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Simplified Temporal Consistency Reinforcement Learning

Yi Zhao 1 Wenshuai Zhao 1 Rinu Boney 2 Juho Kannala 2 Joni Pajarinen 1

Abstract
Reinforcement learning (RL) is able to solve com-
plex sequential decision-making tasks but is cur-
rently limited by sample efficiency and required
computation. To improve sample efficiency, re-
cent work focuses on model-based RL which in-
terleaves model learning with planning. Recent
methods further utilize policy learning, value esti-
mation, and, self-supervised learning as auxiliary
objectives. In this paper we show that, surpris-
ingly, a simple representation learning approach
relying only on a latent dynamics model trained
by latent temporal consistency is sufficient for
high-performance RL. This applies when using
pure planning with a dynamics model conditioned
on the representation, but, also when utilizing
the representation as policy and value function
features in model-free RL. In experiments, our
approach learns an accurate dynamics model to
solve challenging high-dimensional locomotion
tasks with online planners while being 4.1× faster
to train compared to ensemble-based methods.
With model-free RL without planning, especially
on high-dimensional tasks, such as the Deep-
mind Control Suite Humanoid and Dog tasks, our
approach outperforms model-free methods by a
large margin and matches model-based methods’
sample efficiency while training 2.4× faster.

1. Introduction
Deep reinforcement learning (DRL) has shown promising
results in games (Schrittwieser et al., 2020; Bellemare et al.,
2013), animation (Peng et al., 2018) and robotics (Wu et al.,
2022; Andrychowicz et al., 2020; Lee et al., 2020). However,
DRL is data-demanding requiring millions of data points
to train limiting the applicability of DRL in real-world sce-
narios. To make DRL more sample-efficient, motivated
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Figure 1. Top: Model architecture for computing our temporal
consistency reinforcement learning (TCRL) latent state ẑt. At
each time step t the model encodes observation ot into a latent
state ẑt using a neural network. The latent dynamics model dϕ
predicts the next latent state ẑt+1 using ẑt and action at. A stan-
dard momentum encoder eθ− prevents collapse of the latent state
representation. We use the cosine loss between the latent state
and the momentum encoded latent state, denoted by a dashed line,
for training. The reward function, omitted for clarity, is trained
with the standard MSE loss. This simple model works surprisingly
well providing a trained dynamics model for planning experiments,
and, in model-free RL experiments, the trained latent states ẑt are
used as inputs to policy and value functions. Bottom: Episodic
returns of TCRL compared to SAC and TD-MPC with respect to
computing time on high-dimensional Humanoid and Dog tasks.
Agents are trained with 5 million environment steps, and we plot 5
runs with shaded areas denoting 95% confidence intervals.

by the success of self-supervised learning in both vision
and language tasks, a series of recent works (Ma et al.,
2020; Schwarzer et al., 2021; Laskin et al., 2020) introduce
self-supervised auxiliary losses. The aim is to improve rep-
resentation learning for policy and value functions. The
adopted self-supervised losses include image reconstruction
(Yarats et al., 2021; Ha & Schmidhuber, 2018; Watter et al.,
2015) and maximizing the similarity between two augmenta-
tions of the same image (contrastive training) (Laskin et al.,
2020). However, most of these methods demonstrate the
effectiveness of the proposed method on pixel-based tasks.
And their conclusions can not always directly transfer to
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state-based tasks, where a compact state representation is
already available.

Recently, Zhang et al. (2021); McInroe et al. (2021);
Schwarzer et al. (2021) exploit the temporal relationship of
sequential observations and propose to facilitate represen-
tation learning by predicting future observations or future
latent states. These methods usually train an image encoder
and a latent dynamics model jointly with the value func-
tion. Hansen et al. (2022); Schrittwieser et al. (2020); Ye
et al. (2021); Ghugare et al. (2023) extend these methods by
leveraging the learned latent dynamics model to improve the
policy and show promising results. For example, TD-MPC
is the first documented method that solves high-dimensional
dog tasks from DeepMind Control Suite (Tunyasuvunakool
et al., 2020) (DMC) by leveraging elaborate decision-time
planning using the learned dynamics. Since all these meth-
ods learn and use the encoder, latent dynamics model, and
value functions jointly, it is difficult to distinguish which
parts contribute to performance improvements.

This paper investigates the role of latent temporal consis-
tency in state-based reinforcement learning. Specifically,
we propose a simple but effective method, called TCRL
(temporal consistency RL) to learn a state encoder and a
latent dynamics model jointly, as shown in Figure 1. We
carefully strip away complexities of previous methods and
report empirical results on both i) dynamics model learn-
ing as well as ii) policy learning. We show that the trained
model is accurate enough to be used for online planning
to solve high-dimensional locomotion tasks. Compared to
PETS (Chua et al., 2018), without using ensembles, proba-
bilistic models, and state normalization, our method is able
to solve high-dimensional DMC tasks, such as Quadruped
Walk and Dog Walk (A ∈ R38,O ∈ R223) while being 4.1
× faster to train than ensemble-based methods which fail in
these tasks. Also, even though in state-based tasks, inputs
are already compact and have physical meaning, we still
observe a big performance boost when training a model-
free agent in the learned latent space instead of the obser-
vation space. Our method improves the performance on
challenging locomotion tasks compared to strong model-
free baselines and matches sample efficiency compared to
state-of-the-art model-based methods while being faster to
train. Furthermore, thanks to our minimalistic algorithm
and implementation1, we conduct extensive well-controlled
experiments to analyze the usage of temporal consistency
in state-based RL. We find that i) temporal consistency is
more compatible with the cosine loss than the MSE loss; ii)
joint training of the dynamics model and the value function
introduces additional instability; iii) although our learned
dynamics model is accurate to support online planning on
high-dimensional tasks, we fail to observe strong benefits

1Source Code of TCRL: https://github.com/zhaoyi11/tcrl

of using it in policy or value function learning.

