
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Tiitinen, Lauri; Hartikainen, Hannu; Peretti, Luca; Hinkkanen, Marko
motulator: Motor Drive Simulator in Python

Published in:
2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023

DOI:
10.1109/IEMDC55163.2023.10238938

Published: 06/09/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY

Please cite the original version:
Tiitinen, L., Hartikainen, H., Peretti, L., & Hinkkanen, M. (2023). motulator: Motor Drive Simulator in Python. In
2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 IEEE.
https://doi.org/10.1109/IEMDC55163.2023.10238938

https://doi.org/10.1109/IEMDC55163.2023.10238938
https://doi.org/10.1109/IEMDC55163.2023.10238938

motulator: Motor Drive Simulator in Python
Lauri Tiitinen∗, Hannu Hartikainen∗, Luca Peretti†, and Marko Hinkkanen∗

∗Aalto University, Espoo, Finland
E-mail: lauri.tiitinen@aalto.fi; hannu.1.hartikainen@aalto.fi; marko.hinkkanen@aalto.fi

†KTH Royal Institute of Technology, Stockholm, Sweden
E-mail: lucap@kth.se

Abstract—This paper deals with the time-domain simula-
tion of electric machine drives in Python. Python offers a
full-featured numerical computing environment, comparable to
leading commercially available alternatives, whilst being fully
open-source. Adopting the open-source ecosystem allows electric
drives researchers to utilize new methods from other fields,
easily share their findings, and improve collaboration with other
researchers both in academia and industry. For this purpose,
we have launched the Python-based time-domain simulation
platform motulator for electric drives. To learn more, the reader
is encouraged to visit the GitHub page of the project: https:
//github.com/Aalto-Electric-Drives/motulator.

Index Terms—Control, electric motor drives, open source,
power converters, Python, time-domain simulations.

I. INTRODUCTION

Python is a high-level general-purpose programming lan-
guage. Its popularity has been increasing both in academia
and industry, not only in data science and machine learning
but also in several other fields. The numerous openly available
high-quality scientific libraries and tools make Python a full-
fledged numerical computing environment comparable even to
the most leading-edge commercial alternatives.

In the field of electric machines and drives, fast and accurate
time-domain simulations of nonlinear systems (including both
continuous-time and discrete-time elements) are necessary for
research, development, and teaching. While the use of Python
for machine design purposes shows a growing trend, the
electric drives community has been slow to adopt it. This is
unfortunate since the Python ecosystem could help researchers
leverage methods and approaches from other fields and boost
the integration of different Python-based tools to achieve
complete system simulations. Even in education, Python-based
exercises could help improve the programming skills of stu-
dents. Furthermore, the open-source approach could increase
research collaboration both within academia and industry.

While there are several notable projects related to electri-
cal machine design and analysis, e.g., [1], [2], and control
engineering in Python, e.g., [3], [4], only a few projects
deal with the time-domain simulation of electric drives in
specific [5]. For this purpose, we have launched the motulator
simulation platform for electric drives. The library covers the
most common continuous-time plant models as well as an
extensive selection of the most relevant control methods. High

This work was supported in part by ABB Oy and in part by the Academy
of Finland Centre of Excellence in High-Speed Electromechanical Energy
Conversion Systems.

priority has been placed on code readability. With clearly
documented and carefully designed interfaces, the user can
easily extend the functionality of the library with their self-
developed models and control algorithms.

II. SYSTEM FRAMEWORK

Fig. 1 shows a block diagram of a generic motor drive
system. Motor drives are sampled-data systems, consisting
of both continuous-time and discrete-time systems and the
interfaces between them [6], [7]. Digital control systems are
typically affected by a computational delay of one sampling
period since some computational time is necessary between
the sampling instance of the measurements (such as phase
currents) and the controller output.

A. Continuous-Time System

In motulator, the continuous-time system is represented
by an electric drive model, which consists of the motor,
mechanics, and converter submodels. These continuous-time
models are collected in the package motulator.model. Each
submodel specifies a set of differential equations that describe
how the system evolves with time. The electric drive model
facilitates the interfaces between these submodels and the
discrete-time control system, as well as constructs the com-
plete state derivative for the differential equation solver. By
default, the system of differential equations is solved using an
explicit Runge-Kutta algorithm of order 5(4) from the open-
source SciPy library [8], [9].

