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A B S T R A C T   

The forest reflectance and transmittance model (FRT) is applicable over a wide swath of boreal forest landscapes 
mainly because its stand-specific inputs can be generated from standard forest inventory variables. We quantified 
the accuracy of this model over an extensive region for the first time. This was done by carrying out a simulation 
study over a large number (12,369) of georeferenced forest plots from operational forest management in
ventories conducted in Southern Finland. We compared the FRT simulated bidirectional reflectance factors (BRF) 
with those measured by Landsat 8 satellite Operational Land Imager (OLI). We also quantified the relative 
importance of several explanatory factors that affected the magnitude of the discrepancy between the measured 
and simulated BRFs using a linear mixed effects modelling framework. A general trend of FRT overestimating 
BRFs is seen across all tree species and spectral bands examined: up to ~0.05 for the red band, and ~0.10 for the 
near infrared band. The important explanatory factors associated with the overestimations included the domi
nant tree species, understory type of the forest plot, timber volume (acts as a proxy for stand maturity), vege
tation heterogeneity and time of the year. Our analysis suggests that approximately 20% of the error is caused by 
the non-representative spectra of canopy foliage and understory. Our results demonstrate the importance of 
collecting representative spectra from a diverse set of forest stands, and over the full range of seasons.   

1. Introduction 

Forest radiative transfer models use explicit physics-based formula
tions for simulating the interaction of electromagnetic radiation with the 
various elements of the forest canopies, other forest layers, tree trunks, 
and the forest floor. They provide a physically consistent and logical link 
between the scattering of such canopy elements and satellite observa
tions and can hence help to retrieve forest variables from earth obser
vation data. Indeed, many of the current quantitative global forest 
canopy products, such as surface albedo and leaf area index (LAI), 
depend on parametric formulations based on such radiative transfer 
models (Knyazikhin et al., 1998). These models can be used to differ
entiate between physically-based causality from indirect (likely 
spurious) empirical correlation when attributing observed reflectance to 
canopy characteristics (Knyazikhin et al., 2013; Townsend et al., 2013). 
Radiative transfer models are also useful for estimating forest and 

vegetation characteristics in remote locations lacking field plots, as they 
can be inverted against available remote sensing data (Darvishzadeh 
et al., 2019; Yang et al., 2010). 

Another topical reason for the relevance of such models is their 
decisive role in understanding the earth’s radiation budget and the 
relative contribution of various land covers, especially in the context of 
climate change science. Highly accurate reflectance data and simulation 
is crucial for climate modelling; climate models have stringent minimum 
sensitivity levels of ±0.02 reflectance units (Schaepman-Strub et al., 
2006). Meanwhile, land surface albedo is a critical physical parameter 
for computing the planetary radiation budget (Chen, 2005), but it re
mains one of the main uncertainties related to climate modelling (For
ster et al., 2007). Reflectance models can also help towards achieving 
improved, albedo-aware management of boreal forests. This is because 
various forest management operations such as harvesting and thinning 
of forest stands influence forest albedo. But there’s a lack of methods to 
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effectively quantify and incorporate these effects into long-term forest 
management planning. Forest management planning systems aim at 
quantifying the climate effects of different management scenarios, but 
currently ignore the dependencies between forest structure and albedo. 
Integrating reflectance models into simulations of forest management 
and growth allows the inclusion of albedo-related climatic effects into 
practical forest planning. 

Although a sizable number of forest radiative transfer models have 
been developed and described in the past literature, the Forest Reflec
tance and Transmittance model (Kuusk and Nilson, 2000; Nilson and 
Peterson, 1991, henceforth FRT) has unique advantages in the boreal 
zone. It is primarily designed for managed forested stands (Kuusk et al., 
2014) and is computationally efficient, especially compared to complex 
Monte-Carlo ray tracing models such as librat (Disney et al., 2009). So 
far, it has been validated in the Radiative transfer Model Intercompar
ison exercises (RAMI, Widlowski et al., 2015; 2007) and in the boreal 
and hemiboreal zones, using a small set of homogeneous forested stands 
(Kuusk et al., 2008, 2014; Rautiainen et al., 2008; Hovi et al., 2017). 
However, it can be parametrized using standard forest inventory data, 
with the help of relevant allometric equations. The model can simulate 
the bidirectional reflectance factor (BRF) and the hemispherical direc
tional reflectance factor (HDRF) of a forest stand for any given illumi
nation and viewing geometry, for the wavelength range of 400–2400 
nm. 

A substantial portion of boreal forests deviate from homogeneous 
single-species conditions where a majority of previous validation studies 
have been performed. First, a considerable part of forest area is classified 
as mixed-species: ~17% in Canada (Natural Resources Canada, 2021) 
and 46% in Finland (Natural Resources Institute Finland, 2018). There is 
also considerable variation in understory vegetation in different boreal 
forest types. Boreal forests commonly have open canopies, where the 
contribution of forest floor to the satellite-observed BRF is substantial 
(Rautiainen and Lukeš, 2015). This is especially the case for young 
forests (e.g., seedling stands before first commercial thinning) with low 
volume that are common in areas where commercial forestry is prac
ticed in Southern Finland. On mineral soils, the understory vegetation 
ranges from barren, lichen dominated sites to herb-rich groves. Peatland 
forests generally have quite open canopies, varied water regimes and 
soil types, and hence have their own understory vegetation composition 
that may differ greatly from mineral soils. Further, in boreal forests 
seasonality affects the reflectance of both overstory and understory 
vegetation (Rautiainen et al., 2009, 2011; Hovi et al., 2017). Practical 
applications of forest radiative transfer models require that they can 
reliably model these variations. Another justification for our study is the 
fact that previous validation efforts were limited to mature stands. All 
these reasons motivate the need for validating FRT using in situ obser
vational data over a wide variety of heterogeneous forest conditions, 
over all age classes (e.g., both young and mature). 

A reliable reference dataset is essential for any effort to assess the 
quality of simulated remote sensing data. The Landsat 8 surface reflec
tance product is ideal for this purpose as it is based on the Operational 
Land Imager (OLI) sensor, a high-quality instrument incorporating 
several technical advancements (Roy et al., 2014). The product itself has 
been thoroughly validated against other existing products (e.g., 
MODIS-based) and by similar means over a large number of locations 
(Vermote et al., 2016). The associated radiometric accuracies of that 
study showed that it is a high-quality and globally consistent product. 
Our current work represents one of the first efforts to use this product to 
assess the accuracy of a physically based radiative transfer model over a 
large, heterogeneous set of boreal forested areas. 

The main objective of this study is to comprehensively and rigorously 
evaluate the accuracy of the FRT model over a large forest area in the 
boreal zone, and for different (possibly structurally complex) forest 
types and seasonal conditions. This is done by using an extensive set of 
forest field plots and corresponding satellite images from various times 
of the year (i.e., spring, summer, fall). We take advantage of six years of 

quality checked Landsat 8 surface reflectance data. The large 
geographical coverage of the plot data helps us to quantify uncertainties 
over a wide range of European boreal forest characteristics and seasonal 
variations. We applied the linear mixed effects model statistical frame
work (henceforth called mixed models) (Mehtätalo and Lappi, 2020) to 
help understand the linkage between observed FRT simulation accuracy 
and probable causes. Such an approach has several advantages, espe
cially given that our goal was to formulate interpretable statistical 
models, making further inference relatively straightforward. Our spe
cific research questions are: 1) How accurate is FRT in reproducing the 
observed BRF over a wide range of forested areas? 2) How accurately 
can FRT reproduce seasonal trends in forest BRF? 3) How much can 
various forest characteristics (e.g., tree species composition, vegetation 
heterogeneity and understory type) explain the observed discrepancy 
between FRT simulations and observed BRFs? By addressing these 
questions, we aim to identify aspects of the FRT modelling framework 
where improvements are most pertinent. This will hence pave the way 
towards better modelling of forest reflectance using stand-level forest 
inventory data in the boreal zone. 