2. Related Work
Learning dynamics models for planning Learning an
accurate dynamics model from interactions with the envi-
ronment is crucial for model-based reinforcement learning
(MBRL). When low-dimensional observations are acces-
sible, it’s common to learn a dynamics model in the ob-
servation space. PILCO (Deisenroth & Rasmussen, 2011)
and PETS (Chua et al., 2018) stress the importance of cap-
turing the model’s uncertainty and explicitly incorporating
the uncertainty into planning. Many recent MBRL meth-
ods (Janner et al., 2019; Clavera et al., 2020; Yu et al., 2020;
Kidambi et al., 2020) employ the ensemble model used in
PETS by default. However, its computational complexity
grows linearly with the number of ensembles. And Lutter
et al. (2021) shows that these methods are struggling to
handle high-dimensional tasks. Instead, we show that by
leveraging the latent temporal consistency, we can learn
a simple dynamics model to achieve better performance
without using ensembles or probabilistic models.

Representation learning in RL Representation learning
has been investigated for decades in the context of RL. Singh
et al. (1994); Dearden & Boutilier (1997); Andre & Rus-
sell (2002); Li et al. (2006); Mannor et al. (2004); Ruan
et al. (2015); Jiang et al. (2015); Abel et al. (2016) iden-
tify or learn a compact representation of state or action
space but are usually limited to relatively simple environ-
ments. Gelada et al. (2019); Zhang et al. (2021) extend
these ideas to solve challenging tasks leveraging neural net-
works. Many recent works facilitate RL research by utiliz-
ing good insights from self-supervised learning (SSL). SSL
aims to learn meaningful features without labels (Kingma &
Welling, 2014; Higgins et al., 2017; Oord et al., 2018; Chen
et al., 2020; He et al., 2020; Grill et al., 2020). For example,
Hafner et al. (2019; 2020; 2021; 2023) learn good repre-
sentations (latent space) in a VAE-like (Kingma & Welling,
2014) way by reconstructing observations and then do plan-
ning and policy learning in the latent space. And Hansen
et al. (2022); Schwarzer et al. (2021); McInroe et al. (2021)
learn representations via contrastive learning (Hadsell et al.,
2006). SSL is mainly used in visual control tasks (Yarats
et al., 2021; Ha & Schmidhuber, 2018; Laskin et al., 2020;
Huang et al., 2022). However, the effectiveness of SSL
in state-based tasks has not been clearly verified (Yang &
Nachum, 2021), since in this case, a compact representation
with physical meaning is available. Also, none of these
methods try to investigate the accuracy of the learned dy-
namics model. Our paper aims to fill this gap.

Learning value-oriented dynamics models Recent work
learns dynamics models without predicting future observa-
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tions. Silver et al. (2017); Oh et al. (2017); Tamar et al.
(2016); Schrittwieser et al. (2020); Ye et al. (2021) learn a
dynamics model that only predicts rewards and values over
multiple time steps and uses the learned model for planning.
The state-of-the-art method TD-MPC (Hansen et al., 2022),
closest work to ours, uses a temporal consistency constraint
in the latent space. TD-MPC shows good performance on
continuous control tasks by training a latent dynamics model
jointly with value functions and planning with the learned
dynamics model. Through extensive experiments, we argue
none of these are required to solve high-dimensional tasks
such as the Humanoid and Dog tasks. Instead, we train
the value function separately from the dynamics model and
learn the policy and value function in a model-free way.
Without using elaborate planning, our TCRL achieves com-
petitive performance and is 2.4× faster to train. Our results
suggest that learning a high-quality state representation is a
key factor in solving these challenging tasks.

3. Method
Components As shown in Figure 1, our TCRL model
includes four components:

Encoder : zt = eθ(ot)

Transition : zt+1, rt = dϕ(zt, at)

Value : qt = qψ(zt, at)

Policy : at ∼ πη(zt)

(1)

An encoder eθ maps an observation ot into a latent state
zt. In our method, two encoders are used, named online
encoder eθ and momentum encoder eθ− . We calculate the
target latent state z̃t using the momentum encoder with
parameters θ− which are the exponential moving average
(EMA) of the online encoder parameters θ. Based on the
latent state zt and action at, a latent state at the next time
step zt+1 as well as an immediate reward rt are predicted.
When inputs are pixels (see Appendix A), the encoder eθ
is parameterized by a convolutional neural network (CNN),
while MLPs are used when inputs are states. Also, both the
latent dynamics model dϕ and the value function qψ as well
as the policy πη are represented by MLPs.

In our method, the prediction happens in the latent space
instead of observation space. In section 4.1, we show that
this is a key factor enabling us to learn an accurate dynamics
model to support online planning. Furthermore, the value
function and policy take the learned latent states instead of
observations. In section 4.2, we suggest this is crucial for
solving challenging high-dimensional Humanoid and Dog
tasks. Although common in pixel-based tasks, our method
explicitly demonstrates that in state-based tasks where a
compact representation is already available, we can still
benefit from using the latent states learned by temporal
consistency.

Learning the encoder and latent dynamics The latent
dynamics model is trained by accurately predicting H-
step rewards r̃t:t+H and target latent states z̃t+1:t+1+H .
Specifically, for a H-step trajectory (ot, at, rt, ot+1)t:t+H
drawn from the replay buffer D, starting from an initial
observation ot, we first use the online encoder eθ to ob-
tain a latent representation ẑt = eθ(ot). Then, condi-
tioning on action sequences at:t+H , the transition function
ẑt+1, r̂t = dϕ(ẑt, at) is applied iteratively to predict future
rewards r̂t:t+H and latent states ẑt:t+H . The target rewards
r̃t:t+H are just immediate rewards from the sampled trajec-
tory, while the target latent states z̃t:t+H are calculated by
the momentum encoder as z̃t:t+H = eθ−(ot:t+H). Given
multi-step predictions and targets, the training objective is
simply to minimize the discounted sum of the MSE loss of
rewards and the negative cosine distance of latent states:

H∑
h=0

γh
[
||r̂t+h− r̃t+h||22 −

( ẑt+h
||ẑt+h||2

)⊤( z̃t+h
||z̃t+h||2

)]
. (2)

This temporal consistency is used in several previous pa-
pers (Schwarzer et al., 2021; Hansen et al., 2022; McInroe
et al., 2021). Perhaps Hansen et al. (2022) is the most related
paper proposing the TD-MPC method. In addition to TD-
MPC using planning at decision-time, we differ from TD-
MPC in two aspects: i) we use the cosine loss but TD-MPC
uses the MSE loss; ii) TD-MPC learns a latent dynamics
model jointly with value functions. Learning value functions
jointly with the dynamics model, so-called value-oriented
dynamics, enforces the dynamics model to encode strong
task-specific information, which potentially makes it hard
to generalize to new tasks (Zhang et al., 2018). Moreover,
Section 5 highlights additional training instability issues
that joint training may cause.

