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Abstract
We consider the optimal scheduling problem in the M/G/1 queue. While this is a
thoroughly studied problem when the target is to minimize the mean delay, there
are still open questions related to some other objective functions. In this paper, we
focus on minimizing mean slowdown among non-anticipating polices, which may
utilize the attained service of the jobs but not their remaining service time when
making scheduling decisions. By applying the Gittins index approach, we give neces-
sary and sufficient conditions for the jobs’ service time distribution under which the
well-known scheduling policies first come first served and foreground background are
optimal with respect to the mean slowdown. Furthermore, we characterize the optimal
non-anticipating policy in the multi-class case for certain types of service time distri-
butions. In fact, our results cover a more general objective function than just the mean
slowdown, since we allow the holding costs for a job to depend on its own service time
S via a generic function c(S). When minimizing the mean slowdown, this function
reads as c(x) = 1/x .

Keywords Optimal scheduling · M/G/1 · Slowdown · Gittins index · FCFS · FB

Mathematics Subject Classification 60K25 · 90B22 · 90B36 · 68M20

1 Introduction

We consider the optimal scheduling problem in the M/G/1 queue. Let S denote the
service time of a job. There may be a single class of jobs or multiple classes (even
an infinite number of classes). Within each class, the service times are assumed to be
independent and identically distributed with a finite mean. Jobs of each class arrive
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according to an independent Poisson process. Thus, the aggregate arrival process is
a Poisson process, too. The total arrival rate of jobs is denoted by λ. We assume that
the total load ρ = λE[S] < 1 in order to have a stable M/G/1 queue. The delay
(a.k.a. sojourn time or response time) of a job is denoted by T π , where π refers to
the scheduling policy applied. We assume that the applied scheduling policy allows
preemptions.

The optimal scheduling policy depends naturally on the objective function but also
on the information available to the scheduler. Policy π is said to be non-anticipating
if it is aware of the arrival time and the attained service of each job in the system,
while an anticipating scheduler knows even the remaining service times. If the aim is
to minimize the mean delay E[T π ], then the optimal anticipating scheduling policy is
SRPT (Shortest Remaining Processing Time) [18, 23]. In the special case where the
service times are deterministic, SRPT coincides with the ordinary FCFS (first come
first served) discipline or any other non-preemptive and work-conserving scheduling
policy.

The optimal non-anticipating policy minimizing the mean delay, however, depends
essentially on the service time distribution. For example, FCFS is optimalwhen the ser-
vice time distribution belongs to the family ofNBUE (NewBetterUsed inExpectation)
distributions. On the other hand, for more variable DHR (Decreasing Hazard Rate)
service times the optimal non-anticipating policy is FB1 (foreground background),
which is another well-known non-anticipating scheduling policy [16].

All these results can be justified by utilizing the concept ofGittins index. It is known
that the optimal non-anticipating policyminimizing themean delay is theGittins index
policy [2, 3, 8, 19, 21], which always chooses the job with the highest index Gdel(a)

defined by

Gdel(a) = sup
b>a

P{S ≤ b | S > a}
E[min{S, b} − a | S > a] , (1)

where S denotes the (original) service time and a the (currently) attained service of
the job.

While the optimal scheduling problem in the M/G/1 queue is a thoroughly studied
problem when the target is to minimize the mean delay, there are still open questions
related to other objective functions. In this paper, we focus on minimizing mean
slowdown2 E[T π/S], i.e., the expectation of the ratio between the delay and the
service time of a job. Among the anticipating policies, the optimal policy is known
to be SPTP3 (Shortest Processing Time Product) [12, 27, 28]. But the optimal non-
anticipating scheduler with respect to the mean slowdown has long been an open
problem [1, 5, 6, 11]. It is only known that FB is the optimal non-anticipating policy
if the service time distribution of all jobs is such the ratio h(x)/x is decreasing [7],
where h(x) denotes the hazard rate.

1 The FB policy chooses always the job with the least attained service. It is also known as LAS (Least
Attained Service).
2 Slowdown is also known as stretch.
3 The SPTP policy chooses always the job with the smallest product of the original and the remaining
service times. It is also known as the RS policy [11, 17, 26].
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In this paper, we prove that the condition given above is not only sufficient but also
necessary for the optimality of FB (see Theorem 2 and Corollary 4 in Sect. 3). As well,
we give sufficient and necessary conditions under which FCFS is optimal minimizing
the mean slowdown among the non-anticipating policies (see Theorem 1 and Corol-
lary 3 in Sect. 3). Furthermore, we characterize the optimal non-anticipating policy
in the multi-class case for certain types of service time distributions (see Theorems 3
and 4 together with Corollaries 5 and 6 in Sect. 4).

Our approach is based on the Gittins index. In fact, we consider even amore general
objective function than just the mean slowdown. More precisely said, we assume that
the holding costs for a job with service time S accrue at rate c(S) > 0. If the aim is
to minimize the mean slowdown, then the holding cost rate function c(x) is given by
c(x) = 1/x . On the other hand, the choice c(x) = 1 corresponds to minimizing mean
delay. It was recently shown in [19, 21] that the Gittins index approach is applicable
even for this kind of a general setting of holding costs: The optimal non-anticipating
policy is the index policy that always chooses the job with the highest index Gc(a)

defined by4

Gc(a) = sup
b>a

E[c(S)1{S≤b} | S > a]
E[min{S, b} − a | S > a] , (2)

where 1A refers to the indicator function of event A. Starting from this formula, we
are able to prove the results mentioned above.