Peak-valued complex space vectors denoted in boldface are
used throughout this paper. The superscript s marks stator co-
ordinates, while space vectors without the superscript refer to
synchronous coordinates. Variables with the subscript abc are
three-element vectors. Furthermore, monospaced font denotes
classes or functions in the library.

1) Induction Motor: Fig. 2 shows the Γ-model equivalent
circuit of an induction motor in stator coordinates. In coordi-
nates rotating at ωs, the induction motor is governed by

dψs

dt
= us −Rsis − jωsψs (1a)

dψr

dt
= −Rrir − jωrψr (1b)

where us is the stator voltage, is is the stator current, Rs

is the stator resistance, ir is the rotor current, and Rr is the
rotor resistance. The angular slip frequency ωr = ωs − ωm,
where ωm is the electrical angular speed of the rotor. In the

Fig. 1. Block diagram of a sampled-data motor drive system. Argument k marks discrete signals, while t refers to continuous signals.

Fig. 2. Induction motor Γ model.

magnetically linear case, the stator and rotor flux linkages,
respectively, are given by

ψs = Ls(is + ir) (2a)
ψr = ψs + Lℓir (2b)

where Ls is the stator inductance and Lℓ is the leakage
inductance. The electromagnetic torque is

τM =
3np
2

Im{isψ∗
s} (3)

where np is the pole-pair number.
If magnetic saturation is omitted, the well-known T, Γ, and

inverse-Γ models are mathematically equivalent. The Γ model
is selected as the base model in motulator since it can be
extended with a magnetic saturation model in a straightforward
manner [10]. For convenience, a method to initialize the motor
model using inverse-Γ model parameters in the linear case is
also provided. Fig. 3 shows the block diagram corresponding
to the implementation in the InductionMotor class. This base
model includes a linear magnetic model.

The linear model can be extended with magnetic satura-
tion. Since the Γ model is used, magnetic saturation can be
sufficiently modeled with a nonlinear stator inductance, while
the leakage inductance can be typically assumed constant
[11]. The base model is extended with main-flux saturation
in InductionMotorSaturated. A simple power function is
used,

Ls(ψs) =
Lsu

1 + (βψs)S
(4)

where ψs = |ψs| is the flux magnitude, Lsu is the unsaturated
stator inductance, and β and S are positive constants which
define the shape of the saturation curve [11], [12].

2) Synchronous Motor: Fig. 4 shows the block diagram
of a generic synchronous motor model in rotor coordinates.
The motor model is more straightforward to compute in this

Fig. 3. Block diagram of an induction motor model.

coordinate system since the dependency on the physical ori-
entation of the rotor vanishes from the magnetic model. Fig. 5
illustrates the model as observed from stator coordinates.

The voltage equation in rotor coordinates is

dψs

dt
= us −Rsis − jωmψs. (5)

Using the complex space vector convention, the stator flux
linkage in the magnetically linear case is

ψs = Ldid + jLqiq + ψf (6)

where id = Re{is} and iq = Im{is} are the d- and q-
axis current components, Ld and Lq are the d- and q-axis
inductances, respectively, and ψf is the permanent-magnet
(PM) flux linkage. The electromagnetic torque is calculated
as in (3). Various synchronous motor types, ranging from
PM synchronous motors (PMSMs) to synchronous reluctance
motors (SyRMs), can be characterized by the magnetic model,
which maps the stator flux linkage to the stator current,
i.e., f : ψs → is(ψs). As an example, in (6), a surface-
PMSM is obtained with Ld = Lq and SyRM with ψf = 0.
In motulator, the class SynchronousMotor represents this
magnetically linear synchronous motor model.

For magnetic saturation in synchronous motors, an extended
version of the power function (4) is used [13]. This function
adds cross-saturation to the model, and is implemented in the
class SynchronousMotorSaturated as

id(ψd, ψq) =
ψd

Ldu

[
1 + (α|ψd|)a +

γLdu

d+ 2
|ψd|c|ψq|d+2

]
− if

(7a)

iq(ψd, ψq) =
ψq

Lqu

[
1 + (β|ψq|)b +

γLqu

c+ 2
|ψd|c+2|ψq|d

]
(7b)

Fig. 4. Block diagram of a synchronous motor model in rotor coordinates.