Learning the policy and value function For learning
the policy and value function, we adopt a deep determinis-
tic policy gradient method (DDPG) (Lillicrap et al., 2016)
augmented with n-step returns (Watkins, 1989; Peng &
Williams, 1994) following Yarats et al. (2022) with the only
difference that instead of using the original observation ot
we use the latent state zt = eθ(ot) as input to the policy and
value function. Specifically, the value function is updated
by minimizing:

Lψ = Eτ∼D
[
(qψk

(zt, at)− y)2
]
,∀k ∈ 1, 2

y =

n−1∑
h=0

γhrt+h + γn min
k=1,2

qψ−
k
(zt+n, at+n)

(3)

where atn = πη(zt+n)+ϵ and the noise ϵ is sampled from a
clipped Gaussian distribution ϵ ∼ N (0, σ2) with a linearly
decayed σ as in DrQv2(Yarats et al., 2022). Following pre-
vious model-free methods (Fujimoto et al., 2018; Haarnoja
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et al., 2018; Hasselt, 2010), we use double Q networks qψ1,2

as well as two delayed Q networks qψ−
1,2

. We update the
actor’s parameters using the loss

Lη = −Eτ∼D
[
min
k=1,2

qψk
(zt, at)

]
(4)

that maximizes Q-value for the actor. Again, zt = eθ(ot),
action at = πη(zt) + ϵ and we do not update the encoder’s
parameters with actor’s gradients.

4. Experiments
We evaluate our TCRL approach in several continuous DMC
control tasks. DMC uses scaled rewards, where the maximal
episodic returns are 1000 for all tasks. We evaluate our
method in two separate settings:

• Dynamics learning. In the first setting, there is no
value function or policy involved. Instead, we directly
use the latent dynamics model for online planning call-
ing the approach TCRL-dynamics. The aim is to answer
whether temporal consistency can be used to learn an
accurate latent dynamics model.

• Policy learning. In the second setting, we train the
policy and value functions in a model-free way using
latent states in place of original observations calling the
approach TCRL. This experiment aims to investigate
whether the latent representation trained by temporal
consistency benefits policy and value function learning.

4.1. Evaluation of the Latent Dynamics Model

Evaluation metrics Learning an accurate dynamics
model is critical for model-based RL research. Finding
a proper way to evaluate the learned dynamics model is
still an open problem. Unlike usual supervised learning, the
mean square error on the test set does not directly reflect
the model’s performance in planning (Lutter et al., 2021;
Lambert et al., 2020).

Considering the primary usage of a dynamics model is
planning, we directly evaluate the learned model with
its planning results using Model Predictive Path Integral
(MPPI) (Camacho & Alba, 2013; Williams et al., 2015).
MPPI is a population-based online planning method that
iteratively improves the policy at:t+H with samples. In each
iteration j, N trajectories are sampled according to the cur-
rent policy ajt:t+H . Then, K trajectories with higher returns∑H
h=0 r

j
t+h(s

j
t+h, a

j
t+h) are selected. Next, we calculate

an improved policy aj+1
t:t+H by taking the weighted average

over the selected top-K trajectories, where the weights are
calculated by taking the softmax over returns of the top-K
trajectories. After J iterations, the first action of aJt:t+H is
executed.

In our MPPI implementation, no value function or policy
network is involved. Instead, we iteratively learn the dynam-
ics model by i) collecting experiences via the MPPI planner,
and ii) improving the dynamics model using collected data
by optimizing Equation 2. In this way, all sampled action se-
quences are evaluated by the learned latent dynamics model
alone, thus the planning performance can reflect the model’s
accuracy. We consider the following comparison methods
to learn the dynamics model:

• Stochastic ensemble model (PETS) learns an ensem-
ble of stochastic neural networks predicting both mean
and standard deviation of next states and rewards. Simi-
larly to Chua et al. (2018), we only predict the one-step
future since uncertainty propagation through multiple
time steps is unclear (Lutter et al., 2021). PETS is com-
monly used in many model-based RL methods when
inputs are in compact states.

• Deterministic ensemble model (EnsDet) uses an en-
semble of deterministic neural networks to predict
multi-step future observations and rewards. EnsDet’s
architecture is similar to our method with the differ-
ence of predicting the next observations instead of the
next latent states enabling an experimental compari-
son between observation predictions and latent space
predictions.

Although our primary focus is on state-based tasks, we also
test our method on pixel-based tasks to show that it is gen-
eral. In the experimental comparison with PlaNet (Hafner
et al., 2019) in Appendix A, our method obtains comparable
or better performance on six commonly used pixel-based
benchmark tasks. Detailed ablation studies on pixel-based
tasks are in Appendix A.3.

Planning results In Figure 2, we compare our method
with the stochastic ensemble model (PETS) and determinis-
tic ensemble model (EnsDet) on eight state-based tasks from
DMC, including six commonly used benchmarking tasks
and two challenging high-dimensional tasks: Quadruped
Walk and Dog Walk. Although simple and without using
ensembles, our method either matches or outperforms com-
parison methods in the tested tasks. The high-dimensional
action and observation spaces A ∈ R38,O ∈ R223 make
solving the Dog Walk task, even for a strong model-free
baseline (Haarnoja et al., 2018), difficult. In fact, to the best
of our knowledge, TCRL-dynamics is the first documented
method that can control the Pharaoh Dog walking forward
using online planning with the learned dynamics model.