The rest of the paper is organized as follows. In Sect. 2, we consider a single job
and derive certain important properties of the Gittins index function defined in (2).
These properties are then utilized in Sects. 3 and 4, where we characterize the optimal
scheduling policy with respect to the general holding costs in the single-class and the
multi-class cases, respectively. Themain results related tominimizingmean slowdown
are then illustrated by numerical examples in Sect. 5.

2 Properties of the Gittins index

In this section, we consider a single job with service time S. The aim is to derive such
properties of the Gittins index (2) that enable us (later on in Sect. 3) to characterize for
which type of service time distributions FCFS or FB are optimal with respect to the
general holding costs. Thus, we assume here that the holding costs for the job accrue
at rate c(S), which depends on its own service time S. We assume that the cost rate
function c(x) is right-continuous with left limits.

The service time S is assumed to have a general distribution with the cumulative
distribution function denoted by

F(x) = P{S ≤ x}, x ≥ 0.

4 A historical note: (2) was actually first discovered in 1972 by von Olivier [25]. However, [25] proves
the optimality of the resulting index policy only relative to other index policies. The question of whether
non-index policies could do better was open until [21]. See [21, Section II-B] for further discussion.
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Let F̄(x) denote the corresponding tail distribution function,

F̄(x) = 1 − F(x), x ≥ 0,

and assume that F̄(x) > 0 for all x ≥ 0.5 In addition, we assume that the service time
distribution has a right-continuous density function f (x) with left limits.6 Let h(x)
denote the corresponding hazard rate function,

h(x) = f (x)

F̄(x)
, x ≥ 0. (3)

In addition, we introduce the following auxiliary functions that depend both on the
service time distribution and the cost rate function c(x):

hc(x) = c(x)h(x), x ≥ 0,

Hc(x) = E[c(S) | S > x]
E[S − x | S > x] =

∫ ∞
x hc(y)F̄(y) dy
∫ ∞
x F̄(y) dy

, x ≥ 0.
(4)

Since c(x) and f (x) are right-continuous with left limits, h(x) and hc(x) are also such
functions. In addition, Hc(x) is, by construction, a continuous function. Note also that
if the aim is to minimize mean delay, which corresponds to c(x) = 1 for all x , then
hc(x) equals the hazard rate function, hc(x) = h(x), and Hc(x) equals the inverse of
the so-called mean residual lifetime function, Hc(x) = 1/E[S − x | S > x].

Let us now rewrite the Gittins index (2) for this job as follows:

Gc(a) = sup
b>a

Jc(a, b), a ≥ 0, (5)

where a denotes the attained service of the job and Jc(a, b) refers to the following
efficiency function:

Jc(a, b) = E[c(S)1{S≤b} | S > a]
E[min{S, b} − a | S > a] =

∫ b
a hc(y)F̄(y) dy

∫ b
a F̄(y) dy

, a < b. (6)

Note that
lim

b→a+ Jc(a, b) = hc(a), lim
b→∞ Jc(a, b) = Hc(a), (7)

where hc(a) and Hc(a) are defined in (4). Note also that, with a fixed a, the func-
tion Jc(a, b) is continuous with respect to b for any b > a. By (7), it can also be

5 This assumption is made for ease of exposition. Similar results are achievable for distributions with a
finite upper bound tF = sup{x ≥ 0 : F̄(x) > 0} for the service times (such as the uniform distribution).
The statements and proofs are essentially the same, except the domain [0, ∞) is replaced by [0, tF ).
6 One of our main results, namely Theorem 1, can also be shown for distributions without a density, such
as discrete distributions. But our other results require a density function, so for ease of exposition, we focus
on the case where a density exists.
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continuously continued by defining

Jc(a, a) = hc(a), Jc(a,∞) = Hc(a). (8)

Define finally

b∗
c (a) = max{b ∈ [a,∞] : Jc(a, b) = Gc(a)}, a ≥ 0, (9)

to be the (largest) maximizer b of Jc(a, b).

2.1 Properties related to the Hc-function

In this section, we study connections between the function Hc(x) defined in (4) and the
corresponding Gittins index Gc(x). In particular, we derive sufficient and necessary
conditions under which Gc(x) = Hc(x) for some x .

Lemma 1 Let b > a. Now Hc(b) ≥ Hc(a) if and only if Jc(a,∞) ≥ Jc(a, b).

Proof By (4), we have

Hc(b) ≥ Hc(a)

⇐⇒
∫ ∞
b hc(y)F̄(y) dy

∫ ∞
b F̄(y) dy

≥
∫ ∞
a hc(y)F̄(y) dy

∫ ∞
a F̄(y) dy

⇐⇒
(∫ ∞

b
hc(y)F̄(y) dy

) (∫ ∞

a
F̄(y) dy

)

≥
(∫ ∞

a
hc(y)F̄(y) dy

) (∫ ∞

b
F̄(y) dy

)

⇐⇒
(∫ ∞

b
hc(y)F̄(y) dy

) (∫ ∞

a
F̄(y) dy

)

≥
(∫ ∞

a
hc(y)F̄(y) dy

) (∫ ∞

a
F̄(y) dy −

∫ b

a
F̄(y) dy

)

.