Fig. 5. Block diagram of a synchronous motor model observed from stator
coordinates.

where Ldu and Lqu are the d- and q-axis unsaturated induc-
tances, respectively, α, β, γ are nonnegative coefficients, and
a, b, c, d are nonnegative exponents. The current if corresponds
to the magnetomotive force of the PMs. Selecting γ = 0 yields
the saturation model in (4). The saturation model parameters
of a physical motor can be estimated, e.g., using the standstill
identification method described in [14].

Alternatively, flux maps can be used to represent the nonlin-
ear saturation characteristics. This approach typically requires
more data but can represent more detailed magnetic models
that simple analytical models may fail to capture. Fig. 6 shows
an exemplary flux map for the saturation characteristics of
a 5-kW PM-SyRM, whose data is available from the SyR-e
project [15]. In motulator, this look-up table-based approach is
implemented in the class SynchronousMotorSaturatedLUT,
and tools for importing and plotting the flux-map data are
available in sm flux maps.py.

B. Mechanics

Fig. 7 shows a block diagram of a mechanical system
with stiff mechanics. The mechanical subsystem describes the
dynamic relationship between the total torque applied on the
rotor shaft and the speed of the rotor. The stiff mechanics are
governed by

J
dωM

dt
= τM − τL (8a)

dϑM
dt

= ωM (8b)

where J is the total moment of inertia, ωM is the mechanical
angular speed of the rotor, and ϑM is the mechanical angle of
the rotor. The electrical angular speed is proportional to the
mechanical angular speed multiplied by the pole-pair number
np, i.e., ωm = npωM.

The total load torque τL is the sum of an external load
torque and a speed-dependent load torque component,

τL = τL,ω + τL,t (9)

Fig. 6. Saturation characteristics of the THOR 5-kW PM-SyRM [15].

Fig. 7. Block diagram for mechanical subsystem with stiff mechanics corre-
sponding to the Mechanics class.

As an example, the speed-dependent load torque could model
viscous friction,

τL,ω = BωM (10)

where B is the damping coefficient. As another example, the
quadratic load torque, typical to pump and fan applications, is

τL,ω = kω2
Msign(ωM) (11)

where k is a positive friction coefficient.
In addition to this stiff mechanics model implemented in

the class Mechanics, a two-mass mechanical model example
is available in MechanicsTwoMass.

C. Converter

1) Inverter: Fig. 8 shows an equivalent model of a three-
phase two-level voltage-source inverter implemented in the
class Inverter. The switches are assumed ideal and the DC-
bus voltage udc constant. Hence, the AC-side voltage is

us =
2

3

(
qa + qbe

j2π/3 + qce
j4π/3

)
udc = qudc (12)

where q is the instantaneous complex switching state vector
generated using carrier comparison. The DC-side current can
be derived from the power balance as

idc =
3

2
Re{qi∗s} (13)

2) Three-Phase Diode-Bridge Rectifier: The inverter model
can be also extended with a model for the supply side, e.g.,
the six-pulse diode bridge illustrated in Fig. 9. The six-pulse
diode bridge rectifier with an LC filter is governed by

C
dudc
dt

= iL − idc (14a)

L
diL
dt

= udi − udc (14b)

where L is the DC-bus inductance and C is the DC-bus
capacitance. Furthermore, iL is the inductor current, which

Fig. 8. Equivalent model of a three-phase two-level voltage source inverter.
The switching state signals are generated using carrier comparison.

Fig. 9. Six-pulse diode bridge rectifier. The three-phase voltage source and
the diode bridge are assumed ideal.

due to the diodes must be nonnegative. Assuming a stiff three-
phase supply and ideal diodes, the output voltage of the diode
bridge is

udi = max (ug,abc)−min (ug,abc) (15)

where ug,abc is a vector of the three-phase grid voltages. The
class FrequencyConverter implements the combination of a
six-pulse diode bridge rectifier and a two-level voltage source
inverter.