Chua et al. (2018) discuss the importance of predicting both
aleatoric and epistemic uncertainty to achieve good planning
performance. However, in both Chua et al. (2018) and our
experiments, the algorithms are tested in deterministic envi-
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Figure 2. Planning performance on DMC continuous control benchmarks. We plot the mean across 5 runs. Each run includes 10
trajectories. Shaded areas denote 95% confidence intervals. Without using ensembles, our TCRL-dynamics consistently outperforms
ensemble-based methods w.r.t. planning performance but with ∼ 4× less training time. Especially on the challenging Dog Walk task,
TCRL-dynamics outperforms previous methods by a large margin, which makes it a good candidate to learn the dynamics model in
model-based RL.

ronments, which makes predicting the aleatoric uncertainty
less motivated. In fact, in our experiments, TCRL-dynamics
and EnsDet outperform PETS on all tasks. This evidence
forces us to rethink the role of predicting aleatoric uncer-
tainty in these commonly used deterministic tasks. Also,
compared to PETS, both our method and EnsDet show the
importance of using the multi-step training objective while
it is not well compatible with the stochastic model used
in PETS since properly propagating the uncertainty over
multi-steps is challenging. Compared to EnsDet, our results
show the superiority of predicting in the latent space instead
of the observation space. We discuss this more in Section 5.

Moreover, we find that both PETS and EnsDet require state
normalization. However, state normalization is not common
in off-policy methods as this may introduce additional in-
stability. Our assumption is that for off-policy methods, the
data distribution in the replay buffer keeps changing during
training which leads to the unstable mean and standard devi-
ation for normalizing states. But TCRL-dynamics achieves
good performance without state normalization, making it
attractive to be adopted in model-based RL.

As mentioned before, we also evaluate our method on pixel-
based tasks (Appendix A). On six visual control tasks, we
show that our simple method matches PlaNet’s results,
which require an RNN and separated deterministic and
stochastic paths to model the dynamics. Also, our method
is easy to implement and 5.51 × faster to train. Our results
show that this simple model can be competitive to be used
in both pixel-based and state-based MBRL.

4.2. Evaluation of the Policy

We show that predicting in the latent space enables us to
learn an accurate dynamics model to support online plan-
ning. Now, we try to introduce a policy and value to solve
challenging tasks. We evaluate our TCRL methods on 24
continuous control tasks from DMC. Please check Appendix
E for full results. We select 8 representative tasks to com-
pare with other both model-based and model-free methods
w.r.t sample efficiency and compute efficiency. We consider
the following methods in our experiments:

• TD-MPC achieves promising performance on chal-
lenging tasks with value-oriented latent dynamics
model, where the latent dynamics model is learned
jointly with the value function, as well as elabo-
rate decision-time planning. We include TD-MPC to
demonstrate that none of these techniques are crucial
to achieving good performance on challenging tasks,
but state representation matters.

• SAC is a strong model-free baseline that achieves good
performance among different DMC tasks. We include
SAC to show how much the policy learning benefits
from the state representation even when compact state
representation is available.

• REDQ (Chen et al., 2021) is a strong model-free base-
line that is built upon SAC but with a higher Update-
To-Data ratio. We include it because this model-free
method outperforms many strong model-based meth-
ods, such as PETS (Chua et al., 2018), MBPO (Janner
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Figure 3. Policy performance on eight selected DMC tasks. We plot the mean across 5 runs, and each run includes 10 trajectories. The
shaded areas denote 95% confidence intervals. Our TCRL outperforms strong model-free baselines SAC and REDQ by a large margin on
challenging Humanoid and Dog locomotion control tasks. We also achieve comparable performance compared to the state-of-the-art
model-based method TD-MPC without using elaborate planning. REDQ and TD-MPC take 18.3× and 2.4× training time respectively
compared to TCRL. Full results on 24 continuous control tasks are shown in Appendix E.

et al., 2019), and MVE (Feinberg et al., 2018), with
respect to sample efficiency.

We also compared ALM (Ghugare et al., 2023), a recent
model-based approach learning representation, latent-space
model, and policy jointly. But we fail to achieve good
performance in DMC benchmark environments possibly
due to hyperparameters in the official ALM implementation
being tuned for OpenAI Gym (Brockman et al., 2016). We
include ALM results in Appendix C.2.

Policy results Figure 3 compares the performance of
TCRL with strong baselines on eight continuous control
tasks, including challenging Humanoid and Dog domains.
TCRL outperforms SAC on all tested tasks. Especially on
complex tasks, such as Fish Swim, Humanoid Walk, Dog
Walk, and Dog Run, our method outperforms SAC by a
large margin. Since we also learn policy and value functions
in a model-free way similar to SAC, the major performance
improvement is from the state representation. Our results
show strong evidence that state representation is critical
even when a compact state representation is available, and
temporal consistency can extract useful features that benefit
policy and value function learning.

REDQ uses randomized ensembled double Q-learning to
achieve a high update-to-data ratio. It achieves better per-
formance than SAC on most tasks except the Humanoid
Walk task. TCRL outperforms or matches REDQ on all
tasks except the Acrobot Swingup task without increasing

the update-to-data ratio and thus being 18.3× faster to train.
Notice that TCRL and REDQ improve sample efficiency
via orthogonal ways and can be easily combined.

To recapitulate, compared to TD-MPC, TCRL i) uses a
cosine loss on latent states; ii) achieves comparable perfor-
mance without a value-oriented latent dynamics model; iii)
does not perform decision-time planning. The results show
that using temporal consistency to extract useful state repre-
sentations is a key factor to success in solving Humanoid and
Dog tasks. Because we do not use decision-time planning,
which is computationally heavy, our method is 2.4× faster
to train. Furthermore, unlike TD-MPC, our method does
not need to select pre-task action repeat (control frequency),
making it easier to use. Moreover, Section 5 analyzes why
TCRL achieves better performance on the Dog Run task.

5. Empirical Analysis
This section empirically studies TCRL with special attention
to answering: i) why does TCRL work well? ii) which train-
ing objective should be used? iii) can we use the learned
dynamics in policy learning? More comparison studies re-
garding hyperparameters and the choice of different training
objectives are shown in Appendix B.

