷︷ ︸
n

f for any n ∈ N.

If an ordinary derivative ∂αf = ∂|α|f/∂α1x1 . . . ∂
αdxd exists, it is equal to any weak Dαf . It is important to clarify that

the definition of Sobolev spaces given here is specific to the case W l,2(X ), l > d/2. General Sobolev spaces W l,p(X )
are subspaces of more general Lebesgue spaces, and are spaces not of functions, but of equivalence classes of functions.
Two functions f1, f2 are in the same equivalence class [f ] if they are equal almost everywhere. General Lebesgue and
Sobolev space theory requires careful handling of the notion of equivalence classes, as the functions in them may differ
arbitrarily on sets of Lebesgue measure zero. However, by Sobolev embedding theorem (Adams & Fournier, 2003, Theorem
4.12) every element of W l,2(X ) is continuous if l > d/2, which implies that every equivalence class contains exactly one
function—and we may define W l,2(X ) as a space of functions, as is done above.

Throughout the proofs, we will say f ∈ L∞(X ) if it is bounded on X , and f ∈ Cm(X ), for m ∈ N, if ∂αf exists and is

1Though various forms of the chain rule for Sobolev spaces exist in the literature (for example, Evans & Garzepy (2018, Section
4.2.2)), they tend to either consider F ◦ f , where f is in the Sobolev space (rather than F ), or place overly strong assumptions on f .
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continuous for any |α| ∈ [0,m]. Specifically, C0(X ) is the space of continuous functions, and C∞(X ) a space of infinitely
differentiable functions with continuous derivatives. The output space of functions in both L∞(X ) and Cm(X ) is omitted
from the notation as it will be clear from the specific f in question.

We start by recalling an important result that characterises Sobolev functions as limit points of sequences of C∞(X )
functions. Since it is a necessary and sufficient condition, we will use this result both to operate on a function in a Sobolev
space using the "friendlier" smooth functions, and to prove a function of interest lies in a Sobolev space by finding a
sequence of smooth function that approximates it accordingly.

Theorem 5 (Theorem 3.17, (Adams & Fournier, 2003)). For an open set X ⊆ Rd, a function f : X → R lies in the
Sobolev space W1,2(X ) and has weak derivatives Dxj

[f ], j ∈ [1, d] if and only if there exists a sequence of functions
fn ∈ C∞(X ) ∩W1,2(X ) such that for j ∈ [1, d]

∥f − fn∥L2(X ) → 0, n → ∞, (8)∥∥∥Dxj
[f ]− ∂fn

∂xj

∥∥∥
L2(X )

→ 0, n → ∞, (9)

where ∂fn
∂xj

is the ordinary derivative of fn with respect to xj .

Note that the functions fn converge to f in the Sobolev W1,2(X ) norm, ∥f−fn∥2W1,2(X ) = ∥f−fn∥L2(X )+
∑d

j=1 ∥Dxjf−
∂fn/∂xj∥L2(X ) → 0 as n → ∞ , if and only if (8) and (9) hold.

Chain rule for W1,2. We now prove that chain rule holds for φ ◦ Gθ for φ in a Sobolev space W 1,2(X ). For clarity,
we will explicitly state the assumptions on Gθ in the main text. Recall that a measure Pθ on X ⊆ Rd is said to be
a pushforward of a measure U on U ⊆ Rs under Gθ : U → X if for any X -measurable f : X → R it holds that∫
X f(x)Pθ(dx) =

∫
U [f ◦Gθ] (u)U(du).

Lemma 1 (Chain rule for W1,2). Suppose

• φ ∈ W1,2(X ).

• U ⊂ Rs is bounded, X ⊂ Rd is open, and X = Gθ(U) for some Gθ = (Gθ,1, . . . , Gθ,d)
⊤. The partial derivative

∂Gθ,j/∂ui exists and |∂Gθ,j/∂ui| ≤ CG for some CG for all i ∈ [1, s] and j ∈ [1, d].

• U is a probability distribution on U that has a density fU : U → [CU,∞) for CU > 0.

• Pθ is a pushforward of U under Gθ, and has a density fPθ
such that fPθ

(x) ≤ CPθ
for all x ∈ X for some CPθ

.

Then φ ◦Gθ ∈ W1,2(U), and for i ∈ [1, s], its weak derivative Dui [φ ◦Gθ] is equal to
∑d

j=1[Dxjφ ◦Gθ]
∂Gθ,j

∂ui
.

Proof. Since X is open, by Theorem 5 there is a sequence φn ∈ C∞(X ) ∩W1,2(X ) such that

∥φ− φn∥L2(X ) → 0, n → ∞,∥∥∥Dxj
φ− ∂φn

∂xj

∥∥∥
L2(X )

→ 0, n → ∞,

The proof proceeds as follows: we show that the sequence φn ◦ Gθ approximates φ ◦ Gθ, and ∂[φn◦Gθ]
∂ui

approximates

the sum in the statement of the lemma,
∑d

j=1[Dxj
φ ◦ Gθ]

∂Gθ,j

∂ui
, in L2(U)–norm. Then, by the sufficient condition in

Theorem 5, φ ◦Gθ lies in W1,2(U), and its weak derivative in ui is
∑d

j=1[Dxj
φ ◦Gθ](u)

∂Gθ,j

∂ui
(u), for any i ∈ [1, s].