3) Carrier Comparison: In Fig. 8, carrier comparison is
used to calculate the instantaneous switching state signals
from the discrete-time duty ratios calculated by the discrete-
time controller. Carrier comparison functions as an interface
between the discrete-time controller and the continuous-time
plant as illustrated in Fig. 10. The discrete-time duty ratios
are constant over the sampling period Ts or optionally over
the switching period Tsw = 2Ts if a double update is not
used.

In motulator, the switching time instants are explicitly com-
puted at the beginning of the sampling period. This approach
results in faster simulations, as the differential equation solver
does not need to search for the zero crossings of the carrier
wave and duty ratios. It should be noted that the discrete-time
controller returns the sampling time for the following control
cycle. This feature allows, e.g., synchronization of the carrier
wave to the fundamental frequency, which is typically needed
in the case of low switching frequencies.

If the switching ripple is not of interest, the switching-
cycle average voltage can be used by replacing the carrier
comparison with a zero-order hold (ZOH) of the duty ratios
for increased simulation speed. This is the default option in
motulator.

Fig. 10. Carrier comparison. The discrete-time duty ratios take values in the
the range [0, 1], while the switching states are either 0 or 1.

Fig. 11. Voltage reference clipping by means of minimum phase error method.
The blue vectors represent the six active voltage vectors.

D. Discrete-Time Controller

The discrete-time controller implements the designed con-
trol law and computes the discrete-time duty ratios for the
carrier comparison every sampling period. A library of exem-
plary control methods and a pulse-width modulation (PWM)
algorithm are available in the motulator.control package.

1) Control Algorithms: The project contains modules for
exemplary implementations for, e.g., V/Hz-based control
methods, sensored and sensorless vector control, stator-flux-
vector control, and vector control with signal injection, based
on [16]–[21] and the references therein. The library aims to
maintain a thorough collection of algorithms for the most
relevant control concepts for electric machine drives with
clear, easy-to-follow implementations. With these as a starting
point, the user can implement and simulate their own control
algorithms.

2) PWM: The discrete-time duty ratios for three-phase
PWM are calculated using the symmetrical suboscillation
method. This approach is mathematically equivalent to the
standard space-vector PWM [22]. First, a zero-sequence com-
ponent

u0 =
min (uabc) + max (uabc)

2
(16a)

is added to the three-phase voltage references,

u′abc = uabc − u0 (16b)

Algorithm 1. Dynamic induction motor models.

class InductionMotor:
Γ-equivalent model of an induction motor
def __init__(self, n_p=2, R_s=3.7, R_r=2.5, L_ell=.023, L_s

=.245):
self.n_p = n_p
self.R_s, self.R_r = R_s, R_r
self.L_ell, self.L_s = L_ell, L_s
Initial values
self.psi_ss0, self.psi_rs0 = 0j, 0j

def currents(self, psi_ss, psi_rs):
Compute the stator and rotor currents
i_rs = (psi_rs - psi_ss)/self.L_ell
i_ss = psi_ss/self.L_s - i_rs
return i_ss, i_rs

def magnetic(self, psi_ss, psi_rs):
Magnetic model
i_ss, i_rs = self.currents(psi_ss, psi_rs)
tau_M = 1.5*self.n_p*np.imag(i_ss*np.conj(psi_ss))
return i_ss, i_rs, tau_M

def f(self, psi_ss, psi_rs, u_ss, w_M):
Compute the state derivatives
i_ss, i_rs, tau_M = self.magnetic(psi_ss, psi_rs)
dpsi_ss = u_ss - self.R_s*i_ss
dpsi_rs = -self.R_r*i_rs + 1j*self.n_p*w_M*psi_rs
return [dpsi_ss, dpsi_rs], i_ss, tau_M

class InductionMotorSaturated(InductionMotor):
Γ-equivalent model of an induction motor model with main-

flux saturation.
def __init__(self, n_p=2, R_s=3.7, R_r=2.5, L_ell=.023,

L_su=.34, beta=.84, S=7):
super().__init__(n_p=n_p, R_s=R_s, R_r=R_r, L_ell=L_ell

)
Saturation model
self.L_s = lambda psi: L_su/(1+(beta*np.abs(psi))**S)

def currents(self, psi_ss, psi_rs):
Override the base class method.
L_s = self.L_s(psi_ss)
Currents
i_rs = (psi_rs - psi_ss)/self.L_ell
i_ss = psi_ss/L_s - i_rs
return i_ss, i_rs

The voltage reference should be limited to the edge of the
voltage hexagon, as illustrated in Fig. 11. Using the minimum
phase error method, the voltage reference is limited as

ū′abc =
u′abc

max
(
1,

2u′
abc

udc

) (16c)

Finally, the discrete duty ratios are calculated as

dabc =
1

2
+
ū′abc
udc

(16d)

These duty ratios are the input for carrier comparison.