By rearranging the terms in last inequality, we get

Hc(b) ≥ Hc(a)

⇐⇒
(∫ ∞

a
hc(y)F̄(y) dy

) (∫ b

a
F̄(y) dy

)

≥
(∫ ∞

a
hc(y)F̄(y) dy −

∫ ∞

b
hc(y)F̄(y) dy

) (∫ ∞

a
F̄(y) dy

)

⇐⇒
∫ ∞
a hc(y)F̄(y) dy

∫ ∞
a F̄(y) dy

≥
∫ ∞
a hc(y)F̄(y) dy − ∫ ∞

b hc(y)F̄(y) dy
∫ b
a F̄(y) dy

,
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from which we get, by (6),

Hc(b) ≥ Hc(a)

⇐⇒
∫ ∞
a hc(y)F̄(y) dy

∫ ∞
a F̄(y) dy

≥
∫ b
a hc(y)F̄(y) dy

∫ b
a F̄(y) dy

⇐⇒ Jc(a,∞) ≥ Jc(a, b).

This completes the proof. 
�
Proposition 1 Let a ≥ 0. The following three statements are equivalent:

(i) Hc(x) ≥ Hc(a) for all x > a;
(ii) Gc(x) ≥ Gc(a) for all x > a;
(iii) Gc(a) = Hc(a).

Proof Note first that, by (5) and (7), the equivalence between (i) and (iii) follows
immediately from Lemma 1. Below we prove the equivalence between (ii) and (iii) in
two parts.

1◦ Assume first thatGc(a) = Hc(a) so that also claim (i) true. Let x > a. It follows
from (i) that Hc(x) ≥ Hc(a). On the other hand,Gc(x) ≥ Hc(x) by (5) and (7). Thus,

Gc(x) ≥ Hc(x) ≥ Hc(a) = Gc(a).

2◦ Assume now that Gc(x) ≥ Gc(a) for all x > a. By (9), the claim that
Gc(a) = Hc(a) is equivalent to claim b∗(a) = ∞. We will prove this latter claim by
contradiction.

Consider what happens if b∗(a) < ∞. Then Jc(a, x) < Jc(a, b∗(a)) for all x ∈
(b∗(a),∞]. Thus, there are d > 0 and M ∈ (b∗(a),∞) such that Jc(a,∞) <

d < Jc(a, b∗(a)) and Jc(a, x) ≤ d for all x ∈ [M,∞]. On the other hand, since
Jc(a, x) is continuous (with respect to x) and Jc(a, M) ≤ d < Jc(a, b∗(a)), there is
m ∈ (b∗(a), M] such that Jc(a,m) = d. There is also m∗ ∈ [m, M] such that

Jc(a,m∗) = sup
x∈[m,M]

Jc(a, x).

Clearly, for all x ∈ [m∗,∞],

Jc(a, x) ≤ Jc(a,m∗). (10)

Let then x ∈ (m∗,∞]. Now, by defining p ∈ (0, 1) so that

p =
∫ m∗
a F̄(y) dy
∫ x
a F̄(y) dy

,

it follows from (10) that

Jc(a, x) = pJc(a,m∗) + (1 − p)Jc(m
∗, x) ≥ pJc(a, x) + (1 − p)Jc(m

∗, x),
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which implies that, for any x ∈ (m∗,∞],

Jc(m
∗, x) ≤ Jc(a, x) ≤ Jc(a,m∗). (11)

By continuity, we also have

Jc(m
∗,m∗) ≤ Jc(a,m∗). (12)

From (11) and (12) it follows that

Gc(m
∗) = sup

x≥m∗
Jc(m

∗, x) ≤ Jc(a,m∗) < Jc(a, b∗(a)) = Gc(a),

which contradicts our assumption thatGc(x) ≥ Gc(a) for all x > a. Thus, necessarily
b∗(a) = ∞. 
�

By Proposition 1, we get the following immediate consequence describing further
the connections between the service time distribution and the corresponding Gittins
index.

Corollary 1 Let a ≥ 0. The following three statements are equivalent:

(i) Hc(x) is increasing for all x > a;
(ii) Gc(x) is increasing for all x > a;
(iii) Gc(x) = Hc(x) for all x ≥ a.

Note that, in this paper, we use the terms ‘increasing’ and ‘decreasing’ in their weak
forms. So, the functions Hc(x) and Gc(x) in the claims above are not required to be
strictly increasing.

2.2 Properties related to the hc-function

In this section, we study connections between the function hc(x) defined in (4) and the
corresponding Gittins index Gc(x). In particular, we derive sufficient and necessary
conditions under which Gc(x) = hc(x) for some x .

Lemma 2 Let b > a. If hc(x) is decreasing for all x ∈ [a, b), then Jc(a, x) is
decreasing (with respect to x) for all x ∈ [a, b).

Proof Let x ∈ (a, b). Now hc(y) ≥ hc(x) for all y ∈ [a, x). Thus,

Jc(a, x) =
∫ x
a hc(y)F̄(y) dy

∫ x
a F̄(y) dy

≥ hc(x).

Since, by (6),

∂

∂x
Jc(a, x) = (hc(x) − Jc(a, x))

F̄(x)
∫ x
a F̄(y) dy

,

the claim follows clearly from the previous inequality. 
�
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Proposition 2 Let a ≥ 0. The following two statements are equivalent:

(i) hc(x) is decreasing for all x ≥ a.
(ii) Gc(x) = hc(x) for all x ≥ a.

Proof 1◦ Assume first that hc(x) is decreasing for all x ≥ a. Let x ≥ a. It follows
from Lemma 2, when letting b → ∞, that Jc(x, y) is decreasing with respect to y for
any y ≥ x so that

Jc(x, x) = sup
y>x

Jc(x, y).