Since Pθ has a density, for any X -measurable f it holds that∫
X f(x)fPθ

(x)dx =
∫
U [f ◦Gθ] (u)fU(u)du.

Together with density bounds, this gives ∥φ ◦Gθ − φn ◦Gθ∥L2(U) → 0 as∫
U (φ ◦Gθ(u)− φn ◦Gθ(u))

2 du ≤ C−1
U

∫
U (φ ◦Gθ(u)− φn ◦Gθ(u))

2
fU(u)du = C−1

U
∫
X (φ(x)− φn(x))

2
fPθ

(x)dx

≤ C−1
U CPθ

∫
X (φ(x)− φn(x))

2 dx.
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In the same fashion, ∥Dxj
φ ◦Gθ − ∂φn

∂xj
◦Gθ∥L2(U) → 0 since∫

U
(
Dxj

φ ◦Gθ(u)− ∂φn

∂xj
◦Gθ(u)

)2
du ≤ C−1

U
∫
U
(
Dxj

φ ◦Gθ(u)− ∂φn

∂xj
◦Gθ(u)

)2
fU(u)du

= C−1
U

∫
X
(
Dxj

φ(x)− ∂φn

∂xj
(x)

)2
fPθ

(x)dx

≤ C−1
U CPθ

∫
X
(
Dxj

φ(x)− ∂φn

∂xj
(x)

)2
dx.

Since φ and Gθ are both differentiable, the ordinary chain rules applies to φn ◦Gθ,

∂[φn◦Gθ]
∂ui

=
∑d

j=1

[
∂φn

∂xj
◦Gθ

]∂Gθ,j

∂ui
,

and for any i ∈ [1, s] the convergence of derivatives ∥[Dxj
φ ◦Gθ]

∂Gθ,j

∂ui
− ∂[φn◦Gθ]

∂ui
∥L2(U) → 0 follows since

∫
U

(∑d
j=1

[
Dxjφ ◦Gθ

]∂Gθ,j

∂ui
− ∂[φn◦Gθ]

∂ui

)2

du =
∫
U

(∑d
j=1

[
Dxjφ ◦Gθ − ∂φn

∂xj
◦Gθ

]∂Gθ,j

∂ui

)2

du

≤ 2
∑d

j=1

∫
U

([
Dxj

φ ◦Gθ − ∂φn

∂xj
◦Gθ

]∂Gθ,j

∂ui

)2

du

≤ 2C2
G

∑d
j=1

∫
U
(
Dxj

φ ◦Gθ − ∂φn

∂xj
◦Gθ

)2
du

where the first inequality is using the inequality (
∑d

i=1 ai)
2 ≤ 2

∑d
i=1 a

2
i . This completes the proof.

Chain rule for W l,2. To extend Lemma 1 to Sobolev spaces of order higher than 1, we need the following version of the
weak derivative product rule, for a product of a function f in W1,2 and bounded differentiable function g with bounded
derivatives. Other versions of the product rule—for different regularity assumptions on g—exist in the literature (for
example, Adams & Fournier (2003)); we will require this specific form.

Lemma 2 (Product rule). Suppose X ⊆ Rd is open, f ∈ W1,2(X ), g(x) is differentiable on X , and g(x) ≤ L,
[∂g/∂xi](x) ≤ L for all x ∈ X for some constant L. Then fg ∈ W1,2(X ) and for any i ∈ [1, d],

Dxi
[fg] = [Dxi

f ]g + f
[
∂g/∂xi

]
Proof. By the criterion in Theorem 5, there is a sequence of smooth functions fn approximating f , meaning∫

X (f(x)− fn(x))
2dx → 0 as n → ∞,∫

X
(
Dxi

f(x)− [∂fn/∂xi](x)
)2

dx → 0 as n → ∞.

We will show that fng approximates fg with weak derivatives taking the form [Dxi
f ]g+ f [∂g/∂xi]; by the aforementioned

criterion, it will follow that fg ∈ W1,2(X ).

First, we establish convergence of functions. As n → ∞,

∥fg − fng∥2L2(X ) =
∫
X (f(x)g(x)− fn(x)g(x))

2 dx ≤ L2
∫
X (f(x)− fn(x))

2 dx → 0.