III. EXAMPLES

Several example simulation scripts are available in the
library. Together with the documentation, the implementation
of additional control algorithms and models is straightforward.
Here, the implementation of a dynamic model of an induction

motor and a simulation script with a compatible control
algorithm are showcased in more detail. A simulation of a
permanent-magnet synchronous reluctance machine is also
shown.

A. Continuous-Time Induction Motor Model

Algorithm 1 shows the Python implementation of the induc-
tion motor model illustrated in the block diagram in Fig. 3.
The method InductionMotor.f computes the stator and rotor
flux linkage state derivatives to be used by the ordinary
differential equation solver to compute the time evolution
given an initial condition. The default values in the initializer
method correspond to a 2.2-kW 50-Hz induction motor.

The inherited class InductionMotorSaturated extends the
base class with main-flux saturation using a simple explicit
function. Inheritance enables code reuse simplifying the code
base but also helps ensure that a common interface is main-
tained.

B. Sensorless Vector Control of Induction Motors

Fig. 12 shows the block diagram for sensorless vector con-
trol for an induction motor. The sensorless flux observer cor-
responds to [18] and a two-degrees-of-freedom proportional-
integral (PI) control is used for the current controller. Algo-
rithm 2 shows an exemplary implementation of this controller
in motulator.

Algorithm 3 shows an example script used to configure
a 2.2-kW induction motor drive system and a discrete-time
controller with perfect motor model parameter estimates.
Magnetic saturation is not considered in the plant model in
this example. Switching-cycle averaging is selected with the
parameter pwm=False and the computational delay is modeled
as one sampling period. Fig. 13 shows the results of the
simulation.

C. Observer-Based V/Hz Control of a PM-SyRM

Next, a simulation of a motor model with magnetic satura-
tion is showcased. This example considers a saturated 5-kW
four-pole 85-Hz PM-SyRM, whose magnetic characteristics
are available from the SyR-e project [15] as flux maps,
illustrated in Fig. 6. In motulator, these flux maps can be
implemented with the class SynchronousMotorSaturatedLUT
as look-up tables.

For the controller, an observer-based V/Hz control algorithm
with constant inductance estimates is used [17]. Naturally,
better control performance could be achieved by considering
magnetic saturation also in the controller. The quadratic load
torque profile in (11) is used, and the speed reference is
ramped to the rated speed first in the positive and then in
the negative direction. Fig. 14 shows the simulation results.

IV. CONCLUSIONS

A Python-based time-domain simulation platform for elec-
tric drives is presented. The package includes continuous-
time models for induction motors, synchronous motors, and

Fig. 12. Block diagram of speed-sensorless vector control for induction motors [18].

Algorithm 2. Control algorithm for speed-sensorless vector control of an
induction motor.

class InductionMotorVectorCtrl(Ctrl):
Vector control for an induction motor drive.
def __init__(self, pars):

super().__init__()
self.T_s = pars.T_s
self.w_m_ref = pars.w_m_ref
self.n_p = pars.n_p
self.speed_ctrl = SpeedCtrl(pars)
self.current_ref = CurrentRef(pars)
self.current_ctrl = CurrentCtrl(pars)
self.observer = SensorlessObserver(pars)
self.pwm = PWM(pars)

def __call__(self, mdl):
Get the speed reference
w_m_ref = self.w_m_ref(self.t)

Measure the feedback signals
i_s_abc = mdl.motor.meas_currents() # Phase currents
u_dc = mdl.conv.meas_dc_voltage() # DC-bus voltage

Get the states
u_s = self.pwm.realized_voltage
psi_R = self.observer.psi_R
w_m = self.observer.w_m
theta_s = self.observer.theta_s