However, this is equivalent to the claim that

Gc(x) = hc(x).

2◦ Assume now that Gc(x) = hc(x) for all x ≥ a. Consider what happens if hc(x)
is not decreasing for all x ≥ a. Here we need to study two separate cases (2.1◦ and
2.2◦ below).

2.1◦ Assume first that hc(x) is not decreasing for all x ≥ a since there is an interval
[m, M) where hc(x) is strictly increasing. Thus, hc(x) > hc(m) for all x ∈ (m, M).
But now

hc(m) =
∫ M
m hc(m)F̄(y) dy

∫ M
m F̄(y) dy

<

∫ M
m hc(y)F̄(y) dy

∫ M
m F̄(y) dy

= Jc(m, M),

which implies that

Gc(m) ≥ Jc(m, M) > hc(m).

However, this contradicts our assumption that Gc(x) = hc(x) for all x ≥ a.
2.2◦ Assume now that hc(x) is not decreasing for all x ≥ a since there is a jump

up at some point x0 > a. Thus, hc(x
−
0 ) < hc(x

+
0 ). Let d1 and d2 be such that

hc(x
−
0 ) < d1 < d2 < hc(x

+
0 ). Since hc(x) is right-continuous with left limits, there

are δ1 and δ2 such that hc(x) < d1 for all x ∈ (x0 − δ1, x0) and hc(x) > d2 for all
x ∈ (x0, x0 + δ2). Let then x ∈ (x0 − δ1, x0), and define

p(x) =
∫ x0
x F̄(y) dy

∫ x0+δ2
x F̄(y) dy

.

Clearly, p(x) ∈ (0, 1), and we have

Jc(x, x0 + δ2) = p(x)Jc(x, x0) + (1 − p(x))Jc(x0, x0 + δ2)

= p(x)Jc(x, x0) + (1 − p(x))

∫ x0+δ2
x0

hc(y)F̄(y) dy
∫ x0+δ2
x0

F̄(y) dy

> p(x)Jc(x, x0) + (1 − p(x))d2.
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Since p(x) → 0 and Jc(x, x0) → hc(x
−
0 ) as x → x0 and d2 > d1, it follows from

the previous inequality that there is δ′
1 ∈ (δ1, 0) such that

Jc(x0 − δ′
1, x0 + δ2) > d1 > hc(x0 − δ′

1).

However, this contradicts our assumption that Gc(x) = hc(x) for all x ≥ a. 
�
Lemma 3 Let a ≥ 0. If Gc(x) ≤ Gc(a) for all x ≥ a, then

Gc(a) = hc(a).

Proof Assume that Gc(x) ≤ Gc(a) for all x ≥ a.
1◦ If b∗(a) = a, then, by (9) and (8), we have

Gc(a) = Jc(a, b∗) = Jc(a, a) = hc(a).

2◦ Now assume that b∗(a) > a. In addition, let x ∈ (a, b∗(a)), and define

p(x) =
∫ x
a F̄(y) dy

∫ b∗(a)

a F̄(y) dy
.

Clearly, p(x) ∈ (0, 1). Note also that we may write

Gc(a) = Jc(a, b∗(a)) = p(x)Jc(a, x) + (1 − p(x))Jc(x, b
∗(a)).

Since Jc(a, x) ≤ Gc(a) by definition, we have

Gc(a) = p(x)Jc(a, x) + (1 − p(x))Jc(x, b
∗(a))

≤ p(x)Gc(a) + (1 − p(x))Jc(x, b
∗(a)),

which implies that

Gc(a) ≤ Jc(x, b
∗(a)).

On the other hand, due to our assumption, we have

Jc(x, b
∗(a)) ≤ Gc(x) ≤ Gc(a).

Thus, necessarily

Gc(x) = Gc(a).

In addition, since Jc(x, b∗(a)) ≤ Gc(x), we have

Gc(a) = p(x)Jc(a, x) + (1 − p(x))Jc(x, b
∗(a))

≤ p(x)Jc(a, x) + (1 − p(x))Gc(x)

= p(x)Jc(a, x) + (1 − p(x))Gc(a),
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which implies that

Gc(a) ≤ Jc(a, x).

However, this is possible only if

Jc(a, x) = Gc(a).

Since this is true for any x ∈ (a, b∗(a)), it implies that

hc(a) = Jc(a, a) = lim
x→a

Jc(a, x) = Gc(a),

which completes the proof. 
�
Proposition 3 Let a ≥ 0. The following two statements are equivalent:

(i) Gc(x) is decreasing for all x ≥ a.
(ii) Gc(x) = hc(x) for all x ≥ a.

Proof 1◦ Assume first that Gc(x) is decreasing for all x ≥ a. Let x ≥ a. Since Gc(y)
is decreasing for all y ≥ x , it follows immediately fromLemma 3 thatGc(x) = hc(x).

2◦ Assume now that Gc(x) = hc(x) for all x ≥ a. It follows immediately from
Proposition 2 that hc(x), and thus also Gc(x), is decreasing for all x ≥ a. 
�

By Propositions 2 and 3, we get the following immediate consequence further
describing the connections between the Gittins index and the service time distribution.

Corollary 2 Let a ≥ 0. The following three statements are equivalent:

(i) hc(x) is decreasing for all x ≥ a.
(ii) Gc(x) is decreasing for all x ≥ a.
(iii) Gc(x) = hc(x) for all x ≥ a.