By the ordinary chain rule, ∂[fng]/∂xi = [∂fn/∂xi]g + f [∂g/∂xi]. Then, applying triangle inequality for norms and the
fact that (a+ b)2 ≤ 2a2 + 2b2 for any a, b, we get that for n → ∞,∥∥∂fn

∂xi
g + fn

∂g
∂xi

− [Dxif ] g − f ∂g
∂xi

∥∥2
L2(X )

≤ 2
∥∥∥∂fn

∂xi
g − [Dxif ] g

∥∥∥2
L2(X )

+ 2
∥∥∥fn ∂g

∂xi
− f ∂g

∂xi

∥∥∥2
L2(X )

≤ 2L2
∥∥∥∂fn

∂xi
− [Dxif ]

∥∥∥2
L2(X )

+ 2L2 ∥fn − f∥L2(X ) → 0.

This completes the proof.

We are now ready to extend the chain rule from order 1—proven in Lemma 1—to arbitrary order l.
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Theorem 6 (Chain rule for W l,2). Suppose

• φ ∈ W lφ,2(X ).

• U ⊂ Rs is bounded, X ⊂ Rd is open, and X = Gθ(U) for some Gθ = (Gθ,1, . . . , Gθ,d)
⊤. For some lG and any

|α| ≤ lG, j ∈ [1, s], the derivative ∂αGθ,j exists and is in L∞(U).

• U is a probability distribution on U that has a density fU : U → [CU,∞) for CU > 0.

• Pθ is a pushforward of U under Gθ with a density bounded above.

Then φ ◦ Gθ ∈ W l,2(U) for l = min{lφ, lG}, and for any k ≤ l and |α0| = k, the derivative takes an α0-specific
(κ, β, α, η)–form

Dα0 [φ ◦Gθ] =
∑I

i=1

∑dκi

j=1

[
Dβijφ ◦Gθ

]∏κi

l=1 ∂
αijlGθ,ηijl

, (10)

where I ∈ N, and for any i ∈ [1, I], k ≥ κi ∈ N; βij ∈ Nd is a multi-index of size κi for j ∈ [1, dκi ]; αijl ∈ Ns is of size
|αijl| ≤ k, and ηijl ∈ [1, d] for l ∈ [1, κi].

By saying the (κ, β, α, η) form is α0-specific, we mean that the values of I, (κ, β, α, η) depend on α0, and may be different
for α′

0 ̸= α0; we do not index I, (κ, β, α, η) by α0 for the sake of readability.

Before proving this result, let us point out that the (κ, β, α, η)–form introduced in the theorem can be seen as a form of the
Faà di Bruno’s formula which generalises the chain rule to higher derivatives (Constantine & Savits, 1996, Theorem 1).
However, since our ultimate goal is to show φ ◦Gθ ∈ W l,2(U), and the expression for the derivative is simply a means for
proving that, an unspecified (κ, β, α, η)–form suffices. It is simpler to conduct a proof for general (κ, β, α, η) without using
explicit Faà di Bruno forms.

Proof of Theorem 6. Note that φ ◦Gθ ∈ W l,2(U) if and only if φ ◦Gθ ∈ Wk,2(U) for k ≤ l. We use this to construct a
proof by induction: we show the statement holds for k = 1, and that φ ◦Gθ ∈ Wk,2(U) implies φ ◦Gθ ∈ Wk+1,2(U) if
k + 1 ≤ l (and the weak derivatives take a (κ, β, α, η)-form stated in Equation (10)).

Case k = 1: φ ◦Gθ is in W1,2(U).
Suppose α0 = e[m] for some unit vector e[m] = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is the m’th element. Then, as proven
in Lemma 1, De[m][φ ◦Gθ] = Dum

[φ ◦Gθ] is equal to
∑d

j=1[Dxj
φ ◦Gθ][∂Gθ,j/∂um] =

∑d
j=1[D

e[j]φ ◦Gθ]∂
e[m]Gθ,j ,

so the statement holds for I = 1, κ1 = 1, β1j = e[j], α1j1 = e[m], η1j1 = j.

Case k implies k + 1: If k + 1 ≤ l and φ ◦ Gθ is in Wk,2(U), and for every |α0| = k Equation (10) holds for some
α0-specific (κ, β, α, η), then φ ◦Gθ is in Wk+1,2(U), and for any |α̃0| = k + 1 there is a (κ̃, β̃, α̃, η̃)–form, |κ̃| = Ĩ ,

Dα̃0 [φ ◦Gθ] =
∑Ĩ

i=1

∑dκ̃i

j=1

[
Dβ̃ijφ ◦Gθ

]∏κ̃i

l=1 ∂
α̃ijlGθ,η̃ijl

. (11)