2. Materials and methods 

2.1. Study area 

The region of our study is Southern Finland, south of the 64◦N lati
tude, approximately bounded by the latitude/longitude based box: 
(59.7◦–64◦N) and (21.1◦–31.6◦E). We concentrated on the southern part 
of the country for the following two reasons: 1) For more northern lat
itudes, the uncertainty in satellite-retrieved surface reflectance values 
increases, mainly because of longer atmospheric paths; 2) The under
story vegetation differs at higher latitudes, and there is a lack of un
derstory spectra suitable for FRT. The main tree species found in the 
study region are Scots pine (Pinus sylvestris L.), Norway spruce (Picea 
abies (L.) Karst) and birches (Betula pendula Roth and Betula pubescens 
Ehrh). In addition, a few other deciduous tree species such as aspen 
(Populus tremula L.) and grey alder (Alnus incana (L.) Moench) may also 
be present. The understory composition can be variable, depending on 
the fertility of the site. The most common understory type is mesic, 
dominated by mosses and dwarf shrubs, such as bilberry (various species 
in genus Vaccinium) and lingonberry (Vaccinium vitis-idaea L.). The more 
fertile sites have an abundance of species including shrubs (e.g., hon
eysuckle; genus Lonicera), ferns, grasses and herbs. Low fertility sites are 
lichen-dominated, with patches of dwarf shrubs and herbs. We have also 
restricted our study to months when there is no or negligible snow cover 
on the ground or trees. This aspect will be elucidated in more detail later 
(Section 2.5). 

2.2. Field plots 

We used the publicly available and downloadable forest plot dataset 
from the Finnish Forest Centre (FFC) (Metsäkeskus, 2022). They are 
henceforth also referred to as forest plots in this article (for more in
formation, see supplementary materials). The diameter at breast height 
(DBH), tree height and dominant tree species are available from the plot 
data. We use following species categories for the plots based on domi
nant species: “pine group”, “spruce group” and “birch group” (Maltamo 
and Packalen, 2014), the latter including also other broadleaf species. 
Henceforth, the tree species of an FFC plot refers to this dominant tree 
species group. 

2.3. Surface reflectance simulations 

2.3.1. FRT model 
We simulated the plot-level bi-directional reflectance factor (BRF) 

using the Forest Reflectance and Transmittance (FRT) radiative transfer 
model. We chose BRF because it corresponds to the only well-validated 

R. Gopalakrishnan et al.                                                                                                                                                                                                                      



Science of Remote Sensing 8 (2023) 100098

3

surface reflectance related product that is available at a forest stand level 
scale (e.g., 30 m), via the Landsat satellites (more details to follow). The 
FRT model was first described in Nilson and Peterson (1991) and later 
significantly modified (Kuusk and Nilson, 2000; Mõttus et al., 2007). 
The model is classified as a hybrid-type, as it includes characteristics of 
both geometric-optical and radiative transfer equation-based models. 
FRT can simulate the BRF and the albedo (bi-hemispherical reflectance) 
over a given forested scene at a given point in time. The model for the 
forest canopy contains distinct tree crowns that are approximated by 
shapes such as ellipsoids. FRT works at the tree class level; there can be 
up to ten “tree classes”, each representing a stratum of similar-sized trees 
of the same species in a stand. Additional parameters such as the leaf 
area per tree, needle or leaf clumping index and branch to leaf area ratio 
further define the structure of the canopy. The scattering elements are 
assumed to be homogeneously dispersed inside the tree crown enve
lopes, and the leaf angle distribution is assumed to be spherical. The 
ground surface is assumed to be covered by a homogeneous layer of 
understory vegetation. More factors relevant to the simulation (e.g., 
viewing and illumination geometries, wavelengths simulated) are 
explained in subsequent sections. 

An important element in this context is terminology. In remote 
sensing based studies, the importance of specifying correctly and 
unambiguously the directional reflectance characteristics of the primary 
physical quantity of interest has been stressed (Schaepman-Strub et al., 
2006). Our quantity of interest is the Bidirectional Reflectance Factor 
(BRF), as defined in Schaepman-Strub et al. (2006). It is given by the 
ratio of the radiance reflected from the surface of interest to that from an 
ideal and diffuse surface of the same area under identical view geometry 
and single direction illumination. 

2.3.2. Model parameters 
Several model input parameters required by FRT were derived from 

the plot field measurements. In this database of FFC plots, the trees in 
each plot are divided into a number of strata that contain trees of the 
same tree species and size class. The “strata” in the plot data correspond 
to “tree classes” in FRT. Hence, the class-level tree densities (stems ha−1) 
and median tree statistics (diameter, height) required by the FRT were 
obtained directly from the plot data and used to simulate the tree stock 
at each plot. We did not simulate tree size variation within the plot 
strata. This is a simplification that is close to correct in managed forests 
that comprised the majority of our area of interest. This is because 
managed forests are thinned at a height of 10–15 m. Sub-dominant trees 
are removed in these thinnings, which leaves only the dominant layer 
where all trees are similar-sized and represent the generation of trees 
planted after the previous clear-cut. Some structural parameters needed 
by FRT but not available in the plot data were derived using allometric 
models or from earlier studies (Table 1). The leaf area index (LAI) was 
assumed to be constant for all months simulated. 

An important input of the FRT model is the reflectance and trans
mittance spectra of the foliage and bark of the tree species, and of the 
forest floor vegetation. These were derived from existing spectral data
bases. For more information, see please refer to the supplementary 
materials section. 

2.4. Reference satellite data 

The reference surface reflectance values for each plot were derived 
from Landsat 8 images. These surface reflectance products are generated 
using the Land Surface Reflectance Code (LaSRC) for atmospheric 
correction (USGS, 2020). Details about these algorithms, along with 
estimates of their accuracy can be found in (Vermote et al., 2016). 
Landsat surface reflectance products approximate hemispheric-conical 
reflectance factor; case 8 in Table 2 of (Schaepman-Strub et al., 2006), 
and are not normalized to any standard geometric configuration. The 
approximation of hemispheric-conical reflectance factor to BRF is valid 
under the following conditions: 1) The ratio of diffuse radiation to that 

of direct radiation is low (“black sky” condition); 2) the hemispherical 
directional reflectance factor remains constant over the full cone angle 
of the instrument instantaneous field of view (IFOV). The first assump
tion is justified, considering that Landsat images are acquired over 
Finland close to local noon, when the sun is nearest to the zenith posi
tion. In clear sky conditions, diffuse radiation is typically less than 10% 
of the total incoming radiation (Jones and Vaughan, 2010). The second 
assumption is also justified, considering that the instantaneous field of 
view is small. Surface reflectance products have been assumed to be 
approximations of BRF in previous literature; for an example involving 
the Sentinel-2 satellite data, see Hadi and Rautiainen (2018). 