3 Characterization of the optimal policy in the single-class case

In this section, we consider the single-class case, i.e., all jobs have the same service
time distribution function F(x). We reveal the properties the service time distribution
should have in order for FCFS or FB to be the optimal non-anticipating policy with
respect to the generalized holding costs introduced in Sect. 1. As before, let c(x) denote
the corresponding holding cost rate function, which is now common to all the jobs.
Recall also our assumptions made in Sect. 2 that the density function f (x) of the
service time distribution and the cost rate function c(x) are right-continuous with left
limits.

Definition 1 Let I denote the set of current jobs in the system. A scheduling policy
belongs to the MAS class if it chooses the job with the most attained service,

i∗ = argmax
i∈I

ai . (13)
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Note that MAS is a whole family of scheduling policies consisting of all non-
anticipating policies that arework-conserving and non-preemptive. In particular, FCFS
is such a policy. Other well-known examples are non-preemptive LCFS (Last Come
First Served) and SIRO (Service In Random Order).

Definition 2 Let I denote the set of current jobs in the system. The FB policy chooses
the job with the least attained service,

i∗ = argmin
i∈I

ai . (14)

Theorem 1 Assume the single-class case. Any scheduling policy belonging to the
MAS class (including FCFS) minimizes the generalized holding costs among the
non-anticipating policies if and only if

Hc(a) ≥ Hc(0) for all a ≥ 0, (15)

where Hc(a) is defined in (4).

Proof The result follows immediately from Proposition 1 with choice a = 0 and the
optimality of the Gittins index policy [19, 21]. 
�
Theorem 2 Assume the single-class case. The FB policy minimizes the generalized
holding costs among the non-anticipating policies if and only if hc(a) is decreasing
for all a ≥ 0, where hc(a) is defined in (4).

Proof The result follows immediately from Corollary 2 with choice a = 0 and the
optimality of the Gittins index policy [19, 21]. 
�

3.1 Minimizingmean slowdown in the single-class case

We now spell out the implications of Theorems 1 and 2 for the specific case of min-
imizing mean slowdown E[T π/S], which corresponds to holding cost rate function
c(x) = 1/x . Let us denote the corresponding hc-function by

hsld(x) = h(x)

x
, x ≥ 0, (16)

which is called the scaled hazard rate in the sequel. In addition, we denote the
corresponding Hc-function by

H sld(x) = E[1/S | S > x]
E[S − x | S > x] =

∫ ∞
x

h(y)
y F̄(y) dy

∫ ∞
x F̄(y) dy

, x ≥ 0, (17)

and the corresponding Gittins index Gc(x) by Gsld(x). By Theorems 1 and 2, we have
the following characterizations for the optimality of the MAS and FB policies.
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Corollary 3 Assume the single-class case. Any scheduling policy belonging to theMAS
class (including FCFS) minimizes the mean slowdown among the non-anticipating
policies,

E[TMAS/S] = min
π

E[T π/S],

if and only if
H sld(a) ≥ H sld(0) for all a ≥ 0. (18)

This result was already anticipated in [1], where it is presented as a conjecture
without any proof. It is easy to show that the family of service time distributions
satisfying (18) is a (proper) subset of the NBUE distributions, which were mentioned
in Sect. 1. As an example of a distribution that belongs to NBUE but does not satisfy
condition (18) serves any Weibull distribution with shape parameter k ∈ [1, 2).
Corollary 4 Assume the single-class case. TheFBpolicyminimizes themean slowdown
among the non-anticipating policies,

E[T FB/S] = min
π

E[T π/S],

if and only if the scaled hazard rate h(a)/a is decreasing for all a ≥ 0.

Feng and Misra [7] already proved that FB minimizes the mean slowdown among
the non-anticipating policies if the scaled hazard rate h(x)/x of the service time
distribution is a decreasing function of x . Such distributions include clearly all DHR
distributions, for which h(x) is required to be decreasing. Here we complete the result
by proving that this condition is not only sufficient but also necessary for the optimality
of FB.

4 Characterization of the optimal policy in themulti-class case

In this section, we assume that there are multiple job classes and the scheduler is
aware of the class of each job. Let Fj (x) denote the service time distribution function
and c j (x) the holding cost rate function of class j . As before, we assume that the
density function f j (x) of the service time distribution and the cost rate function c j (x)
are right-continuous with left limits for all classes j . Our aim is to characterize, for
certain types of service time distributions, the optimal non-anticipating policy with
respect to the generalized holding costs introduced in Sect. 1.

Fix index i for a while and consider job i . Let j refer to its class. In line with (4),
we define job i’s hc-function hc,i (x) and Hc-function Hc,i (x) as follows:

hc,i (x) = c j (x)h j (x), x ≥ 0,

Hc,i (x) = E[c j (S j ) | S j > x]
E[S j − x | S j > x] =

∫ ∞
x hc,i (y)F̄j (y) dy

∫ ∞
x F̄j (y) dy

, x ≥ 0,
(19)
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where h j (x) refers to the hazard rate function of service time distribution function
Fj (x).

Definition 3 Let I denote the set of current jobs in the system. The MAX-H policy
chooses the job that maximizes the current value of the Hc-function,

i∗ = argmax
i∈I

Hc,i (ai ), (20)

where ai is the attained service of job i and Hc,i (·) refers to its Hc-function as defined
in (19).

Definition 4 Let I denote the set of current jobs in the system. The MAX-h policy
chooses the job that maximizes the current value of the hc-function,

i∗ = argmax
i∈I

hc,i (ai ), (21)

where ai is the attained service of job i and hc,i (·) refers to its hc-function as defined
in (19).