Why does TCRL work well? Experiments in dynamics
model learning and policy learning show that one driving
factor of TCRL’s success is temporal consistency training
extracting a useful state representation. Although the state
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Figure 4. Comparison of open-loop predictions. Blue curves are
ground truths and orange curves are predicted by learned dynamics
models. Top: two sampled dimensions zt from a Quadruped Walk
trajectory in the latent space learned by TCRL-dynamics. Middle:
two sampled dimensions ot from the same trajectory but in the
normalized observation space. The orange curves are predicted
by EnsDet. Bottom: two sampled dimensions ot from the same
trajectory and the orange curves are reconstructed observations
from the PlaNet model.

from the simulator is already a compact representation and
has physical meanings, the state still suffers from several
possible drawbacks: i) not translation invariant; ii) not ro-
tation invariant and the double-cover issue of quaternions;
iii) magnitude differences between different dimensions; iv)
strong temporal discontinuity.

The first two drawbacks are partially avoided by handcrafted
features, e.g., DMC removes the Cheetah’s position from the
observation and represents angles by their sine and cosine
in the Cartpole. For the third one, perhaps the most straight-
forward solution is to normalize the states. As shown in
Figure 2, normalizing states introduces an obvious planning
performance boost. However, as mentioned before, normal-
izing the states may introduce additional instability, and
most off-policy methods (Haarnoja et al., 2018; Fujimoto
et al., 2018; Lillicrap et al., 2016) do not utilize normal-
ization. The fourth drawback is caused by the nature of
locomotion tasks, that is when a robot contacts the ground,
the acceleration and sensor readings change significantly.

In Figure 4, we compare open-loop predictions of the TCRL-
dynamics, EnsDet, and PlaNet. Given an initial observation
and an action sequence, we predict the future states up to 150
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Figure 5. Comparison of choosing different training objectives.
Top: we compare MSE with cosine loss in Equation 2 in our
TCRL-dynamics variant. Middle: when jointly training the value
function and the dynamics model with the MSE loss, as in TD-
MPC, the consistency loss dominates the loss and leads to worse
performance. Bottom: when jointly training the value function
and the dynamics model with the cosine loss, the latent space keeps
expanding, leading to performance degeneration.

steps with different methods. The blue curves are ground
truths while the orange curves are predictions. All plots are
from the same Quadruped Walk trajectory but with differ-
ent sampled dimensions. Figure 4(a) shows the open-loop
predictions in the latent space learned by TCRL-dynamics.
Figure 4(b) plots the predictions in the normalized obser-
vation space by EnsDet. Figure 4(c) shows reconstructed
observations from PlaNet. Qualitatively our learned latent
space is smoother and future latent states are easier to pre-
dict. The magnitude differences between dimensions and
temporal discontinuity make it hard to train an accurate
dynamics model by EnsDet and PlaNet.

Also, our method can ease optimization, according to Tian
et al. (2021), the exponential moving average of the momen-
tum encoder can be seen as an automatic curriculum. In the
beginning, the training target z̃t is close to the prediction set-
ting an easier target for training. Then, the target gradually
becomes hard and then tends to stabilize as it converges.

Training objective As mentioned before, different from
TD-MPC, we use cosine loss to measure the distance be-
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Figure 6. Comparison of different ways to use the learned dynamics in policy or value function learning.

tween the predicted and the target latent states and train a
latent dynamics model separately with value functions. We
now analyze our design choices.

For the choice of the loss function, previous self-supervised
learning methods commonly use the cosine loss (He et al.,
2020; Grill et al., 2020) and demonstrate performance drops
with the MSE loss. The same evidence appears in RL set-
ting (Schwarzer et al., 2021). We found that in the TCRL-
dynamics variant, where no policy or value function is in-
volved, using MSE loss works well in most tasks. However,
we do observe a severe performance decrease on the Dog
Walk task where observations are complex as in the top row
of Figure 5. With the MSE loss, training tends to be unstable
instead of collapse (Schwarzer et al., 2021). Whilst TCRL-
dynamics, trained with cosine loss, is much more stable
during training and achieves better asymptotic performance.

We now discuss the case when jointly training value func-
tions and a dynamics model. When the MSE loss is used
as in TD-MPC, we found that training is stabilized due to
the regularization from value function learning. However,
as shown in the middle row of Figure 5, the consistency
loss (shown in the log scale) will dominate the overall loss.
This will lead to a sub-optimal solution as observed in the
Dog Run task as well as visual control tasks (Hansen et al.,
2022).

Since we found that cosine loss works better than MSE
loss in the TCRL-dynamics variant, a natural idea is to use
cosine loss to replace the MSE loss in TD-MPC, which can
potentially solve the dominating issue. However, as shown
in the bottom right plot of Figure 5, a worse performance
is observed. To explain it, we should notice that learning a
value function is not supervised training. Many ways have

been proposed to stabilize training, but perturbation during
training still exists. The bottom left plot of Figure 5 shows
the maximal latent state value (in the log scale) in training
batches. As we can see, the magnitude of the latent space
keeps growing. When training the value function and the
latent dynamics model separately as in TCRL, the latent
space is much more stable and achieves better performance.

Except for training stability, training a value function and
dynamics model separately potentially enables better gen-
eralization ability as the encoder does not encode strong
task-specific features from the value function (Sekar et al.,
2020; Zhang et al., 2018). We will leave this as future work.

Utilizing the dynamics model in policy training Here,
we use the learned latent dynamics model to train the pol-
icy and value function by i) model-based value expansion
(TCRL-mve) (Feinberg et al., 2018), where we use the dy-
namics model to rollout a short trajectory and calculate
k-step returns used to train the value function; ii) updat-
ing the policy by backpropagating through the dynamics
model (TCRL-bp) (Deisenroth & Rasmussen, 2011; Hafner
et al., 2020); iii) policy-guided decision-time planning as in
TD-MPC (TCRL-mppi).

