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a b s t r a c t

In this paper, we propose an approach to learn stable dynamical systems that evolve on Riemannian
manifolds. Our approach leverages a data-efficient procedure to learn a diffeomorphic transformation,
enabling the mapping of simple stable dynamical systems onto complex robotic skills. By harnessing
mathematical techniques derived from differential geometry, our method guarantees that the learned
skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternions
(UQ) for orientation and symmetric positive definite (SPD) matrices for impedance. Additionally, the
method preserves convergence towards a given target. Initially, the proposed methodology is evaluated
through simulation on a widely recognized benchmark, which involves projecting Cartesian data
onto UQ and SPD manifolds. The performance of our proposed approach is then compared with
existing methodologies. Apart from that, a series of experiments were performed to evaluate the
proposed approach in real-world scenarios. These experiments involved a physical robot tasked with
bottle stacking under various conditions and a drilling task performed in collaboration with a human
operator. The evaluation results demonstrate encouraging outcomes in terms of learning accuracy and
the ability to adapt to different situations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Robots that successfully operate in smart manufacturing have
o be capable of precisely controlling their behavior in terms of
ovements and physical interactions [1]. In this regard, modern

ndustrial and service robots need flexible representations of such
ntended behaviors in terms of motion, impedance, and force
kills (see Fig. 1). The development of such representations is a
ey aspect in speeding up the integration of robotic solutions in
ocial and industrial environments.
Learning approaches have the possibility to unlock the full

otential of smart robotic solutions. Among the others, the Learn-
ng from Demonstration (LfD) paradigm [2] aims at developing
earning solutions that allow the robot to enrich its skills via
uman guidance. Among the several existing approaches [3,4],
he idea of encoding robotic skills into stable Dynamical Systems
DSs) has gained interest in the LfD community [5–12]. In this
ontext, a robotic skill is any robot motion, either with a given
tart and goal (point-to-point or discrete motion), or periodic. A
inear point-to-point motion is an example of simple robotic skill
hat can be generated, for instance, with a linear DS. Point-to-
oint motions with an arbitrarily complex path connecting start
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and goal points are examples of complex robotic skills that a non-
linear DS can effectively generate. To learn complex robotic skills,
DS-based approaches for LfD assume that the demonstrations of
a robotic skill are observations of the time evolution of a DS. DSs
are flexible motion generators that allow, for example, to encode
periodic and discrete motions [13], to reactively avoid possible
collisions [14–16], or to update the underlying dynamics in an
incremental fashion [17,18].

Although DS-based representations have several interesting
properties, most works assume that the data are observations of
Euclidean space. However, this is not always the case in robotics
where data can belong to a non-Euclidean space. Typical ex-
amples of non-Euclidean data are orientation trajectories rep-
resented as rotation matrices and Unit Quaternions (UQs), and
Symmetric Positive Definite (SPD) matrices for quantities such as
inertia, impedance gains, and manipulability, which all belong to
Riemannian manifolds. Applying standard arithmetic tools from
Euclidean geometry on Riemannian manifolds leads to inaccura-
cies and incorrect representations, which can be avoided if the
proper mathematical tools developed for Riemannian manifolds
are used [19].

In this paper, we propose the following.

• A novel geometry-aware approach to encode demonstra-
tions evolving on a Riemannian manifold into a stable dy-

namical system (SDS-RM).

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Comparison among state-of-the-art approaches for LfD on Riemannian manifolds and SDS-RM.

End-Point Multiple demos Multimodal Time-independent Data-efficiency Accuracy+ Training time

DMP [20,21] ✓ – – – high medium low
R-GMM [22] ✓ ✓ – – high medium low
FDMa [9] ✓ – – ✓ high medium low
E-FLOW [23] ✓ ✓ ✓ ✓ low mediumb high
I-FLOW [24–26] ✓ ✓ ✓ ✓ low mediumb high
SDS-RM (ours) ✓ ✓ ✓ ✓ high high low

aFDM is not designed to work on Riemannian manifolds. However, our formulation allows us to use them to learn a diffeomorphism in TS.
bE-FLOW and I-FLOW need a hyperparameter search to reach high accuracy. However, performing a hyperparameters search requires a GPU cluster and it is beyond
the scope of this paper. With trial and error, we found a hyperparameter configuration that gives a medium accuracy.
Fig. 1. Experimental setups involving a robot (Franka Emika Panda) and Rieman-
nian data. (Left) The robot stacks a bottle on a rack. This task requires adaptation
of position and orientation (UQ). (Right) The robot performs collaborative drilling
with a human. This task exploits stiffness (SPD matrix) modulation.

• Mathematical foundations for SDS-RM to work in any Rie-
mannian manifold. In the paper, we provide two manifolds
as case studies: (i) UQ, and (ii) SPD manifolds.

• A data-efficient approach, based on Gaussian Mixture Mod-
els (GMMs), to learn diffeomorphisms on Riemannian man-
ifolds.

• An extension of the LASA handwriting dataset [6], a pop-
ular benchmark in DS-based LfD, to generate UQ and SPD
trajectories. The resulting Riemannian LASA dataset, pub-
licly available at gitlab.com/geometry-aware/riemannian-
lasa-dataset, will serve as a benchmark for a quantitative
comparison of newly developed approaches.