Table 1 
Sources used for model parameters specific to the main tree species.  

Sl. 
Num. 

Variable name Values Reference 

1. Crown base height From allometric 
model 

Muinonen (1995) 

2. Crown radius From allometric 
model 

Muinonen (1995) 

3. Dry mass of 
foliage/leaves 
(kg) 

From allometric 
model 

Pine: eq. A4, Repola (2009); 
spruce: eq. A10, Repola 
(2009); birch: eq. 12 in  
Repola (2008). 

4. Leaf mass per unit 
area (g/cm2) 

Pine: 158, Spruce: 
200, Birch: 57. 

Same as Hovi et al. (2016), 
see Table 3 therein. 

5. Ratio of the 
branch area to leaf 
area 

Pine: 0.18, 
spruce: 0.18, 
birch: 0.15. 

Same as Hovi et al. (2016), 
see Table 3 therein., 

6. Tree distribution 
parameter 

1.2 (i.e., slightly 
regular and 
clustered) 

Same as Hovi et al. (2016). 

7. Shoot shading 
coefficient 

Pine: 0.59, 
spruce: 0.64, 
birch: 1 

Same as Hovi et al. (2016), 
see Table 3 therein. 

8. Shoot length (m) Pine: 0.1, spruce: 
0.05, birch: 0.4 

Same as Hovi et al. (2016), 
see Table 3 therein.  

Table 2 
Fixed effects considered for the models. All variables except dms and SGbirch were 
derived from the FFC plot database; dms and SGbirch were calculated from the 
satellite image metadata (date of acquisition).  

Fixed 
effect 

Variable 
Name 

Description, possible values Categorical or 
Continuous 

TS tree species The dominant tree species (group) 
for the plot; pine (1), spruce (2) or 
birch (3). 

Categorical 

FC fertility class Understory type (see Table S2). 
Can be OMaT (1), OMT (2), MT 
(3), VT (4), CT (5) ClT (6). 

Categorical 

ST soil type Whether the plot is situated on 
mineral soil (1), spruce bog (2) or 
pine bog (3). 

Categorical 

SGbirch birch state 1 when tree species is birch and 
DOY >257 (Sep. 14th); otherwise, 
0. 

Categorical 

φ latitude Latitude of the plot. Continuous 
hmsl elevation Height above the mean sea level. Continuous 
V timber 

volume 
The total volume of timber of the 
plot. 

Continuous 

GCd Gini 
coefficient 

The Gini coefficient of diameter. Continuous 

Hsp Shannon 
index 

Index quantifying the relative 
proportion of the three main 
species is present in the plot. 

Continuous 

dms. days to 
midsummer 

The number of days between 
satellite acquisition date and 
midsummer (26th June, DOY =
178). 

Continuous  
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2.5. Plot level linking of Landsat and FRT reflectances 

This study was restricted to the snow-free months ranging from May 
to October (both inclusive). This restriction was done partly because of 
the difficulty on acquiring representative snow spectra over our large 
region and partly considering that FRT currently does not have an option 
to account for snow on trees. 

We first selected all plots that had been inventoried between the 
calendar years of 2014 and 2019 (both inclusive) and were south of the 
64◦N latitude; this yielded a total of 58,344 plots. These calendar years 
were chosen keeping in mind the availability of Landsat 8 data. We then 
used the Google Earth Engine (Gorelick et al., 2017) to associate pixels 
from several Landsat 8 images with each selected plot, if possible. A 
particular pixel was associated with a plot if.  

1. The 30 × 30 m square pixel contained the centre of the plot.  
2. There was a maximum of ±6 months temporal difference between 

the date of measurement of the plot and that of Landsat image 
acquisition.  

3. The Landsat image was acquired between the months of May and 
October (both inclusive).  

4. The pixel was without clouds or cloud shadow effects.  
5. Snow was not present in the pixel.  
6. The Landsat image was classified as “high quality”. 

The last three conditions were based on binary flags and metadata 
that were part of the surface reflectance product; these had been esti
mated using the Landsat 8 OLI bands (USGS, 2020). We also dropped 
some plots that were less than 100 m from each other to minimize 
autocorrelation effects. At this point, we had a set of plots, where each 
such plot was associated with one or more suitable Landsat 8 pixels. 
Next, we define an observation as an event when a Landsat image 
acquisition has happened over a given plot. Such an observation is 
associated with a unique combination of the following.  

• A unique FFC forest plot  
• A Landsat image, with associated acquisition date and footprint 

In all, we had a total of 17,573 such observations after the above 
screening conditions had been applied. These involved 12,369 unique 
plots in 5139 L-shaped clusters. These observations had 858 unique 
Landsat images associated with them. 

The viewing and illumination geometries associated with FRT based 
simulation for each observation are important considerations. The solar 
azimuth and elevation angles at the plot location for each observation 
were computed using an open-source solar position code (Reda and 
Andreas, 2004). Meanwhile, it was assumed that the satellite was 
directly overhead the plot at that time, hence the view elevation angle 
was taken as zero. We also assumed a direct illumination (“black sky”) 
condition, with zero sky diffuse lighting. We simulated the BRF (nadir 
view) of each such observation using FRT, for the wavelengths between 
400 and 1700 nm, using 5 nm width bands. The plot measurement data 
and the sun position associated with the Landsat acquisition were the 
primary inputs for the FRT model. We also dropped forest strata 
comprising of very small trees (i.e., those with mean height less than 2.0 
m or mean diameter less than 0.5 cm) from these simulations. This was 
done keeping in mind the ranges associated with the allometric models 
used. 

The wavelength-specific FRT output BRFs were processed into 
Landsat-8 band specific ones using the relative spectral response curves 
for the OLI instrument. This was done by taking a weighted average of 
all FRT (narrowband; 5 nm) bands that mapped onto a given Landsat 
band. The weighting was based on the spectral response curve of 
Landsat-8 OLI (Barsi et al., 2014). In this work, we analyzed four of those 
spectral bands: green (532–590 nm), red (635–673 nm), near infrared 
(NIR, 850–878 nm) and short-wave infrared 1 (SWIR1, 1566–1651 nm). 

At this point, we had both the band specific Landsat BRFs and the FRT 
simulated ones for each of the 17,573 observations. 

2.6. General trends in accuracy 

We first compared FRT simulated BRFs with Landsat-measured ones, 
for the summer months (June, July and August) using a set of scatter
plots. The statistical significance of the observed discrepancies (over
estimation or underestimation) was tested by using linear mixed effects 
models, keeping in mind the grouped structure of the underlying data 
(explained in detail later). 

We then examined the temporal trends in both simulated and 
observed BRF values using a selected set of FFC field plots. These plots 
were selected such that each had a temporal series of Landsat images 
associated with them. In other words, they were such that for each plot, 
Landsat images were available over it for all snow-free months (May to 
October) for any particular year (year could be any between 2014 and 
2019). That is, only plots that had at least one observation for each of the 
six months in any particular year were selected for this analysis. When 
multiple observations were available for a month, one of them was 
arbitrarily chosen. Then, for each such observation, an FRT simulation 
was done using the same illumination geometry as the associated 
Landsat image. The forest stand characteristics for the simulation were 
obtained from the associated plot characteristics. The selected set of 
plots were categorized based on dominant tree species and volume of 
timber. Then, the average BRF (both FRT simulated and Landsat based) 
was calculated for each category and for each month. These averages 
were then analyzed as band-specific seasonal trajectories of different 
forest types in the study area. 