By induction assumption, φ ◦ Gθ is in Wk,2(U), so it is in Wk+1,2(U) if and only if Dα0 [φ ◦Gθ] is in W1,2(U) for
any α0 of size k. The latter can be shown by studying the (κ, β, α, η)–form that Dα0 [φ ◦ Gθ] takes by (10), for some
α0–specific (κ, β, α, η). Since lφ ≥ l ≥ k + 1 (the last inequality holds by the induction assumption), it holds that
W lφ,2(X ) ⊆ W l,2(X ) ⊆ Wk+1,2(X ). Then φ ∈ Wk+1,2(X ), and since |βij | = κi ≤ k by definition of βij , we have
Dβijφ ∈ W1,2(X ) for all i, j. Then by Lemma 1, its composition with Gθ is in W1,2(U), meaning Dβijφ◦Gθ ∈ W1,2(U).
Consequently, Dα0 [φ ◦Gθ] as per Equation (10) is a sum over the product of functions in W1,2(U), and bounded functions
with bounded derivatives; by Lemma 2, such product is in W1,2(U), and it follows that Dα0 [φ ◦Gθ] ∈ W1,2(U) as well.

Finally, we show that for any fixed |α̃0| = k + 1 there are Ĩ , κ̃, β̃, α̃, η̃ for which (11) holds; this will conclude the induction
step. Suppose α0 of size k, |α0| = k, is such that α̃0 = α0 + e[m] for some α0 (that is unrelated to α0 in the previous part
of the proof) and a unit vector e[m] (such pair of m and α0 must exist as |α̃0| = k + 1). For this α0, in a slight abuse of
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notation, we shall say that κ, β, α, η are such that Dα0 [φ ◦Gθ] takes a (κ, β, α, η) form. Then, by the sum rule for weak
derivatives and the product rule of Lemma 2, Dα̃0 [φ ◦Gθ] = Dum [Dα0 [φ ◦Gθ]] takes the form

Dα̃0 [φ ◦Gθ] = Dum [Dα0 [φ ◦Gθ]] =
∑I

i=1

∑dκi

j=1 Dum

[
Dβijφ ◦Gθ

]∏κi

l=1 ∂
αijlGθ,ηijl

+
∑I

i=1

∑dκi

j=1

[
Dβijφ ◦Gθ

]
∂e[m]

[∏κi

l=1 ∂
αijlGθ,ηijl

]
. (12)

By the product rule for regular derivatives,

∂e[m]
[∏κi

l=1 ∂
αijlGθ,ηijl

]
=

∑κi

l0=1 ∂
αijl0

+e[m]Gθ,ηijl0

∏
l∈[1,κi]
l ̸=l0

∂αijlGθ,ηijl
. (13)

Since Dβijφ ∈ W1,2(X ), the statement in Lemma 1 applies to its composition with Gθ, meaning

Dum

[
Dβijφ ◦Gθ

]
=

∑d
j0=1

[
Dxj0

[
Dβijφ

]
◦Gθ

] ∂Gθ,j0

∂um
=

∑d
j0=1

[
Dβij+e[j0]φ ◦Gθ

] ∂Gθ,j0

∂um
,

where, recall, e[j0] is a d-dimensional unit vector with 1 as the j0’th element. Substituting these into (12), we get

Dα̃0 [φ ◦Gθ] =
∑I

i=1

∑dκi

j=1

∑d
j0=1

[
Dβij+e[j0]φ ◦Gθ

] ∂Gθ,j0

∂um

∏κi

l=1 ∂
αijlGθ,ηijl

+
∑I

i=1

∑κi

l0=1

∑dκi

j=1

[
Dβijφ ◦Gθ

]
∂αijl0

+e[m]Gθ,ηijl0

∏
l∈[1,κi]
l ̸=l0

∂αijlGθ,ηijl

(14)

Now all that is left to do is find Ĩ , κ̃, β̃, α̃, η̃ for which this will that the (κ̃, β̃, α̃, η̃)–form similar to Equation (10). One can
already see this should be possible, due to the flexibility in the definition of (κ̃, β̃, α̃, η̃)–forms; for completeness, we give
the exact values now.

Define κ0 = 0. Take Ĩ = I +
∑I

i=1 κi, κ̃i = κi + 1 for i ∈ [1, I] and κ̃i = κp when i ∈ [I +
∑p−1

j=0 κj , I +
∑p

j=0 κj ] for
p ∈ [1, I], p ∈ N, and

β̃ij =

{
βi⌊j/d⌋ + e[j mod d], i ∈ [1, I], j ∈ [1, 2κi+1],

βpj , i ∈ (I +
∑p−1

j=0 κj , I +
∑p

j=0 κj ], j ∈ [1, 2κp ] for p ∈ [1, I],

α̃ijl =


αi⌊j/d⌋l, i ∈ [1, I], j ∈ [1, 2κi+1], l ∈ [1, κi],

e[m], i ∈ [1, I], j ∈ [1, 2κi+1], l = κi + 1,

αpjl, i ∈ (I +
∑p−1

j=0 κj , I +
∑p

j=0 κj ], j ∈ [1, 2κp ], l ∈ [1, κp] \ {i− I −∑p−1
j=0 κj} for p ∈ [1, I],

αpjl + e[m], i ∈ (I +
∑p−1

j=0 κj , I +
∑p

j=0 κj ], j ∈ [1, 2κp ], l = i− I −∑p−1
j=0 κj for p ∈ [1, I],

η̃ijl =


ηi⌊j/d⌋l, i ∈ [1, I], j ∈ [1, 2κi+1], l ∈ [1, κi],

j mod d, i ∈ [1, I], j ∈ [1, 2κi+1], l = κi + 1,

ηpjl, i ∈ (I +
∑p−1

j=0 κj , I +
∑p

j=0 κj ], j ∈ [1, 2κp ], l ∈ [1, κp] for p ∈ [1, I].