Note that, if the aim is to minimize mean delay, which corresponds to c j (x) = 1 for
all job classes j , thenMAX-H is the same as the SERPT (Shortest ExpectedRemaining
Processing Time) policy, since function Hc,i (x) equals, in this case, the inverse of the
mean residual lifetime function, Hc,i (x) = 1/E[S j − x | S j > x]. Correspondingly,
MAX-h is the same as the HHR (Highest Hazard Rate) policy, since hc,i (x) is the
hazard rate function of the job i’s service time distribution in this special case.

Note also that functions Hc,i (x) and hc,i (x) are common to all jobs i belonging
to the same class, say j . Therefore, we may, as well, refer to them by Hc, j (x) and
hc, j (x), respectively, without any danger for confusion.

Theorem 3 Assume themulti-class case. TheMAX-Hpolicyminimizes the generalized
holding costs among the non-anticipating policies if class-wise functions Hc, j (x) are
increasing for all classes j .

Proof The result follows immediately from Corollary 1 with choice a = 0 and the
optimality of the Gittins index policy [19, 21]. 
�
Theorem 4 Assume the multi-class case. TheMAX-h policy minimizes the generalized
holding costs among the non-anticipating policies if and only if class-wise functions
hc, j (x) are decreasing for all classes j .

Proof The result follows immediately from Corollary 2 with choice a = 0 and the
optimality of the Gittins index policy [19, 21]. 
�

The precondition of Theorem 4 is essentially the multi-class analogue of the pre-
condition of Theorem 2. However, the precondition of Theorem 3 is stricter than the
multi-class analogue of the precondition of Theorem 1. Below, we discuss why this
difference occurs. See Fig. 1 for an accompanying illustration.

123



Queueing Systems

Fig. 1 a If Hc, j (x) is increasing for all classes j , thenMAX-H is optimal. bBut if we weaken this condition
to Hc, j (x) being minimized at x = 0 for all classes j , then MAX-H may be suboptimal. c However, if
additionally the Hc, j (x) values of different classes j occupy non-overlapping intervals, then MAX-H is
optimal after all

For MAX-H to be optimal, in the single-class case, we require only that Hc(x)
is minimized at x = 0, whereas in the multi-class case, we require Hc, j (x) to be
increasing at all x ≥ 0. The issue withMAX-Hwhenwe only have Hc, j (x)minimized
at x = 0 is that while MAX-H correctly prioritizes jobs that have not begun service
(because Hc, j (0) = Gc, j (0) by Proposition 1), it may incorrectly prioritize jobs that
have begun service. This is not a problem in the single-class case, as all that matters
is that jobs that have begun service have priority over jobs that have not yet begun
service. But in the multi-class case, we may need to compare a class j job in service
to a class j ′ job that has not yet begun service.

However, there are cases where MAX-H is optimal even when the precondition of
Theorem 3 is not satisfied. It turns out that if the class-wise Gittins index functions
Gc, j (x) are minimized at x = 0 but have non-overlapping values, i.e.,

Gc, j (x) ≥ Gc, j ′(y) for all x, y ≥ 0 and all j < j ′,

then the class-wise Hc, j (x) functions are also minimized at x = 0 and have non-
overlapping values, thanks to Proposition 1 and the fact that Hc, j (x) ≤ Gc, j (x). In
this non-overlapping case, illustrated in Fig. 1c, the Gittins index policy reduces to
preemptive class-based priority: class j has priority over class j ′ for j < j ′, with jobs
served in FCFS order7 within each class. But MAX-H reduces to the same policy, so
it is also optimal.

We have shown that the precondition of Theorem 3 is sufficient but not necessary
for MAX-H to be optimal. Exactly stating the necessary condition, or even just a more
lenient sufficient condition, seems to be difficult. For example, one might consider the
condition that the Hc, j (x) functions are minimized at x = 0 and have non-overlapping
values. But this is neither necessary, because we might have Gc, j (x) = Hc, j (x)
whenever there is overlap; nor sufficient, because while non-overlapping Gittins index
functions Gc, j (x) suffice, this is not implied by non-overlapping Hc, j (x) functions.

7 Or, more generally, using any MAS policy (Definition 1) within each class.
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4.1 Minimizingmean slowdown in themulti-class case

We now spell out the implications of Theorems 3 and 4 to minimizing the mean
slowdown, which corresponds to holding cost rate functions c j (x) = 1/x for all job
classes j . We have the following characterizations for the optimality of the MAX-H
and MAX-h policies as direct consequences of Theorems 3 and 4, respectively.

Corollary 5 Assume the multi-class case. The MAX-H policy minimizes the mean
slowdown among the non-anticipating policies,

E[TMAX−H/S] = min
π

E[T π/S],

if class-wise functions H sld
j (x) are increasing for all classes j , where H sld

j (x) is
defined (in line with (17)) as follows

H sld
j (x) = E[1/S j | S j > x]

E[S j − x | S j > x] =
∫ ∞
x

h j (y)
y F̄j (y) dy

∫ ∞
x F̄j (y) dy

, x ≥ 0.

Corollary 6 Assume the multi-class case. The MAX-h policy minimizes the mean
slowdown among the non-anticipating policies,

E[TMAX−h/S] = min
π

E[T π/S],

if and only if class-wise scaled hazard rate functions h j (x)/x are decreasing for all
classes j .