2.7. Statistical analysis 

For each observation, we computed the difference between Landsat- 
measured and model-simulated BRF which we henceforth call the error 
in BRF simulations in the Landsat 8 red and NIR bands as:  

eRed = BRsNIR, FRT –BRFNIR, Landsat                                                   (2) 

Where eRed and eNIR denote the error in the red and NIR bands, 
respectively; BRFRed, FRT and BRFNIR, FRT represent the BRFs simulated 
by FRT in the respective bands, and BRFRed, Landsat the BRFNIR, Landsat are 
the BRFs observed by the Landsat 8 satellite. 

We developed a set of linear regression models linking the error in 
BRF simulations with several potential explanatory factors to attribute 
the observed error to probable causes, and to estimate the relative 
importance of these causes. Our dataset of observations had a distinct 
grouped structure, with several grouping factors; the grouping is in 
parameter-space. We had several observations associated with each plot, 
which is similar to a repeated-measures experiment design. Moreover, it 
is important to factor in the grouping structure of Landsat images: each 
image is associated with a unique atmospheric condition and associated 
atmospheric correction artefacts. Several observations (from several 
forest plots) may be associated with each such image. We used mixed 
models, which provide a statistically sound framework to analyze such 
grouped data, especially when the sample sizes in some groups may be 
small (Mehtätalo and Lappi, 2020). Mixed models are easier to work 
with, compared to alternatives such as nonlinear mixed-effects models 
and hierarchical Bayesian models. We analyzed only the red and NIR 
Landsat bands in detail, using mixed models because these two bands 
are a parsimonious set that adequately characterize the crucial aspects of 
vegetation reflectance. For vegetation, red correlates with other visible 
bands, and NIR correlates with other infrared bands. Meanwhile, these 
bands are not strongly correlated with each other (Jones and Vaughan, 
2010). 

A general matrix-based form of a mixed model where eRed and eNIR 
are the dependent variables, while forest plot characteristics are used as 
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independent variables, is as follows:  

y = Xβ + Zb + ε                                                                            (3) 

Where b ~ N (0, G), ε ~ N (0, R), and cov (b, ε) = 0. 
Where, y is a vector of error values in a given band (eRed or eNIR) 

associated with n observations, X is the n × p design matrix for the p 
fixed effects (independent variables), and β is a p × 1 vector of co
efficients associated with the p fixed effects, Z is an n × q design matrix 
for the q random group effects, b is a q × 1 vector of random group 
effects and ε is the n × 1 vector for the residual errors (Mehtätalo and 
Lappi (2020). Further, G and R are variance-covariance matrices: G =
var(b); R = var(ε). 

We used the lme4 package (Douglas Bates et al., 2015) in the R 
environment to formulate and estimate the coefficients β and b of the 
mixed models. Separate models were formulated for the mean error in 
the red band (mod.meanerr.red) and the NIR band (mod.meanerr.NIR). 
Models were formulated as described in Mehtätalo and Lappi (2020). All 
fixed effect predictor variables were scaled and normalized before being 
tried out in the models: we scaled them so that their mean was 0.0 and 
standard deviation was 1.0. This was done to make the inter-comparison 
between their associated coefficients possible. 

Categorical variables were added as dummy variables, representing 
each class. For soil type (ST), categories 2 and 3 denote that the plot is on 
peatland soil. Further, STtype = 1 denote the categorical dummy variable 
indicating whether the plot is situated on mineral soil (i.e., values 0, 1), 
etc. For tree species (TS), the birch group is dominated by the birches, 
but a few other broad-leaved trees may also be present. Further, TSsp = 1 
denote the categorical dummy variable indicating dominance by pine 
group (i.e., values 0, 1), etc. Fertility classes (FC) 5 and 6 are clubbed 
into a single level, “5”. Moreover, FCclass = 1 denote the categorical 
dummy variable indicating fertility class 1 (i.e., values 0, 1), etc. The 
categorical variable birch state (SGbirch) was introduced to factor in a 
significant discontinuity in the birch leaf spectra; i.e., between Spec_la
teAugust and Spec_earlyOctober (Table S1). The latitude (φ) of the plot 
was included as a fixed effect, to factor in north-south effects. We 
included the volume of timber (V), as it is a proxy for the stem density 
and maturity level of the trees. The gini coefficient of diameter (GCd) 
was got by applying the R ineq function in the ineq package (Zeileis & 
Kleiber, 2014) to the diameter of trees. Values range from 0 (all trees are 
of the same diameter) to 0.5 (there is considerable variation in the 
diameter of trees). The shannon index (Hsp) quantifies the species di
versity of the plot; we consider only the three species groups in this case. 
The index was computed using the R diversity function in vegan package 
(Oksanen et al., 2022). Values ranged from 0 (when there is only one 
species present) to 1.1 (ln (3); all three species types are present in equal 
tree count). The value of dms (days to midsummer) was obtained by the 
formula: (DOY – 178), where DOY is day of year. This was used mainly 
to account for the facts that all our understory spectra are from summer. 

The mixed models were formulated in the following way. First, we 
formulated a version of the model that included all fixed effects we 
considered possible (Table 2). We also considered two interactions, one 
between the tree species and fertility class (TS:FC) and another, between 
the gini coefficient of diameter and the dominance of spruce trees (GCd: 
TSsp = 2). Subsequently, we identified and discarded those fixed effects 
and interactions that were statistically insignificant; i.e., the p-value 
associated with their likelihood ratio test (Pinheiro and Bates, 2006) was 
more than 0.05. 

Similarly, several random effects were initially included (Table 3). 
The plotID accounts for the fact that some plots are observed by Landsat 
several times. The clusterID is incorporated because each plot belongs to 
a particular L-shaped clusters. The imageID is unique for each Landsat 
image (typically 185 × 185 km), which might cover a large number of 
forest plots. The grouping by imageID is done so that Landsat image 
specific atmospheric effects, and other such artefacts are taken into ac
count. Even though atmospheric correction is carried out on all images, 
related artefacts can still be present. Lastly, provinceName takes into 
account of the fact that our study area in southern Finland consists of 17 
administrative provinces. This thus accounts for some local geographic 
effects. A random effect was subsequently discarded if they explained 
less than 5% of the residual variance. This threshold was arbitrary; the 
discarding was done so that the final mixed models would be as parsi
monious as possible. Random effects were only included as random in
tercepts. Further, they were added as crossed effects, with respect to 
each other. The marginal and conditional R2 values associated with the 
final models were computed by using the method of Nakagawa and 
Schielzeth (2013). The significance of the random variables were esti
mated by computing the percent of residual variance explained by them. 