where j mod d is the remainder of dividing j by d. Then, (14) becomes

Dα̃0 [φ ◦Gθ] =
∑Ĩ

i=1

∑dκ̃i

j=1

[
Dβ̃ijφ ◦Gθ

]∏κ̃i

l=1 ∂
α̃ijlGθ,η̃ijl

.

This completes the proof of the induction step, and the theorem.

A.3. Proof of Theorem 4

Before proving the main theorem, we introduce two auxilliary lemmas, Lemmas 3 and 4. The former will allow us to apply
the chain rule of Theorem 6 to get k(x, ·) ◦Gθ ∈ Hc, and the latter claim the asymptotic rate of m−νc/s−1/2. The proof
of Theorem 4 will follow.

19



Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference

Given A1 to A3, all that is missing to prove k(x, ·) ◦Gθ ∈ Hc by applying Theorem 6 is the connection between RKHS of
Matérn kernels, and Sobolev spaces. To that end, we introduce a Lemma (that is a minor extension to classic results, see
for instance Wendland (2005, Corollary 10.48)) that links RKHS Hk of a Matérn kernel k of order ν with Sobolev spaces
W l,2 for l ∈ N+. In the Lemma, we briefly refer to Bessel potential spaces—only for their norm-equivalence both to the
RKHS of Matérn kernels, and to the Sobolev spaces of fractional order, which themselves lie between Sobolev spaces of
integer order—and to extension operators, that allow us to extend results on Rd to open, connected, bounded X with a
Lipschitz boundary. Every open, bounded, and convex X has a Lipschitz boundary (Stein, 1970); for example, this includes
the hypercube X = (0, 1)d. For a detailed overview of Bessel potential spaces, fractional Sobolev spaces, and extension
operators, we refer to Adams & Fournier (2003); these will only appear in the proof of the following Lemma.

For a β ∈ R+ ∪ {0}, we denote the ceiling operation ⌈β⌉ = min({z ∈ N | z ≥ β}), and the rounding operation
⌊β⌋ = max({z ∈ N | z ≤ β}).
Lemma 3. Suppose X = Rd, or X ⊆ Rd is open, connected, and bounded with a Lipshitz boundary, and k is a Matérn
kernel on X of order ν. Then, the RKHS Hk induced by k lies between Sobolev spaces W⌈ν+d/2⌉,2(X ) and W⌊ν+d/2⌋,2(X ),
meaning

W⌈ν+d/2⌉,2(X ) ⊆ Hk ⊆ W⌊ν+d/2⌋,2(X ).

Proof. We start by proving the result for X = Rd. By Wendland (2005, Corollary 10.13), the RKHS of a Matérn k is
norm-equivalent to the Bessel potential space Hs(X ) for s = ν + d/2. The Bessel potential space Hs(X ), by Adams &
Fournier (2003, Section 7.62), is norm-equivalent to a fractional Sobolev space (a Sobolev-Slobodeckij space) W s,2(X ),
which lies between spaces of integer order, W ⌈s⌉,2(X ) ⊆ W s,2(X ) ⊆ W ⌊s⌋,2(X ).

Finally, the result W⌈s⌉,2(X ) ⊆ Hk ⊆ W⌊s⌋,2(X ) extends to an open connected bounded X ⊂ Rd with a Lipshitz boundary
identically to the proof of Wendland (2005, Corollary 10.48), which makes use of the extension operator introduced for such
X by Stein (1970).

To show the claimed asymptotic rate, we use the following straightforward corollary of Wynne et al. (2021, Theorem 9).

Lemma 4 (Corollary of Theorem 9 in Wynne et al. (2021)). Suppose for any m ≥ M ∈ N+,

• U is a measure on a convex, open, and bounded U ⊂ Rs that has a density fU : U → [0, C ′
U] for some C ′

U > 0.

• {ui}mi=1 are such that the fill distance hm = O(m−1/s).

• {wi}mi=1 are the optimal weights obtained based on the kernel cβm
and measure U, parametrised by βm ∈ B for some

parameter space B,

• for any β ∈ B, cβ is a Matérn kernel of order νc; νc is independent of β.

Then, for some C0 independent of m and f , and any f ∈ Hc with ∥f∥Hc
= 1,∣∣∫

U f(u)U(du)−∑m
i=1 wif(ui)

∣∣ ≤ C0m
−νc/s−1/2.