Space vector and coordinate transformation
i_s = np.exp(-1j*theta_s)*abc2complex(i_s_abc)

Outputs
tau_M_ref = self.speed_ctrl.output(w_m_ref/self.n_p,

w_m/self.n_p)
i_s_ref, tau_M_ref_lim = self.current_ref.output(

tau_M_ref, psi_R)
w_s = self.observer.output(u_s, i_s, w_m)
u_s_ref = self.current_ctrl.output(i_s_ref, i_s)
d_abc_ref, u_s_ref_lim = self.pwm.output(u_s_ref, u_dc,

theta_s, w_s)

Update the states
self.pwm.update(u_s_ref_lim)
self.speed_ctrl.update(tau_M_ref_lim)
self.current_ref.update(u_s_ref, u_dc)
self.current_ctrl.update(u_s_ref_lim, w_s)
self.observer.update(i_s, w_s)
self.update_clock(self.T_s)

return self.T_s, d_abc_ref

Algorithm 3. Simulation script for sensorless vector control of induction
motor.

import motulator as mt

Define base values for plotting
base = mt.BaseValues(

U_nom=400, # Line-line rms voltage
I_nom=5, # Rms current
f_nom=50, # Frequency
tau_nom=14.6, # Torque
P_nom=2.2e3, # Power
n_p=2) # Number of pole pairs

Configure the induction motor using its Γ parameters
motor = mt.InductionMotor(R_s=3.7, R_r=2.5, L_ell=.023, L_s

=.245, p=2)
Mechanics model
mech = mt.Mechanics(J=.015)
Inverter model
conv = mt.Inverter(u_dc=540)
System model
mdl = mt.InductionMotorDrive(motor, mech, conv)

Configure the control system.
ctrl = mt.InductionMotorVectorCtrl(

mt.InductionMotorVectorCtrlPars(sensorless=True))

Configure speed reference and external load
ctrl.w_m_ref = lambda t: (t > .2)*(.5*base.w)
mdl.mech.tau_L_t = lambda t: (t > .75)*base.tau_nom

Configure the simulation object and run it
sim = mt.Simulation(mdl, ctrl, pwm=False, delay=1)
sim.simulate(t_stop=1.5)

Plot the results
mt.plot(sim, base=base)

converters, as well as an extensive collection of discrete-
time control algorithm examples of the most relevant control
strategies for machine drives.

REFERENCES

[1] P. Bonneel, J. Le Besnerais, R. Pile, and E. Devillers, “Pyleecan: an
open-source python object-oriented software for the multiphysic design
optimization of electrical machines,” in Proc. ICEM. IEEE, 2018, pp.
948–954.

[2] “eMach: Open source machine modeling and optimization framework,”
2022. [Online]. Available: https://github.com/Severson-Group/eMach

0.0

0.2

0.4

0.6
Sp

ee
d

(p
.u

.)

m, ref

m

m

0.0

0.5

1.0

To
rq

ue
 (p

.u
.)

L
M
M, ref

0.0

0.5

1.0

Cu
rre

nt
 (p

.u
.)

isd
isq

isd, ref
isq, ref

0.0

0.5

1.0

Vo
lta

ge
 (p

.u
.)

us

udc/ 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0.0

0.5

1.0

Fl
ux

 li
nk

ag
e

(p
.u

.)

s

R

Fig. 13. Sensorless vector control of a 2.2-kW induction motor.

[3] S. Fuller, B. Greiner, J. Moore, R. Murray, R. van Paassen, and R. Yorke,
“The python control systems library (python-control),” in Proc. IEEE
Conf. Decis. Control., 2021, pp. 4875–4881.

[4] S. Lucia, A. Tătulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid
development of modular and sustainable nonlinear model predictive
control solutions,” Control Engineering Practice, vol. 60, pp. 51–62,
2017.

[5] P. Balakrishna, G. Book, W. Kirchgässner, M. Schenke, A. Traue, and
O. Wallscheid, “gym-electric-motor (GEM): A Python toolbox for the
simulation of electric drive systems,” J. Open Source Software, vol. 6,
no. 58, p. 2498, 2021.