2.8. Relative contributions of spectral and geometrical components 

In general, the magnitude of error associated with an FRT reflectance 
simulation can be broadly attributed to three causes: 1) lack of repre
sentative foliage or understory spectra; 2) inaccuracies due to simplifi
cation or misrepresentation of physical reality while creating the inputs 
for the FRT model or via the associated allometric models (e.g., esti
mation of crown dimensions from tree diameter and height); and 3) the 
simplifications of the radiative transfer computations in FRT. We com
bined the last two causes into a generic modelling error component. 
Thus, we conceptualized two broad FRT error causes: 1) insufficient 
spectral data, 2) modelling errors. We then designed an analysis to 
partition the error magnitude between these two causes. For this, we 
defined the following sets of observations.  

• All: This consists of all observations available to us, irrespective of 
forest type, forest plot location or month of Landsat image acquisi
tion. This consists of 17,573 observations derived from 12,369 
unique forest plots. The months associated with these observations 
ranged from May to October.  

• SpectrallyMatched: Here, we identified a subset of set All for which 
the spectral data used as input to the FRT model is well-matched with 
the actual spectra of the various elements associated with the plot (i. 
e., foliage, understory). Specifically, we only included observations 
for which: 1) the plots were from the Pirkanmaa region in Southern 
Finland (where our input needle and understory spectra were 
collected); 2) the fertility class were OMT and MT types (which is 
well-represented in our measured spectra); 3) the Landsat image was 
collected during summer, thus matching the season of the understory 
spectra. In all, 634 observations qualified for this set, representing 
548 plots including ones from seedling stands and mixed stands. 

• SpectrallyMatched_StructurallySimple: This is a subset of Spec
trallyMatched, where we apply two more conditions: 1) The plot 
consisted of even-sized trees of a single species (number of strata is 
1), and, 2) they were mature stands (volume ≥ 100 m3 ha−1). In this 
set, there were 84 observations based on 77 unique forest plots. 

Table 3 
Random effects considered for the models.  

Random effect Description 

plotID FFC plot ID. Unique to each temporary plot created. 
clusterID Unique ID of the cluster that the plot is part of. 
imageID Unique ID of the Landsat image. 
provinceName The name of the administrative province containing the plot.  

Table 4 
Number of forest plots associated with each trajectory shown in Fig. 4.  

Trajectory (volume category) Pine Spruce Birch 

Less than 20 m3 ha−1 21 17 10 
Between 20 and 100 m3 ha−1 50 28 29 
Greater than 100 m3 ha−1 149 82 40  
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These represent plots where the forest canopy is more amenable to be 
well represented in FRT. 

We then determined the RMSEs associated with each of the three sets 
given above. First, consider the sets All and SpectrallyMatched and their 
associated RMSEs. The decrease in RMSE between set All and set Spec
trallyMatched roughly quantifies the benefit of well-representative 
spectra. That is, it quantifies the benefit the FRT framework would 
have, given that representative field spectra are available for the entire 
study area, and over all seasons of the year. Similarly, when one com
pares SpectrallyMatched and SpectrallyMatched_StructurallySimple, the 
difference in RMSEs roughly quantifies the inaccuracy due to FRT’s 
simplification of vegetation structure, for young and mixed stands (i.e., 
in SpectrallyMatched). Hence, the relative decrease in bias and RMSE 
between SpectrallyMatched and SpectrallyMatched_StructurallySimple 
quantifies the effect of such simplification on the RMSE statistics. 

3. Results 

3.1. BRF estimation accuracy 

FRT has a general tendency towards overestimation of BRF values 
compared with Landsat (Fig. 1), especially for birch-dominated plots. All 
these overestimations were found to be statistically significant. The 
magnitude of these overestimations are less in the visible bands (green 
and red) and more in the NIR and SWIR1 bands. The model performs 
best in the case of pine and spruce dominated plots, and for the green 
and red bands. This can be inferred by examining the bias and RMSE 
statistics associated with each subfigure of Fig. 1 (Fig. 2). Fig. 2 shows 
that the bias of FRT simulated BRFs range from a low of ~0.008 to a high 
of ~0.08. RMSE values range from a minimum of ~0.01 to a maximum 
of ~0.09. The magnitude of the estimated error is the smallest in the 
visible bands. 

We generated two scatterplots of two representative subfigures from 
Fig. 1, to understand and illustrate the effect of stand maturity on BRF 

Fig. 1. Scatterplots of FRT simulated BRFs versus Landsat-measured ones, for the summer months. Each colored point in the scatterplot represents an observation, 
count indicates the number of observations represented by that colour. The dominant tree species of the forest plot and the Landsat 8 OLI band (Green, Red, NIR, 
SWIR1) is indicated at the top of each scatterplot. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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simulation error (Fig. 3). There, one can notice that most observations 
farther away from the 1:1 line were associated with forest plots with low 
timber volumes (i.e., young stands). These tend to be overestimations of 
simulated BRF by FRT. 

FRT seems to be moderately capable of reproducing temporal BRF 
trajectories of mature pine and spruce stands, in the green and red bands 
(Fig. 4). The observed similarities in the trajectories mostly persist, even 
after factoring in the confidence interval of these curves (Fig. S1). For 
example, when one considers the red band in Fig. 4, and for plots 
dominated by pine and spruce, the FRT and Landsat curves corre
sponding to the highest volume class (blue curves) are almost coincident 
with each other. Again, in the case of the NIR band for these two species, 

the two higher-volume associated FRT trajectories reproduce the gen
eral shape of the Landsat-based trajectories. For the low-volume case 
(sapling and young stands), there is a general trend of overestimation by 
FRT. Hence here (as in Fig. 3) we see that FRT agrees better with Landsat 
based BRF values for mature stands and less so for younger stands. 
Again, all the trajectories in Fig. 4 are generally more co-incident during 
the summer months. It can also be seen that in some cases, the temporal 
trends in BRF over the six months was hardly reproduced by FRT, e.g., 
the NIR band. 
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Fig. 2. Bias and RMSE statistics associated with subfigures of Fig. 1: each colored square above is associated with a subfigure of Fig. 1. For example, a bias of 0.0082 
(top left corner, above) is associated with the “pine, green” scatterplot subfigure of Fig. 1. The number inside the brackets is the number of observations for the 
statistic. The colour of the squares helps identify low and high values: green colour indicates the lowest absolute value among the 12 associated squares, while red 
colour indicates the highest absolute value. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 3. Scatterplots of FRT simulated BRFs versus those measured via Landsat 8 OLI, for the summer months and for pine and birch dominated plots (red band) (two 
subplots of Fig. 1). Each colored point in the scatterplot represents a distinct observation. The dominant species of the forest plot and the Landsat band (Green, Red, 
NIR, SWIR1) are indicated at the top of each scatterplot. Categories of the timber volume of the plot (V) is also indicated. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.2. Mean error 

Our mixed model based analysis indicates that 27% of the variance of 
the error red band was explained by the fixed effects (the marginal R2 of 
the model mod. meanerr.red is 0.27) and as much as 79% of the variance 
was explained by the combination of fixed and random effects (the 
conditional R2 of the model mod. meanerr.red is 0.79). For the mixed 
model for mean error in the NIR band, mod. meanerr.NIR, the marginal 

and conditional l R2 values are 0.19 and 0.65, respectively. The fixed 
effects used in the final models (mod.meanerr.red, mod. meanerr.NIR) 
along with their coefficient values are given in Table S3. 