Proof. The expression on the left hand side of Wynne et al. (2021, Theorem 9) is |
∫
U f(u)U(du)−∑m

i=1 wif(ui)|; the
notation from their paper to this result maps as θ → β, p → fU, X → U , x → u, Θ → B, and the prior mean µ(β) = 0 for
any β ∈ B. First, we show the assumptions in the Theorem hold.

Assumption 1 (Assumptions on the Domain): An open, bounded, and convex U satisfies the assumption, as discussed
in Wynne et al. (2021).

Assumption 2 (Assumptions on the Kernel Parameters): Since cβ is a Matérn kernel of order νc, the smoothness constant
of cβ is νc + s/2 regardless of the value of β ∈ B, meaning τ(β) = τ−c = τ+c = νc + s/2 > s/2. Lastly, the norm
equivalence constants of Wynne et al. (2021, Equation 3) are the same for all β—since the respective RKHS and Sobolev
spaces are—so the set of extreme values B∗

m is finite and does not depend on m; we denote B∗
c = B∗

m, to highlight that B∗
c

only depends on the choice of kernel family c and not m.
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Assumption 3 (Assumptions on the Kernel Smoothness Range): As discussed in Assumption 2, τ(β) = νc + s/2 for any
β ∈ B, so the set in the statement of Assumption 3 has only one element.

Assumption 4 (Assumptions on the Target Function and Mean Function): The target function f is in Hc, meaning
τf = τ−c = τ+c = νc + s/2. The mean function µ(β) was taken to be zero, so has zero norm.

Lastly, take h0 such that h1 ≤ h0; as we assumed hm = O(m−1/s), it holds that h0 ≤ hm for all m ≥ 1. Therefore, all the
assumptions are satisfied and Wynne et al. (2021, Theorem 9) applies; moreover, the bounding expression is C0m

−α/s for
α = νc + s/2 and some C0 independent of m and f since

• hm = O(m−1/s), and as τf = τ−c = τ+c = νc + s/2 as discussed in the verification of assumptions, hmax(τf ,τ
−
c )

m =
O(m−νc/s−1/2),

• the rest of the multipliers do not depend on m and f : C depends only on U , s, τf = νc + s/2, and B∗; ∥fU∥L2(U) is a
constant and finite since fU is bounded above; τf − τ+c = 0 so rising to its power produces 1; the norm ∥f∥Hc

= 1;
for any m ≥ M , µ(βm) = 0.

This completes the proof.

Now we are ready to prove the main theorem.

Proof of Theorem 4. To show k(x, ·) ◦ Gθ ∈ Hc for all x ∈ X , first note that Lemma 3 applies for both U and X that
satisfy A1: trivially for Rd, and for an open, convex, and bounded space since it has a Lipschitz boundary (Stein, 1970).
Since by A3, k is a Matérn kernel of order νk, it holds by Lemma 3 that k(x, ·) ∈ W lφ,2(X ) for lφ = ⌊νk + d/2⌋ and any
x ∈ X . Then, by Theorem 6, k(x, ·) ◦Gθ ∈ W l̃,2(U), for a Gθ that satisfies A2, and l̃ = min(lφ, l) = min(⌊νk + d/2⌋, l).
By A3, νc ≤ min(⌊νk + d/2⌋, l) − s/2 = l̃ − s/2, and it holds that l̃ ≥ νc + s/2. Since l̃ is an integer, this implies
l̃ ≥ ⌈νc + s/2⌉, and we have that W l̃,2(U) ⊆ W⌈νc+s/2⌉,2(U). Finally, as c is a Matérn kernel or order νc, by Lemma 3 it
holds that W⌈νc+s/2⌉,2(U) ⊆ Hc, and we arrive at k(x, ·) ◦Gθ ∈ Hc.

Since k(x, ·) ◦Gθ ∈ Hc holds, we can use Theorem 3 and state

|MMDk(Pθ,Qn)− MMDk(Pm
θ ,Qn)| ≤ K × MMDc (U,

∑m
i=1 wiδui

) .

By the reproducing property, it holds that sup f∈Hc

∥f∥Hc=1

|
∫
U f(u)P(du)−

∫
U f(u)Q(du)| is equal to MMDc(P,Q) for any

two distributions P,Q on U . Then,

MMDc(U,
∑m

i=1 wiδui
) = sup f∈Hc

∥f∥Hc=1

∣∣∫
U f(u)U(du)−∑m

i=1 wif(ui)
∣∣ .

The expression under the supremum is bounded by Lemma 4 with C0m
−νc/s−1/2, for C0 independent of m and f . Therefore,

MMDc(U,
∑m

i=1 wiδui
) ≤ C0m

−νc/s−1/2, and the result holds.