[6] G. F. Franklin, J. D. Powell, M. L. Workman et al., Digital control of
dynamic systems, 3rd ed. Addison-Wesley Reading, MA, 1998.

[7] S. Buso and P. Mattavelli, Digital control in power electronics, 2nd ed.
Morgan & Claypool Publishers, 2015.

[8] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comput. Appl. Math., vol. 6, no. 1, pp. 19–26, 1980.

[9] P. Virtanen, R. Gommers, T. E. Oliphant et al., “SciPy 1.0: Fundamental
algorithms for scientific computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[10] G. R. Slemon, “Modelling of induction machines for electric drives,”
IEEE Trans. Ind. Appl., vol. 25, no. 6, pp. 1126–1131, Nov./Dec. 1989.

[11] Z. Qu, M. Ranta, M. Hinkkanen, and J. Luomi, “Loss-minimizing flux
level control of induction motor drives,” IEEE Trans. Ind. Appl., vol. 48,
no. 3, pp. 952–961, May/Jun. 2012.

[12] H. De Jong, “Saturation in electrical machines,” in Proc. ICEM, vol. 3,
Athens, Greece, Sep. 1980, pp. 1545–1552.

[13] Z. Qu, T. Tuovinen, and M. Hinkkanen, “Inclusion of magnetic satu-
ration in dynamic models of synchronous reluctance motors,” in Proc.
ICEM, Marseille, France, Sep. 2012, pp. 994–1000.

1.0

0.5

0.0

0.5

1.0

Sp
ee

d
(p

.u
.)

m, ref

m

1.0

0.5

0.0

0.5

1.0

To
rq

ue
 (p

.u
.)

L
M

1.0

0.5

0.0

0.5

1.0

Cu
rre

nt
 (p

.u
.)

isd
isq

0.0

0.5

1.0

Vo
lta

ge
 (p

.u
.)

us

udc/ 3

0 1 2 3 4 5 6 7
Time (s)

0.0

0.5

1.0

Fl
ux

 li
nk

ag
e

(p
.u

.) s

s

Fig. 14. Observer-based V/Hz control of a saturated 5-kW PM-SyRM.

[14] M. Hinkkanen, P. Pescetto, E. Mölsä, S. E. Saarakkala, G. Pellegrino,
and R. Bojoi, “Sensorless self-commissioning of synchronous reluctance
motors at standstill without rotor locking,” IEEE Trans. Ind. Appl.,
vol. 53, no. 3, pp. 2120–2129, May/Jun. 2017.

[15] F. Cupertino, G. Pellegrino, P. Cagnetta, S. Ferrari, and M. Perta, “SyR-
e: Synchronous reluctance (machines)-evolution.” [Online]. Available:
www.github.com/SyR-e

[16] L. Tiitinen, M. Hinkkanen, and L. Harnefors, “Stable and passive
observer-based V/Hz control for induction motors,” in Proc. IEEE
ECCE, Detroit, MI, Oct. 2022.

[17] L. Tiitinen, M. Hinkkanen, J. Kukkola, M. Routimo, G. Pellegrino,
and L. Harnefors, “Stable and passive observer-based V/Hz control for
synchronous motors,” in Proc. IEEE ECCE, Detroit, MI, Oct. 2022.

[18] M. Hinkkanen, L. Harnefors, and J. Luomi, “Reduced-order flux ob-
servers with stator-resistance adaptation for speed-sensorless induction
motor drives,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1173–
1183, May 2010.

[19] G. Pellegrino, E. Armando, and P. Guglielmi, “Direct flux field-oriented
control of IPM drives with variable DC link in the field-weakening
region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619–1627, Sep./Oct.
2009.

[20] H. A. A. Awan, M. Hinkkanen, R. Bojoi, and G. Pellegrino, “Stator-flux-
oriented control of synchronous motors: A systematic design procedure,”
IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4811–4820, Sep./Oct. 2019.

[21] S. Kim, J.-I. Ha, and S.-K. Sul, “PWM switching frequency signal
injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48,
no. 5, pp. 1576–1587, Sep./Oct. 2012.

[22] A. Hava, R. Kerkman, and T. Lipo, “Simple analytical and graphical
methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Elec-
tron., vol. 14, no. 1, pp. 49–61, Jul. 1999.