The dominant tree species of the plot and the season of the year were 
the most important factors influencing the magnitude of the error in the 
red band (Fig. 5). The set of fixed effects and their interactions in both 
formulated models (mod.meanerr.red, mod. meanerr.NIR; Table S3) can 
be split up into two distinct factor sets: 1) tree species, fertility class, and 
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Fig. 4. The monthly trends of BRF simulated by FRT together with the measured curves from Landsat observations. The month ranges from May (5) to October (10). 
The dominant species of the forest plot and the Landsat band are indicated at the top of each graph. The number of plots associated with each trajectory line of the 
figure can be seen in Table 4. 

Fig. 5. Comparison of the various components of the mixed model for mean error, red band (mod.meanerr.red). (a) Interaction plot of tree species (TS) and fertility 
class (FC) on error seen. (b) Estimates of the other fixed effect coefficients. The categorical variable SGbirch (spectral group for birch), coefficient value 0.0368 in the 
mixed model is left out from the figure, because it is only applicable to a small subset of observations. The y-axis of (a) and (b) above are of the same scale, and hence 
the effect of error of each variable is intercomparable. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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their interactions; 2) the rest of the variables, like soil type, timber 
volume and the Gini coefficient. The relative contribution to the mean 
error of red band as per these two sets in the mod. meanerr.red model is 
shown in Fig. 5. Fig. 5(a) shows the effect of interaction of tree species 
and fertility class, when all other factors are held at such levels that they 
do not contribute to the error. Significant stand-alone effects are seen for 
tree species (TS) and fertility class (FC), along with only slight interac
tion effects between the two. Hence, the tree species is the most 
important factor; the simulated BRF values are most overestimated 
when the plot is dominated by birch or other broad-leaved species. This 
is seen across all fertility classes too. Smaller, but still consequential 
overestimations can be seen with pine and spruce plots too. BRF over
estimation magnitude increases with increase in several other variables 
(Fig. 5(b)). The most important of them is the time of year (dms); the 
large and positive value of the coefficient implies that observations from 
latter parts of the year are associated with higher levels of over
estimations. Soil-types 2 and 3 (spruce bog, pine bog) are associated 
with increased overestimations, when compared to mineral soils. The 
importance of tree-level heterogeneity can also be seen: plots with more 
tree size heterogeneity (GCd) and tree species diversity (Hsp) tend to 
have higher over-estimations by FRT. We see that plotID and imageID 
are significant random effects (Table 5); together, they explain ~70% of 
the variance left over after accounting for the fixed effects. 

Tree species, soil type and timber volume are the most important 
factors influencing the magnitude of error observed in the NIR band 
(Fig. 6). The components of figure are similar to those of Fig. 5. That is, it 
illustrates the magnitude of the coefficients of the mean error in the NIR 
band model (mod.meanerr.NIR) as per two sets of factors (see above). 
Tree species and fertility class showed small interaction effects between 
them, along with significant stand alone effects (Fig. 6(a)). Birch and 
pine dominated plots are associated with relatively large BRF over
estimations. Meanwhile, FRT underestimates BRF for spruce dominated 
plots with fertility class 5 (poorest fertility). Most other fixed effect 
variables considered are associated with overestimations, except for tree 
size heterogeneity (GCd) (Fig. 6(b)). Unlike the model for the error in the 
red band, the timber volume (V) is also shown to be important in this 
model. Higher timber volumes are associated with overestimations of 
NIR band reflectance. 

Certain individual forest plots and Landsat images are associated 
with more BRF simulation error magnitudes than others (Table 5). Both 
plotID and imageID are important random effects; as much as 42% re
sidual variance is explained by imageID for the red band. Meanwhile, 
the plot cluster does not have much explanatory power (associated value 
is ~5%). 

3.3. Relative contribution of spectral and geometrical components 

We had defined three distinct set of observations in an effort to 
separate out the contribution of spectral and geometrical components of 
the FRT framework to the observed error (see section 2.8). Considerable 
differences in RMSE statistics are seen between the sets All, Spec
trallyMatched and SpectrallyMatched_StructurallySimple (Fig. 7). The 
percent decrease in RMSE when switching from set All to set Spec
trallyMatched is seen in part (a) of the figure. The RMSE associated with 
the red band BRFs of spruce dominated forest plots drops by as much as 
32%, when one compares such plots between sets SpectrallyMatched and 
All (there were 315 spruce-dominated plot observations in the set 

SpectrallyMatched). The median drop in RMSE seen in Fig. 7(a) is 17.8%, 
and most percent decrease values are in the range of 20–30%. This 
implies that as much as 20–30% of RMSE in a typical FRT simulation (i. 
e., set All) is due to the use of non-representative spectra, for our study 
area. The associated median statistics of Fig. 7(b) implies that an addi
tional ~ 5% of RMSE of a typical FRT simulation can be reduced, given 
better geometric representations of reality in the FRT model. 

4. Discussion 

4.1. General considerations 

In this article, we quantified the accuracy of the FRT reflectance 
simulation model using data (12,369 forest plots) from an operational 
forest inventory database and corresponding satellite imagery spread 
over six months. The FFC forest plot data is publicly available and freely 
downloadable, which supports the repeatability of our set of experi
ments. Hence, the current effort represents a significant improvement 
over other FRT-related accuracy quantification efforts, due to this 
relatively larger geographical and seasonal coverage. Our results indi
cate that FRT seems to be relatively capable of simulating the Landsat 
BRF values for a sizable fraction (65%) of the cases (Figs. 1–4). That is, 
bias values as low as 0.01–0.03 and RMSE values as low as 0.02–0.05 
were observed over a large number (~11,500) of observations over pine 
and spruce dominated plots, in the red and NIR bands (Fig. 3). This 
represents ~65% of the 17,573 observations we considered. As a 
reference for comparison, Rautiainen and Stenberg (2005) had 
compared BRFs simulated by the PARAS forest radiative transfer model 
with Landsat observations, using 800 forest stands. They reported 
RMSEs in the order of 0.1 units for the red band and 0.05 units for the 
NIR band. Discrepancies of similar order of magnitude were reported 
between the compared models for these two bands, in the latest round of 
RAMI model validation exercises (Widlowski et al., 2015). These sta
tistics show that FRT compares well with other similar models for some 
cases, thus highlighting its overall potential. Meanwhile, RMSEs on the 
higher side (as high as 0.03 to 0.09) can also be see in Fig. 2, which 
shows the need for further work to improve the framework. 

4.2. Factors explaining FRT simulation inaccuracy 

We used a mixed modelling framework to attribute and understand 
the relative importance of the causes for the observed discrepancies (i.e., 
error) between FRT simulated and satellite BRFs. We envision that such 
analyses would help the FRT developers to better focus their efforts for 
improving the FRT simulation framework. The model for mean error in 
red band (mod.meanerr.red) helps us understand the relative impor
tance of several variables related to the forest plot and date of image 
acquisition (Fig. 5). Tree species is identified as the most important 
variable. The time of the year (dms) is also identified as an important 
factor that determines the magnitude and direction of the error; this 
implies the importance of having representative spectra for all months of 
the year. This can also be a consequence of our assumption that the 
canopy LAI remains constant for all months considered, especially for 
birch dominated plots. Important implications of the model for mean 
error in NIR band (mod.meanerr.NIR) can be deduced from Fig. 6. The 
tree species is decisive here too: the BRF is considerably overestimated 
in pine and birch dominated plots. Tree size heterogeneity and timber 
volume are also shown to be important variables. 