Note that while the result was formulated for the special case of convex spaces, it applies more generally to any open,
connected, bounded X ⊂ Rd, U ⊂ Rs with Lipschitz-continuous boundaries—with no changes to the proof. The
applicability to X = Rd remains unchanged; U , however, must remain bounded for Theorem 6 to hold.

A.4. Computational and sample complexity

We derive the condition under which the OW estimator achieves better sample complexity than the V-statistic for the same
order of computational cost, see Table 3 for the rates.

Suppose the cost for both V-statistic and OW is O(m̃). Then, the sample complexity for the V-statistic can be written in
terms of m̃ as O(m̃−1/4). Similarly, for the OW estimator, the sample complexity in terms of m̃ is O(m̃−(νc+

s
2 )/3s). The

more accurate estimator is therefore the one whose error rate goes to zero quicker. Therefore, the OW estimator is more
accurate than the V-statistic if

νc

s > 1
4 ,

which for the common choice of νc = 5/2 implies s < 10.
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Table 3. Computational and sample complexity rates of the V-statistic and the OW estimator with respect to m.

Cost Error

V-statistic O(m2) O(m− 1
2 )

OW O(m3) O(m− νc
s − 1

2 )

A.5. Derivation of closed-form kernel embeddings

We have zi =
∫
U c(ui, v)U(dv), where c : U × U → R is the SE kernel parameterised by the lengthscale l > 0, i.e.,

c(u, v) =
√
2πlφ(u; v, l2), where φ is the Gaussian pdf. For s > 1, we can write the kernel as c(u, v) =

∏s
j=1 c(uj , vj).

We now derive closed-form kernel embeddings for zi for different choices of the base space U and the distribution U.

For U = [0, 1]s, and U the uniform distribution, i.e., ui ∼ Uniform([0, 1]s), we get

zi =
∏s

j=1

∫
[0,1]

c(uij , vj)dvj =
∏s

j=1

√
2πl

[
φ(1;uij , l

2)− φ(0;uij , l
2)
]
,

where φ is the Gaussian cdf and uij is the jth element of ui.

In the case of U = Rs, and U being the Gaussian distribution such that ui ∼ N (µ,Σ), where µ = [µ1, . . . , µs]
⊤ and Σ is

the s-dimensional diagonal matrix with entries (σ2
1 , . . . , σ

2
s), the closed-form embedding for zi reads

zi =
∏s

j=1

∫∞
−∞ c(uij , vj)φ(vj ;µj , σ

2
j )dvj =

∏s
j=1

√
2πl

∫∞
−∞ φ(vj ;uij , l

2)φ(vj ;µj , σ
2
j )dvj

=
∏s

j=1

√
l2

(l2+σ2
j )

exp
(

−(uij−µj)
2

2(l2+σ2
j )

)
.

For the special case of Σ = diag(σ2, . . . , σ2), the expression simplifies to

zi =
(

l2

l2+σ2

)s/2

exp
(
− ∥ui−µ∥2

2(l2+σ2)

)
.

B. Additional Experimental details
True parameter values of the benchmark simulators in Section 5.1 is given in Appendix B.1. Appendix B.2 and Appendix B.4
provide additional results and details regarding the experiments in Section 5.2. Finally, the link to the source code of the
wind farm simulator is in Appendix B.5.

B.1. Benchmark Simulators

We now provide further details on the benchmark simulators. For drawing iid or RQMC points, we use the implementation
from SciPy (Virtanen et al., 2020). Below, we report the parameter value θ used to generate the results in Table 1 for each
model. We refer the reader to the respective reference in Table 1 for a description of the model and their parameters.

g-and-k distribution: (A,B, g, k) = (3, 1, 0.1, 0.1)

Two moons: (θ1, θ2) = (0, 0)

Bivariate Beta: (θ1, θ2, θ3, θ4, θ5) = (1, 1, 1, 1, 1)

Moving average (MA) 2: (θ1, θ2) = (0.6, 0.2)

M/G/1 queue: (θ1, θ2, θ3) = (1, 5, 0.2)

Lotka-Volterra: (θ11, θ12, θ13) = (5, 0.025, 6)

B.2. Multivariate g-and-k

The performance of the V-statistic and our OW estimator as a function of θ3 parameter of the multivariate g-and-k distribution
is shown in Figure 7 (left). The observed effect on the performance is similar to that of Figure 3c, where the error in the OW
estimator increases as we vary θ3. The degradation in performance is not as severe as when varying θ4, indicating that the
smoothness of the multivariate g-and-k generator is not impacted by θ3 compared to θ4. Both the uniform and the Gaussian
embedding achieves better performance than the V-statistic, whose performance remains unaffected by θ3.
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Figure 7. Additional results for the multivariate g-and-k distributions. Left: Estimated MMD2 for the V-statistic and our OW estimator as
a function of θ3. Right: Histogram of samples from the g-and-k distribution for different values of θ4. Settings: no. of samples = 100,000,
θ1 = 3, θ2 = 1, θ3 = 0.1.
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Figure 8. US dollar/Canadian dollar exchange rate data experiment on the g-and-k distribution. (a) ABC posterior for θ1. (b) ABC
posterior for θ2. (c) Model fit based on the MAP estimates of θ1 and θ2 for V-statistic (in blue) and OW estimator (in orange). The OW
estimator leads to a much better fit to the exchange rate data (shown in black). (d) Zoomed-in version of (c).