5 Numerical examples

In this section, we illustrate numerically themain results related to theminimization of
themean slowdown. Thus, we assume that the holding cost rate is given by c(x) = 1/x
for all jobs. In addition, we give examples of the corresponding Gittins index Gsld(a)

as a function of attained service a.
For the illustration, we use theWeibull service time distribution, for which E[S] =

1
μ
Γ (1 + 1

k ) and the tail distribution function is given by

F̄(x) = e−(μx)k ,

where k > 0 is the shape parameter and μ > 0 the scale parameter. With k = 1, we
have the exponential distribution as a special case.

The scaled hazard rate for a Weibull(k, μ) distribution reads as

h(x)

x
= kμ2(μx)k−2
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and the corresponding Hc-function as

H sld(x) =
∫ ∞
x kμ2(μy)k−2e−(μy)k dy

∫ ∞
x e−(μy)k dy

.

Note that, for k = 2, both the scaled hazard rate h(x)/x and the Hc-function H sld(x)
reduce to the same constant value for all x > 0:

h(x)

x
= H sld(x) = 2μ2.

In addition, we note that the scaled hazard rate h(x)/x is decreasing (satisfying the
condition of Corollary 4) when k ≤ 2, and the Hc-function H sld(x) is increasing
(satisfying the condition of Corollary 3) when k ≥ 2.

The behavior of the Weibull distribution with different shape parameter values k is
illustrated in Fig. 2. The shape parameter takes values k ∈ {1, 2, 3, 4}, and the scale
parameter is chosen to beμ = Γ (1+ 1

k ) so that themean service time remains constant
E[S] = 1. In the top panel, we have drawn the scaled hazard rate h(a)/a as a function
of attained service a. In the middle and bottom panels, there are corresponding curves
for the Hc-function H sld(a) and the Gittins index Gsld(a), respectively. Note that, in
line with Corollaries 1 and 2, the Gittins index Gsld(a) is equal to the Hc-function
H sld(a) for all a ≥ 0 when k ∈ {2, 3, 4} and equal to the scaled hazard rate h(a)/a
for all a ≥ 0 when k ∈ {1, 2}.
Example 1 Consider first the single-class case where all jobs have the same Weibull
service time distribution with shape parameter k and scale parameter μ = Γ (1 + 1

k ).
In Fig. 3, we have drawn the mean slowdown with loads ρ = 0.5 (upper panel) and
ρ = 0.8 (lower panel) as a function of inverse shape parameter 1/k for the scheduling
policies FCFS and FB based on the following known formulas:

E[T FCFS/S] = 1 + λE[S2]E[1/S]
2(1 − ρ)

,

E[T FB/S] =
∫ ∞

0

(
1

1 − ρ(x)
+ λm2(x)

2x(1 − ρ(x))2

)

f (x) dx,

where f (x) refers to the density function,

f (x) = kμ2(μx)k−1e−(μx)k ,

ρ(x) = λE[min{S, x}], and m2(x) = E[min{S, x}2]. For comparison, we have also
drawn themean slowdown for thePS (Processor Sharing) policy based on the following
known formula:

E[T PS/S] = 1

1 − ρ
.
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Fig. 2 Weibull service time distribution: Scaled hazard rate h(a)/a (top), Hc-function H sld(a) (middle), and
Gittins indexGsld(a) (bottom) as a function of attained service a for shape parameter values k ∈ {1, 2, 3, 4}

123



Queueing Systems

Fig. 3 Single-class case (Example 1): Mean slowdown with loads ρ = 0.5 (upper) and ρ = 0.8 (lower) as
a function of inverse shape parameter 1/k for scheduling policies FCFS, PS, and FB

The shape parameter takes now continuously values k ∈ (1,∞) so that 1/k ∈ (0, 1).
In the upper panel, the load takes valueρ = 0.5, and in the lower one, we have ρ = 0.8.
Note that, in line with Corollary 3, FCFS is optimal when 1/k ≤ 1/2. However, when
1/k ≥ 1/2, the performance of FCFS becomes soon very bad as 1/k increases. In
fact, the mean slowdown of the FCFS scheduling policy approaches ∞ as 1/k → 1.
On the other hand, while FB is optimal when 1/k ≥ 1/2 (in line with Corollary 4),
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its performance decreases remarkably when 1/k ≤ 1/2, the degradation being even
worse with a higher load.

Example 2 Next we consider the multi-class case with two job classes. The service
times for each class j ∈ {1, 2} follow the Weibull distribution with shape parameter
k j and scale parameter μ j = Γ (1 + 1

k j
). Thus, E[S] = E[S1] = E[S2] = 1. We

choose k1 = 2 and k2 = 4 so that the condition of Corollary 5 is satisfied, meaning
the Gittins index policy reduces to MAX-H. In addition, we use the same arrival rate
for both classes: λ1 = λ2 = λ/2, where λ denotes the total job arrival rate. Based on
simulations, we have estimated the mean slowdown for MAX-H, FCFS, PS, and FB
with various load levels ρ = λE[S]. In each simulation run with a fixed scheduling
policy and load, we have gathered the system statistics until there are 106 job arrivals.
The results are presented in Fig. 4. In the top panel, we have the estimated total mean
slowdown for all jobs as a function of load ρ. In the middle and bottom panels, there
are corresponding curves for the jobs of classes 1 and 2, respectively. Note that, in
line with Corollary 5, MAX-H is better than the other scheduling policies for the total
mean slowdown. In addition, FCFS is consistently second best, and FB performs the
worst in this example, as expected.