Although the TCRL-dynamics variant showed that our
learned latent dynamics model is accurate to support plan-
ning, Figure 6 shows performance drops with the TCRL-
mve and TCRL-bp variants, which is a common issue in
model-based RL (Feinberg et al., 2018; Chua et al., 2018).
In RL, the policy tends to exploit model errors decreas-
ing asymptotic performance. We found that on most tasks,
TCRL-bp achieves reasonable performance, but perfor-
mance drops happen on the Dog Run task. However, as
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shown in Figure 6, decision-time planning (TCLR-mppi)
benefits from the learned dynamics model achieving better
performance on the Acrobot Swingup and Dog Run tasks
than both TCRL and TD-MPC. TCLR-mppi is a safe way to
utilize the learned dynamics model as the dynamics model
only influences the collection of informative samples, but is
not directly involved in policy or value function updating.
Note that TCLR-mppi does not use prioritized experience re-
play (Schaul et al., 2016) and pre-task action repeat (control
frequency) as used in TD-MPC, which may in some tasks
lead to slightly worse performance than TD-MPC, such as
in Cheetah Run.

6. Conclusion
In this paper, we propose a simple yet efficient way to learn
a latent representation based on temporal consistency. We
show that the learned representation benefits policy learning
to solve challenging state-based Humanoid and Dog tasks,
outperforming model-free methods by a large margin and
matching model-based methods with respect to sample effi-
ciency but being 2.4 × faster to train. Furthermore, we show
that the learned latent dynamics model is accurate enough
to support online planners to solve high-dimensional tasks,
outperforming previous ensemble-based methods but be-
ing much faster to train. Yet we believe that our method
can be improved in different ways, for example, by using
the learned model to improve the policy or value function
learning, or extending to visual control tasks.
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A. Planning Performance in Pixel-based Tasks
A.1. Pixel-based Control Tasks
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Figure 7. Planning performance on pixel-based DMC benchmarks. We plot the mean across 5 runs. Each run includes 10 trajectories.
Shaded areas denote 95% confidence intervals. Our TCRL-dynamics matches PlaNet while being 5.51× faster to train. TCRL-dynamics
outperforms PlaNet with contrastive objective by a large margin.

In Figure 7, we compare TCRL-dynamics with PlaNet (Hafner et al., 2019) and PlaNet with contrastive loss (Hafner et al.,
2019; Ma et al., 2020). To extend TCRL-dynamics from state-based tasks to visual control tasks, we use a convolutional
neural networks (CNN) to represent the encoder and inputs are three stacking images. Following Yarats et al. (2021), we use
random crop data augmentation. PlaNet is a strong baseline in pixel-based tasks. It uses the recurrent state space model
(RSSM), which uses an RNN and separated deterministic and stochastic paths to model the dynamics. PlaNet-contrast
replaces the sequential VAE-like loss in PlaNet with a contrastive loss. We re-implement PlaNet using Pytorch (Paszke
et al., 2019) to have a fair computational time comparison. To match our method, the learning rate is changed from 1e-3 to
5e-4, and the state dimension is increased from 30 to 50. Furthermore, we use MPPI instead of CEM as the planner to select
actions. We use the same hyperparameters as in state-based tasks listed in Appendix B, but increase the population, elite
size and iteration to 1000, 100 and 10 respectively. We verify that, with MPPI, our implementation outperforms the original
results (Hafner et al., 2019).

Though our method only uses tacking images as inputs and adopts a simple architecture, it achieves competitive performance
on most tasks and outperforms PlaNet on Cup Catch and Reacher Easy tasks. In these two tasks, the ball or the goal position
only takes tens of pixels. As mentioned by Okada & Taniguchi (2021), the RSSM can still obtain low reconstruction error
even totally ignoring these pixels. Our method does not suffer from this issue since we do not reconstruct the observations.
Our method also obviously outperforms PlaNet-contrast, showing the effectiveness of the temporal consistency objective.

Furthermore, due to the simplicity of our method, it is much faster to train. We evaluate the training time on a single RTX
2080Ti GPU. On the Cartpole Blance sparse task, PlaNet takes 15.6 hours for 500 episodes while TCRL-dynamics only
takes 2.83 hours, which is 5.51 × faster than PlaNet. We hope our results can speed up model-based RL research.

A.2. Distracting Control Tasks

In the real world, observations are complex, while observations from DMC have plain backgrounds making it easy to
distinguish interested objects. To test the performance of the learned model under complex observation, we test our methods
as well as two pixel-based baselines using distracting control suite (Stone et al., 2021). Distracting control suite modifies
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Figure 8. Planning results on distracting pixels-based tasks. We plot the mean across 5 runs and the shaded areas denote 95% confidence
intervals. TCRL-dynamics outperforms PlaNet and PlaNet-contrast by a large margin.
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Figure 9. Ablation results on pixels-based tasks. The experiments are conducted on the Cheetah Run task.

upon standard DMC by adding natural backgrounds, color, and camera distractions. In our experiments, only natural
background distractions are considered. Images of background distractions are video frames sampled from the DAVIS
dataset (Pont-Tuset et al., 2017). In each episode, the background will be re-sampled from the dataset. We consider a simpler
case where we only sample images from four pre-sampled videos.

To enable the dynamic model to focus on controllable objects, we add an additional inverse dynamic model (Pathak et al.,
2017). The inverse dynamic model takes two adjacent latent states zt, zt+1 as inputs and predicts the corresponding action
at. As shown in Figure 8, our method is more robust to background distraction compared to PlaNet and PlaNet-contrast. We
notice that PlaNet fails to solve these tasks completely. This is because PlaNet learns the dynamic model based on a VAE-like
loss, which means it reconstructs the visual observation. However, on this distracting control suite, the backgrounds keep
changing, making it hard to model. Also, only a few pixels are related to the control task, which can be easily ignored
by PlaNet. While our method does not require to reconstruct observations, making it more robust in the distracting tasks.
Furthermore, we observe that the inverse dynamic model helps the learning on both Cup Catch and Reacher Easy tasks.

A.3. Ablation Study for Visual Control

Representation collapse in pixel-based tasks In our method, perhaps the most urgent concern is whether there is a
representation collapse, that is, whether there exists a trivial solution where the minimal loss is obtained when the encoder
maps all observations into the same constant and the transition function is identical. In Figure 9(a-d), with Cheetah Run
tasks, we investigate three factors: i) the loss function (MSE loss vs. cosine loss), ii) the jointly trained reward function and
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Figure 10. Comparison of model rollouts horizon (H) during training. We vary it from [1, 3, 5, 10], and we find H = 5 works the best.
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Figure 11. Comparison of choosing different N in N-step TD learning. We vary if from [1, 3, 5] and we find N = 3 works the best.

iii) the momentum encoder.