To roughly partition the error magnitude between that caused by 
non-representative spectra and that from geometric representation is
sues, we had defined three sets of observations: All, SpectrallyMatched, 
SpectrallyMatched_StructurallySimple. The reduction in RMSEs associated 
with the two latter sets (Fig. 7) implies that implies that ~20–30% of the 
RMSE of set All is attributable to non-representative spectra. Further, a 
5% of RMSE seems to be related to geometric representation issues in the 
FRT model. The pattern of colours of the squares of the figure further 

Table 5 
Percent residual variance explained by random effects in the two mixed effects 
models formulated.  

Random effect mod.meanerr.red mod.meanerr.NIR 

plotID 29.9 28.7 
clusterID NA 5.4 
imageID 41.9 22.7  
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indicate that spruce stands are most affected by these two issues, and 
especially for the green and red bands. 

4.3. Importance of tree species, understory type and tree size 
heterogeneity 

The tree species, the fertility class and their interactive effects were 
the most important factors explaining the mean error and its variance 
(Figs. 5 and 6). Fig. 5 indicates that the most important factor is tree 
species as per the mixed model mod. meanerr.red: it can increase the 
mean error by as much as 0.01 units. Tree species is an important driving 
factor of forest reflectance or albedo (Knyazikhin et al., 2013; Kuusinen 
et al., 2014). Kuusinen et al. (2014) reports that in middle aged or 
mature forests, forest albedo is influenced more by tree species 
composition than even Leaf Area Index (LAI) or canopy cover. Again, in 

birch and other broad-leaved (deciduous) stands, the forest floor dom
inates the total reflectance during the early and latter parts of the year. 
Thus, for these plots, uncertainties in the understory spectrum are more 
manifest in the plot-level reflectance values. We also found that several 
other variables such as soil type, tree size heterogeneity, species di
versity and volume affect the error magnitude in the red and NIR bands. 

Some fertility classes were associated with higher levels of BRF 
overestimations in some mixed models; e.g., class 1 and 5 in the red band 
and class 4 in the NIR band (Figs. 5 and 6). In general, the spectral- 
directional scattering behavior exhibited at the understory level of 
Fennoscandian forests can be very different, depending on the species 
present (Forsström et al., 2021). Again, the composition of the forest 
floor can depend on the overstory tree density; a previous work had 
found out that there was a 33% correlation between them (Majasalmi 
and Rautiainen, 2020). Temporally resolved seasonal understory spectra 

Fig. 6. The components of the mixed model for mean error in NIR band (mod.meanerr.NIR): a) interaction plot of the tree species (TS) and fertility class (FC) on error 
in the red and NIR bands; b) estimates of the other fixed effect coefficients. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

5% (207) 15% (315) −3% (112)

14% (207) 22% (315) 26% (112)

16% (207) 32% (315) 20% (112)

19% (207) 28% (315) 19% (112)Green

Red

NIR

SWIR1

Pine Spruce Birch

 (a)

−30

−20

−10

0

Set SpectrallyMatched  Median: 17.8%

13% (21) 32% (52) −3% (11)

14% (21) 34% (52) −5% (11)

9% (21) 52% (52) 24% (11)

38% (21) 52% (52) 19% (11)Green

Red

NIR

SWIR1

Pine Spruce Birch

 (b)

−50
−40
−30
−20
−10
0

Set SpectrallyMatched_StructurallySimple, Median: 23.2%

Fig. 7. Per-species and per-band decrease in RMSE (%) associated with the set, when compared to set All. The numbers inside the brackets are the number of 
observations associated with that statistic in the set. The colour of the squares helps identify low and high values: green colour indicates the highest (%) value among 
the 12 associated squares, while red indicates the lowest value. (a) Decrease in RMSE (%) associated with set SpectrallyMatched, when compared to set All. (b) 
Decrease in RMSE (%) associated with set SpectrallyMatched_StructurallySimple, when compared to set All. For an expanded version of this figure, see Fig. S2. (For 
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are also lacking. For a good discussion about the challenges of modelling 
understory elements in BRF simulations (birch stands), see Rautiainen 
et al. (2009). 

Our models implied that stand-level tree class heterogeneity, both in 
terms of size classes and species, was an important source of error 
(Figs. 5 and 6). Spruce plots with unequal-sized trees are especially 
prone towards FRT overestimations in the NIR band. This may be partly 
due to the fact that we assumed all trees in a stratum to have the same 
size as the median tree. Meanwhile, plots that are more diverse species- 
wise (i.e., mixed forests) tend to have more error (Figs. 5 and 6), this is 
mostly because the internal representation of these stands in FRT di
verges fairly from reality. 

4.4. Satellite derived reference BRFs 

We have used Landsat derived BRF estimates as our reference values. 
But for many cases, the satellite estimated BRFs may deviate from the 
true BRFs at the land surface. We found that imageID was an important 
random effect in both our mixed models: it explained 41.9% and 22.7% 
of the residual variance for the red and NIR band models, respectively 
(Table 5). The implication is that some Landsat images were associated 
with relatively higher error magnitudes than others. This further sug
gests the need for better atmospheric correction in the Landsat surface 
reflectance product. Our analysis of some associated satellite images 
suggests that cloud-wisps could be a source of error; they are sometimes 
flagged as “clear” pixels in the Landsat surface reflectance product. 
Generating good cloud masks is problematic and is an active area of 
research. For a recent intercomparison study of several such algorithms 
and the challenges that still remain, see Skakun et al. (2022). Uncor
rected satellite measurements correspond to hemispherical directional 
reflectance factor (HDRF) values (Schaepman-Strub et al., 2006). Even 
though HDRF and BRF values are near-identical in some forested land 
covers (Schaepman-Strub et al., 2006, Fig. 4), scattering and shading 
effects of nearby terrain, vegetation and water bodies can be hard to 
account for and correct. 

4.5. Future avenues of related work 

The above analysis and our results from mixed models suggest that a 
promising future avenue of improvement of the FRT framework is 
increasing the representativeness of the field spectra. 

Specifically, we recommend that the following spectra be collected.  

1. On mineral soils: Collecting understory spectra for very fertile 
(OMaT) site (class 1), CT (class 5) and VT (class 4) sites should be a 
priority, as they are associated with higher levels of BRF over
estimations. In Fig. 6(a), the lack of representative VT spectra 
coupled with the relative transparency of the canopy for this band is 
most probably the reason for overestimation associated with this 
fertility class. This fertility class represents over 22% of plots in our 
study area.  

2. On peatlands: Understory spectra should also be collected for the 
peatlands, i.e., soil type 2 and 3; the associated coefficients are 
relatively large in Figs. 5(b) and 6(b).  

3. Better seasonal spectra for the months of May, September and 
October (both foliage and understory) would also be useful. This 
statement is supported by the fact that the coefficient associated with 
the number of days to midsummer (dms) was positive and relatively 
large the two mixed models formulated. When examining the models 
further, we can gather that hence the error increases significantly as 
the date of satellite images advances beyond the midsummer, 
keeping all other factors constant. The trajectories seen in Fig. 4 also 
suggest the inadequate nature of spectra for months outside the 
summer period; i.e., May, September and October. 