B.3. Exchange rate data experiment

We apply the g-and-k simulator to the US dollar to Canadian dollar exchange rate data (Verbeek, 2018) from the Ecdat
R package. The data is shown in Figure 8c in black, which has n = 501 points. We fit the univariate g-and-k model to
this data using the ABC method of Equation (4), with both the V-statistic and our OW estimator. For simplicity, we keep
θ3 = 0.12 and θ4 = 0.35 fixed and only estimate the first two parameters. We set m = 20 and simulate 2000 parameter
values from the prior U([0.5, 1]× [0, 0.1]). The resulting ABC posteriors with tolerance ε = 5% are shown in Figure 8a and
Figure 8b for θ1 and θ2, respectively. Figure 8c shows the corresponding predictions based on the MAP estimate of the
ABC posteriors. We observe that our OW estimator leads to a better fit than the V-statistic estimator. We are able to estimate
the variance of the data (governed by θ2) much more accurately than the V-statistic, which overestimates the variance.

B.4. Composite goodness-of-fit test: details and additional results

Algorithm 1 shows the details of the composite goodness-of-fit test using the parametric bootstrap. The algorithm is written
for the V-statistic estimator, but each instance of the squared MMD can be replaced with our OW estimator. In practice, to
compute argminθ MMD2(Pθ,Qn) we use gradient-based optimisation, as described in Algorithm 2. The definitions of the
hyperparameters of these two algorithms, and the values that we use, are given in Table 4.

Θinit is the distribution from which the initial parameters are sampled, and is a uniform distribution with the following ranges:
θ1 : (0.001, 5), θ2 : (0.001, 5), θ3 : (0.001, 1), θ5 : (0.001, 1). To compute the fraction of times that the null hypothesis is
rejected (Table 2) we repeat the experiment 150 times.
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Algorithm 1: Composite goodness-of-fit test
Input: Pθ, Qn, α, B
θ̂n = argmin

θ
MMD2(Pθ,Qn) ;

for k ∈ {1, . . . , B} do
Qn

(k) =
1
n

∑n
i=1 δx(k)

i
,
{
x
(k)
i

}n

i=1
∼ Pθ̂n

;

θ̂n(k) = argmin
θ∈Θ

MMD2(Pθ,Qn
(k));

∆(k) = MMD2(Pθ̂n
(k)

,Qn
(k));

cα = quantile({∆(1), . . . ,∆(B)}, 1− α);

Pm
θ̂n

= 1
m

∑m
i=1 δyi

, where {yi}mi=1 ∼ Pθ̂n
;

if MMD2(Pm
θ̂n
,Qn) > cα then

return reject;
else

return do not reject;

Algorithm 2: Random-restart optimiser

Input: Pθ, Qn, m, I , R, S, s, Θinit

Function loss(θ) is
Pm
θ = 1

m

∑m
i=1 δyi

, where {yi}mi=1 ∼ Pθ ;
return MMD2(Pm

θ ,Qn);

θtrial
(1) , . . . , θ

trial
(I) ∼ Θinit ;

Select θinit
(1), . . . , θ

init
(R) ∈ {θtrial

(k)}Ik=1 that yield the
smallest loss(θinit

(k));

θ̂opt
(1), . . . , θ̂

opt
(R) = for k ∈ {1, . . . , R} do

θ̂opt
(k) = adam_optimizer(loss, S, s, θinit

(k))

return θ∗ ∈ {θ̂opt
(k) }Rk=1 s.t. ∀k. loss(θ∗) ≤ loss(θ̂opt

(k));

Table 4. Definitions of the hyperparameters.

hyperparameter value

α 0.05 level of the test
B 200 number of bootstrap samples
m 100 number of samples from the simulator
n 500 number of observations in the data
I 50 number of initial parameters sampled
R 10 number of initial parameters to optimise
S 200 number of gradient steps
s 0.04 step size

B.5. Large scale wind farm model

We include the comparison with the U-statistic estimator of MMD for the wind farm experiment in Figure 9. Observations
are similar to that of Figure 5 — our OW estimator leads to much more concentrated ABC posteriors around the true value
than the U-statistic.

The low-order wake model is described in Kirby et al. (2023) and the code is available at https://github.com/
AndrewKirby2/ctstar_statistical_model/blob/main/low_order_wake_model.py.
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Figure 9. ABC posteriors for the wind farm model. Our OW estimator yields posterior samples that are more concentrated around the true
θ0 than the U-statistic. Settings: n = 100, θ0 = 20.
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