Unlike (Schwarzer et al., 2021), when using the MSE loss over latent states, we do not observe representation collapse and
the control performance is reasonable (See Figure 9(a-b)). However, the loss keeps growing, making training potentially
unstable as discussed in section 5, while the cosine loss nicely behaves, which is aligned with our conclusion in state-based
tasks, as in section 5.

When the reward function is trained separately from the encoder and the transition function (Figure 9c), representation
collapse happens. Tian et al. (2021); Grill et al. (2020) mention that using a near-optimal projector avoids representation
collapse, thus we adopt different learning rates for the transition model and the rest, specifically, the learning rate of the
transition model is 5 times larger than the rest. It helps somehow, but in some runs, the collapse still happens. Furthermore,
when we jointly train the inverse dynamic model with the encoder and the transition model, the representation collapse
is successfully prevented. Our suggestion is to jointly train the latent dynamic model with the reward function whenever
available and use the inverse dynamic model if necessary.

In Figure 9(d), when calculating the target latent states z̃t we compare usage of the momentum encoder z̃t = eθ−(ot) by
instead using the online encoder z̃t = stop grad(eθ(ot)). We find that when the reward function is trained jointly, the second
method is still able to avoid collapse but control performance drops.

What matters for model learning in pixel-based tasks? In Figure 9(e-h), we investigate several factors that are important
to the model’s performance, including (i) data augmentation, (ii) rollout length during training, (iii) injecting noise into
latent states, and (iv) predicting the latent state difference ẑt+1 − ẑt.

We find that data augmentation and multi-step prediction are critical to performance in pixel-based tasks, which is aligned
with previous methods (Schwarzer et al., 2021; Hansen et al., 2022). Especially when using one-step prediction error during
training (H = 1), the control performance drops dramatically, suggesting the advantage of using multi-step prediction.
Nguyen et al. (2021) injects Gaussian noise to the latent state to smooth the dynamics, however, we do not find obvious
benefits of using it. Also, injecting noise ϵ ∼ N (0, 0.32) as in Nguyen et al. (2021) hurts the performance. Furthermore,
predicting the temporal difference of ∆z = zt+1 − zt is slightly helpful but is not the major factor.

B. More Ablation Study in State-based Tasks
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Figure 12. Comparison of different coefficients of the consistency loss. We vary it from [0.5, 1, 4] and we find the performance is robust
w.r.t this hyperparameter. Thus we choose it as 1 in our experiments.
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Figure 13. Comparison of different objective functions. We compare our method using temporal consistency loss with reconstruction loss
(TCRL-rec) and dropping the loss by predicting rewards only (TCRL-no). All methods work reasonably on medium-level tasks but only
our method can solve the complex Dog Walk task.

Hyperparameters We incrementally show each of the influences of three hyperparameters: model rollout horizon, n-step
TD learning and coefficient of the consistency loss. We first decide the model rollout horizon during training, which is noted
as H in Equation 2. We vary it from [1, 3, 5, 10]. As shown in Fig 10, we find that when H = 1, the performance decrease
in the Dog Walk task, but if setting it as H = 10, performance drops are observed in Acrobot Swingup. Thus we set it as 5
in our experiments.

We use N-step TD learning as in Equation 3. Now we compare the influences of choosing different N by varying it from
[1, 3, 5]. From Figure 11, we find that using N = 3, 5 improves the performance in Acrobot Swingup, and using N = 5
hurts the performance in Quadruped Walk and Dog Walk. Thus we choose N = 3 in our experiments.

Lastly, we decide on the coefficient of the consistency loss in Equation 2. We fix the weight of reward loss as 1 and test
the coefficient of the consistency loss from [0.5, 1, 4], as shown in Figure 12. We find that the algorithm is robust w.r.t this
hyperparameter, so we select it as 1 in our experiment.

Different objective functions Our method exploits temporal consistency, and we compared it (TCRL-tc) with the
contrastive objective in the pixel-based tasks. We now compare it with other training objectives in state-based tasks.
Specifically, we compared it with i) reconstructing the observations, named TCRL-rec, and ii) without adding a loss function
on the latent states, where the latent dynamic model is learned to accurately predict future rewards, named TCRL-no. As
shown in Figure 13, our method using the temporal consistency loss works the best. Other objectives can also achieve
reasonable performance on medium-level tasks, but TCRL is the only method that is able to solve the Dog Walk task
(achieve more than 800 episodic returns). This experiment shows the effectiveness of leveraging temporal consistency in RL.

C. Baselines
C.1. More Baselines

We further compare our method with following baselines:

• TD3-like method is a strong model-free baseline. It is used in DrQv2 (Yarats et al., 2022), with two major differences
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Figure 14. Policy performance on eight DMC tasks compared to ALM and TD3. We plot 5 random seeds with 95% confidence intervals
presented by shaded areas.

from the original TD3 method (Fujimoto et al., 2018): i) it uses N-step TD learning and ii) it doesn’t use the target
policy network. We use it as the backend in TCRL to learn the policy and Q functions, thus the major difference
between this baseline and TCRL is whether to use temporal consistency training. We include this baseline to stress the
influence of representation learning.

• ALM (Ghugare et al., 2023) learns the representation, latent-space dynamics and the policy jointly. The policy is
updated by recurrently backpropagating stochastic gradients (Heess et al., 2015). We reproduce ALM’s results with
author’s source code. We change the testing suits from OpenAI Gym (Brockman et al., 2016) to DeepMind Control
Suite (Tunyasuvunakool et al., 2020) without changing hyperparameters. We fail to achieve good performance in the
tested environments but this may be due to the improper hyperparameters.