Interestingly, the classwise results for the two best scheduling policies,MAX-H and
FCFS, are very different: MAX-H “prefers” class 1 to class 2, whereas FCFS behaves
just the opposite. The intuition for this is as follows. As shown in Fig. 2, under MAX-
H, the initial index of class 1 (k1 = 2) jobs is greater than that of class 2 jobs (k2 = 4),
thus explaining MAX-H’s preference for class 1 jobs. This makes sense: class 1 jobs
are more likely to be very small than class 2 jobs. Treating all jobs the same, as in
FCFS, thus leads to worse mean slowdown for class 1 jobs.

The question remains: given the very different classwise preferences, how come
MAX-H and FCFS have such similar overall mean slowdown? We believe this is due
to the fact that while a class 2 (k2 = 4) job may, when it first arrives, have worse
Gittins index than a class 1 (k1 = 2) job, after just a small amount of service, a class 2
job reaches an index higher than that of class 1 jobs (see Fig. 2). This means that
the average fraction of time that FCFS is serving a job other than the one of maximal
Gittins index is relatively small, consisting entirely of the short first segments of class 2
jobs.

Example 3 In the last example, we again consider the multi-class case with two job
classes where the service times for both classes follow the Weibull distribution with
unit mean, E[S] = E[S1] = E[S2] = 1. Now we choose the shape parameters as
follows: k1 = 1 and k2 = 2. Thus, the condition of Corollary 6 is satisfied, meaning
the Gittins index policy reduces to MAX-h in this case. As in the previous example,
we use the same arrival rate for both classes: λ1 = λ2 = λ/2, where λ denotes the
total job arrival rate. Based on simulations, we have estimated the mean slowdown
for scheduling policies MAX-h, PS, and FB with various load levels ρ = λE[S].
FCFS is left out since its performance is much worse than the other three policies in
this case. In each simulation run with a fixed scheduling policy and load, we have
gathered the system statistics until there are 106 job arrivals. The results are presented
in Fig. 5. In the top panel, we have the estimated total mean slowdown for all jobs
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Fig. 4 Multi-class case (Example 2): Simulated mean slowdown of all jobs (top), class-1 jobs (middle),
and class-2 jobs (bottom) as a function of load ρ for scheduling policies MAX-H, FCFS, PS, and FB
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Fig. 5 Multi-class case (Example 3): Simulated mean slowdown of all jobs (top), class-1 jobs (middle),
and class-2 jobs (bottom) as a function of load ρ for scheduling policies MAX-h, PS, and FB
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as a function of load ρ. In the middle and bottom panels, there are corresponding
curves for the jobs of classes 1 and 2, respectively. Note that, in line with Corollary 6,
MAX-h is better than the other scheduling policies for the total mean slowdown. In
addition, FB is consistently better than PS. Note also that the classwise results for the
two best policies, MAX-h and FB, are very different: MAX-h “prefers” clearly class 2
to class 1, whereas FB gives roughly similar performance to both classes.

6 Conclusion and discussion

We considered the optimal scheduling problem in theM/G/1 queue with rather general
holding costs, which cover, for example, the minimization of the mean slowdown. To
determine the optimal scheduling rule among the non-anticipating policies, which are
aware of the attained services of the jobs but not on their remaining service times, we
applied theGittins index approach. In the single-class case, we found the necessary and
sufficient conditions under which the FCFS rule (or any other work-conserving and
non-preemptive scheduling policy) is optimal (Theorem 1). In addition, we found the
necessary and sufficient conditions under which the FB rule is optimal (Theorem 2).
In the-multi class case, where the scheduler can identify the class of each job, we
derived the necessary and sufficient conditions under which the MAX-H and MAX-h
rules (Definitions 3 and 4, respectively) are optimal (Theorems 3 and 4, respectively).
To prove these optimality results, we needed the following technical assumptions:
the service time distributions have a right-continuous density function with left limits
and the holding cost rates are right-continuous functions of the service time with left
limits.

There are a number of directions that could be fruitful to explore in future work.
Recently, several “near optimality” results for the Gittins index or related policies
have been shown for the constant holding cost setting (c(x) = 1), so a natural ques-
tion is whether such results hold with general holding cost functions. One example
is multiserver systems: Scully et al. [20] prove mean delay bounds for the constant-
holding-cost Gittins index in the M/G/k, which Grosof et al. [10] extend to the case
where some jobs occupy multiple servers at once during service. Can we prove analo-
gous multiserver performance bounds for the Gittins index with general holing costs?
Coming back to the single-server setting, another question is whether we need the full
power of the Gittins index to have good performance. Scully et al. [22] show that a
variant of SERPT is a constant-factor approximation for mean delay in the M/G/1.
Can we show that (a variant of)MAX-H, which is the natural generalization of SERPT
to general holding costs, is a constant-factor approximation for mean holding cost?

Another potential future direction has to do with extending the ideas behind the
Gittins index to even more general objective functions. For example, there are many
objective functions which demand a time-varying holding cost, such as metrics related
to deadlines. Yu et al. [29] show how such problems can be viewed through the lens of
restless bandits and thus approached using the Whittle index, a generalization of the
Gittins index. The Whittle index has been used for other queue scheduling problems
[4, 9, 15], including recent work on the age-of-information metric [13, 14, 24]. Unlike
the Gittins index, we should not expect the Whittle index to yield optimal policies in
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general, but it often yields policies that are in some sense asymptotically optimal. For
the Gittins index, we now have a general theory of its optimality in the M/G/1. Can
we develop a similarly general theory of the Whittle index’s asymptotic optimality?
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