We observed that plotID was an important random effect for both 

mixed models formulated for mean error (Table 5). This implies that 
certain forest plots had specific characteristics that could not be 
captured by the current FRT framework. This could be related to the size 
class, structure, distribution of trees or vegetation present, or the terrain 
topography. Young stands were clearly associated with more error 
(Fig. 3) and improvements regarding their representation in FRT should 
be considered. High levels of error associated with some plots could also 
be related to the fact that the FFC plot and the Landsat pixel are of 
different shape and size, which might affect some plots more than 
others. Regular geometrical objects like ellipsoids, as used by FRT, may 
not capture the geometry of many tree crowns, which tend to be irreg
ular. Previous work with FRT has shown the dependence of stand 
reflectance on tree crown shape (Rautiainen et al., 2004). These 
geometrical objects may not also capture the branching structure of 
trees, which may be pronounced and irregular in natural and old-growth 
forests. The contribution of woody elements such as tree trunks and first 
order branches to tree-level reflectance was quantified in a recent 
publication by Kuusinen et al. (2021), and it was estimated to vary be
tween 0.09 and 0.2. Also, crown length and crown radius may not be 
well estimated in some cases by allometric equations. The representa
tion of the spatial pattern of tree locations in the stand may not always 
be a realistic either. Further analysis of selected plots on these lines 
would be helpful to improving the FRT framework further and is a 
promising future avenue of work. 

It is extremely challenging to develop a robust reflectance model for 
real-world forested conditions. This is because of the highly complex set 
of interactions that electromagnetic radiation can undergo, between the 
sun and the sensor. Nevertheless, our results indicate that FRT is capable 
of reproducing BRF values over a proportion of forest plot observations, 
given snow-free conditions. They also suggest that an augmented spec
tral library would result in considerable improvement of the simulation 
framework; such a library is relatively straightforward to incorporate 
into FRT. This includes the spectra of all elements of vegetation: leaf, 
needle, stem bark, branch bark and ground vegetation. All of these 
further suggest that FRT might be ultimately integrated into a forest 
management planning system, so that the albedo could be used as a 
criterion in forest management planning, and albedo-related radiative 
forcing could be quantified and factored in. In this case, simulated BRF 
studied in this article could be replaced by simulated albedo. There are 
significant climatic benefits in managing boreal forests considering al
bedo too (Bright et al., 2014). The reflectance model, in this case, should 
be able to realistically replicate the changes in albedo introduced by 
different forest management operations. But there are several significant 
challenges to overcome before such an integration into a forest man
agement system happens, and we briefly touch upon some of them here. 
First, the managed forest stands of southern Finland are not necessarily 
representative of such managed or natural forests in other regions of the 
boreal zone. Thus, an exercise like this should be repeated with a much 
wider sampling of forest plot set, to identify further avenues for 
improvement of the FRT framework. Secondly, the model framework 
should be verified and extended for snow-laden months. There have 
been previous efforts that have attempted to factor in albedo into forest 
management decisions (Sjølie et al., 2013; Lutz and Howarth, 2014) but 
they were mostly of coarse-scale or confined to the temperate region. 
Third, there is the challenge of verification of the model for fully diffused 
lighting conditions, such as cloudy and hazy days. Again, the impact of 
terrain slope and topography has to be studied, before application to 
more mountainous areas. Additional work with respect to computa
tional efficiency is also needed before incorporation FRT framework into 
a forest planning system. A library of precomputed albedo values as a 
function of forest attributes and a look-at-table type search could be a 
reasonable and fast solution in the simulation-optimization systems used 
in forest planning. 

R. Gopalakrishnan et al.                                                                                                                                                                                                                      



Science of Remote Sensing 8 (2023) 100098

12

5. Conclusions 

This study provides a broad picture of the performance of the Forest 
Reflectance and Transmittance model in reproducing observed re
flectances over a wide variety of forest types. It is shown that FRT can 
reproduce observed reflectances over a proportion (65%) of observa
tions considered. These are predominantly for mature forests, i.e., where 
the forest structure is relatively simple and representative input spectra 
are also available. However, it fails to adequately reproduce the 
observed BRFs for sizable fraction of the simulated cases, especially for 
young stands and for non-summer months. We also studied broad sea
sonal trends in BRF and ascertained that FRT can generally reproduce 
such trends for mature forest stands, and to a lesser extend for younger 
stands. We used a set of mixed models to attribute the cause of the 
discrepancies observed to various factors. The results of these analyses 
provide guidance to future model improvement efforts. Previous work 
has shown that FRT is applicable to boreal regions outside Finland. 
Hence improvements to the FRT and the input data used by the model 
coupled with wider-region verification efforts would lead to more ac
curate reflectance modelling for a geographically wide area. The ne
cessity to collate more geographically and temporally comprehensive 
spectral libraries is important to the larger community of radiative 
transfer modelers as it holds for any physically based reflectance model. 
We also recommend improving the representation of reality in forest 
reflectance models, such as developing better associated forest allome
tric models. Both these efforts will be advantageous to the general 
reflectance modelling community. 

6. Code and data availability 

The FFC forest plot data is publicly available and can be downloaded 
from the website (Metsäkeskus, 2022). The Google Earth engine Java
Script code for extracting plot-level surface reflectance values and the 
C++ code for generating FRT input files are available on RJee007 
Github repository: https://github.com/RJee007. The fortran code for 
the specific version of the FRT used in the studies is available from the 
authors via e-mail request. Later FRT versions are available under the 
LGPL license. 
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Metsäkeskus (spatial data, in Finnish) [WWW Document] 2022. Metsäkeskus. URL 
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Rautiainen, M., Mõttus, M., Heiskanen, J., Akujärvi, A., Majasalmi, T., Stenberg, P., 
2011. Seasonal reflectance dynamics of common understory types in a northern 
European boreal forest. Rem. Sens. Environ. 115, 3020–3028. 

Rautiainen, M., Nilson, T., Lükk, T., 2009. Seasonal reflectance trends of hemiboreal 
birch forests. Rem. Sens. Environ. 113, 805–815. 

Rautiainen, M., Stenberg, P., 2005. Application of photon recollision probability in 
coniferous canopy reflectance simulations. Rem. Sens. Environ. 96, 98–107. 

Rautiainen, M., Stenberg, P., Nilson, T., Kuusk, A., 2004. The effect of crown shape on 
the reflectance of coniferous stands. Rem. Sens. Environ. 89, 41–52. 

Reda, I., Andreas, A., 2004. Solar position algorithm for solar radiation applications. Sol. 
Energy 76, 577–589. 

Repola, J., 2008. Biomass equations for birch in Finland. Silva Fenn. 42, 605–624. 
Repola, J., 2009. Biomass equations for Scots pine and Norway spruce in Finland. Silva 

Fenn. 43, 625–647. 
Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., 

Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R., 2014. Landsat-8: science and 
product vision for terrestrial global change research. Rem. Sens. Environ. 145, 
154–172. 

Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S., Martonchik, J.V., 
2006. Reflectance quantities in optical remote sensing—definitions and case studies. 
Rem. Sens. Environ. 103, 27–42. 

Sjølie, H.K., Latta, G.S., Solberg, B., 2013. Potential impact of albedo incorporation in 
boreal forest sector climate change policy effectiveness. Clim. Pol. 13, 665–679. 

Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., 
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