• Dreamer V3 (Hafner et al., 2023) is the latest model-based reinforcement learning method that achieves strong
performance on a diverse set of domains. The results of Dreamer V3, together with DDPG (Lillicrap et al., 2016)
and MPO (Abdolmaleki et al., 2018), shown in Table 1 are from the original Dreamer V3 paper (Hafner et al., 2023).
Notice that Dreamer V3 aims to work over a diverse set of domains, so the hyperparameters may not be optimized for
continuous control tasks used in DMC, which potentially leads to lower performance.

Compared to the TD3-like baseline, we notice that TCRL hurts the performance on the Acrobot Swingup task and slightly
on the Fish Swim task. However, TCRL outperforms the TD3-like baseline by a large margin on complex Humanoid and
Dog domains.

C.2. Extended Description of Baselines

In this section, we describe how to obtain the baseline results and what modifications are made to have fair comparisons
among different algorithms in our experiments.

• PETS: We implement PETS by referencing the public codebases2 3. We align hyperparemeters with our TCRL-
dynamics, but used a ensemble of dynamics models. To have similar amount of parameters of each model as our
method, the reward and transition function share the common two-layer MLPs [512, 512] and use separate heads with
two-layer MLPs [512, 512].

2Code, Library of model-based RL: https://github.com/facebookresearch/mbrl-lib
3Code, MBPO : https://github.com/zhaoyi11/mbpo-pytorch
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Table 1. Policy performance on 15 DMC tasks compared with DDPG, MPO and Dreamer V3.
Task DDPG MPO Dreamer V3 TCRL
Acrobot Swingup 92.7 80.6 154.5 279.6 (σ 52.1)
Cartpole Swingup 863.9 857.7 850.0 860.3 (σ 4.7)
Cartpole Swingup Sparse 627.5 519.9 468.1 624.0 (σ 255.0)
Cheetah Run 576.9 612.3 575.9 860.7 (σ 32.3)
Cup Catch 905.5 800.6 958.2 976.3 (σ 2.1)
Finger Spin 753.6 766.9 937.2 849.1 (σ 13.3)
Finger Turn Easy 462.2 430.4 745.4 597.9(σ 228.1)
Finger Turn Hard 286.3 250.8 841.0 487.8 (σ 339.9)
Hopper Hop 24.6 37.5 111.0 146.2 (σ 61.4)
Hopper Stand 388.1 279.3 573.2 664.8 (σ 313.7)
Pendulum Swingup 748.3 829.8 766.0 830.3 (σ 21.0)
Reacher Easy 921.8 954.4 947.1 938.5 (σ 88.3 )
Reacher Hard 944.2 914.1 936.2 935.7 (σ 66.1)
Walker Run 530.0 539.5 632.7 717.7 (σ 46.7)
Walker Walk 948.7 924.9 935.7 955.6 (σ 19.0)
Mean 605.0 586.6 695.5 715.0
Medium 627.5 612.3 766.0 830.3

• TD-MPC: We test TD-MPC using their original code4 by changing the learning rate from 1e-3 to 3e-4 and set the
update frequency from one update per environment step to every two environment steps. We also enlarge the encoder
from [256, 256] to [512, 512] to have same architecture as TCRL.

• SAC: We obtain SAC’s results by running the code implemented with Pytorch5 and make a few changes to have a
fair comparison. We change the architecture of the actor and critic networks from [1024, 1024] to [512, 512, 512],
add LayerNorm and Tanh nonlinear functions after the first layer according to the recommendations from Furuta
et al. (2021). We further replace the ReLU nonlinear function with ELU and change batch size from 1024 to 512.
Furthermore, we set action repeat as two.

• REDQ: We implement REDQ by modifying the SAC’s implementation with the reference of author’s implementation6.
We set the update-to-data ratio as 10 and reduce it to 1 for the Fish Swim task since performance collapse is observed
on this task with a high ratio (10).

• ALM: We obtain the ALM’s results by re-running the authors’ implementation7. Except changing the testing environ-
ments from OpenAI Gym to DMC, we change the update frequency from one update per environment step to every
two environment steps. We also increase the latent dimension of Humanoid and Dog to 100.

D. Hyperparameters
In this section, we list important hyparparameters used in both TCRL and TCRL-dynamics. For details, please check the
released code8. For TCRL-dynamics, we use the same hyperparameters as TCRL for learning the encoder and the latent
dynamics model, thus we only list additional hyperparameters used for planning.

E. Full Results

4Code, TD-MPC: https://github.com/nicklashansen/tdmpc
5Code, SAC: https://github.com/denisyarats/pytorch sac
6Code, REDQ: https://github.com/watchernyu/REDQ
7Code, ALM: https://github.com/RajGhugare19/alm/tree/7f1afdfd92f212a9deaf81e47e8b529b4aec2ee0
8Code, TCRL: https://github.com/zhaoyi11/tcrl
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Table 2. Important Hyperparameters used in TCRL and TCRL-dynamics.
Hyperparameter Value
TCRL
Seed episode 10
Action repeat 2
Update frequency 2
Replay buffer size Unlimited
Replay sampling strategy Uniform
Batch size 512
Learning rate 3e-4
Optimizer Adam
MLPs [512, 512]
MLP activation ELU
Latent Dimension 100 (Dog, Humanoid)

50 (otherwise)
Momentum coefficient (τ ) 0.005
Discount (γ) 0.99
Rollout horizon (H) 5
Rollout discount 0.9
N-step TD 3
Reward coefficient 1
Temporal coefficient 1
Policy stddev schedule Linear(1.0, 0.1, 50) (easy)

Linear(1.0, 0.1, 150) (medium)
Linear(1.0, 0.2, 500) (hard)

Policy stddev clip 0.3
TCRL-dynamics
Planner MPPI
Plan horizon (H) 12
Population size 512
Num. of elite 64
Iteration 6
Temperature 0.5
Momentum 0.1
Reuse solution True
Action repeat 2 (Dog, Walker, Finger)

4 (Reacher, Quadruped, Cheetah)
6 (Cup)
8 (Cartpole)
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Figure 15. TCRL’s results on 24 continuous control tasks from DMC. We plot 5 random seeds with 95% confidence intervals presented by
shaded areas. SAC’s results are from the public GitHub repository4 and SAC-our’s results are from Figure 3.

20