To this end, SDS-RM leverages the concept of diffeomorphism
(a bijective, continuous, and continuously differentiable map-
ping with a continuous and continuously differentiable inverse),
to transform simple and stable (base) dynamics into complex
robotic skills. Building on tools from Riemannian geometry, we
first present rigorous stability proofs for the base and the dif-
feomorphic DSs. We then present a data-efficient approach that
leverages a GMM [27] to learn the diffeomorphic mapping from
linear motion to an arbitrarily complex demonstration, that is,
a demonstration of a point-to-point motion on a Riemannian
manifold with a possibly nonlinear path connecting start and goal
points. As a result, we obtain a DS that accurately represents
data evolving on Riemannian manifolds and that preserves the
convergence to a given target as well as the geometric structure
of the data.

The rest of the paper is organized as follows. Section 2 presents
the related literature. Basic concepts of Riemannian geometry are
given in Section 3. Section 4 provides the theoretical foundations
of SDS-RM. In Section 5, we present an approach to learn stable
skills via diffeomorphic maps. SDS-RM is evaluated on a public
benchmark and compared against a state-of-the-art approach
in Section 6. Experiments on a real robot (Franka Emika Panda)
2

are presented in Section 7. Section 8 states the conclusion and
proposes further research directions.

2. Related works

Classification on Riemannian manifolds is a well-studied
problem in computer vision. In this regard, [28] proposes a dis-
tance measure for SPD matrices and exploits it in a similarity-
based algorithm used for image classification. In order to recog-
nize faces in videos, Huang et al. [29] propose a metric learning
approach that learns a metric between Euclidean and Rieman-
nian input spaces. Chakraborty et al. [30] extend the convolution
operation to Riemannian manifolds using the weighted Frechét
mean. In general, approaches that attempt to adapt deep neural
networks to non-Euclidean fall under the umbrella of geometric
deep learning [31].

However, LfD is a regression problem that received less in
the literature on manifold learning. Therefore, in the rest of this
section, we discuss LfD both in general and with a specific focus
on DS-based and geometry-aware learning approaches. For a
clear comparison, the main features of SDS-RM and of existing
approaches are summarized in Table 1.

Learning from Demonstration (LfD) provides a user-friendly
framework that allows non-roboticists to teach robots and en-
ables robots to autonomously perform new tasks based on that
human demonstration [2]. Over the last couple of decades, several
LfD approaches have been developed [3,4]. LfD approaches can be
categorized into two main groups depending on the underlying
learning strategy: (i) deterministic approaches that try to repro-
duce the demonstrations with a function approximator, e.g., a
neural network [32,33], and (ii) probabilistic approaches that
learn a probability distribution from the demonstrations. Exam-
ples of this category include GMM [34], Task-Parameterized GMM
(TP-GMM) [35], Probabilistic Movement Primitives (ProMP) [36],
and Kernelized Movement Primitive (KMP) [37].

In both groups, it is possible to learn and retrieve a static
or a dynamic mapping between input and output. In a static
mapping the current input, e.g., the time, is mapped into the
desired output, e.g., the robot’s joint angles, while a DS maps
the input, e.g., the robot joint angles, into its time derivative(s),
i.e., the joint velocities. In this paper, we focus on learning stable
DSs from data belonging to Riemannian manifolds. However, in
order to provide a more comprehensive review of the exist-
ing literature, we also highlight some recent Riemannian-based
approaches that learn static mappings. Zeestraten et al. [38] ex-
ploited Riemannian metrics to learn orientation trajectories with
TP-GMM. Huang et al. [37] proposed to train KMP in the tan-
gent space of unit quaternion trajectories. Kinaesthetic is used
to estimate full stiffness matrices of an interaction task, which
is subsequently used to learn force-based variable impedance
profiles using Riemannian metric-based GMM/Gaussian Mixture
Regression (GMR) [39]. Later the authors proposed to train KMP
on the tangent space of SPD matrices [40]. Jaquier et al. [41]
formulated a tensor-based GMM/GMR on SPD manifold, which

https://gitlab.com/geometry-aware/riemannian-lasa-dataset
https://gitlab.com/geometry-aware/riemannian-lasa-dataset
https://gitlab.com/geometry-aware/riemannian-lasa-dataset
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ater has been exploited in manipulability transfer and tracking
roblem [42]. Calinon [22] extended the GMM formulation to
variety of manifolds including UQ and SPD. We name this

pproach Riemannian GMM (R-GMM). R-GMM is a prominent ap-
roach to performing learning from multiple demonstrations on
iemannian manifolds and we compare its performance against
DS-RM in Section 6.
Encoding manipulation skills into stable DSs is achieved by

everaging time-dependent or time-independent DSs. Dynamic
ovement Primitives (DMPs) [5] are a prominent approach to
ncoding robotic skills into time-dependent representations. The
lassical DMP formulation has been extended in different ways
43]. Among the others, extensions to Riemannian manifolds are
elevant for this work. Abu-Dakka et al. extend classical DMPs to
ncode discrete [44] and periodic [45] unit quaternion trajecto-
ies, while the work in [20] also considers rotation matrices. The
tability of orientation DMPs is shown in [46]. In [21], DMPs are
eformulated to generate discrete SPD profiles. DMPs exploit a
ime-driven forcing term, learned from a single demonstration, to
ccurately reproduce the desired skill. The advantage of having
time-driven forcing term is that the learning scale well to
igh-dimensional spaces—as the learned term only depends on
scalar input. The disadvantage is that the generated motion is

orced to follow the stereotypical (i.e., demonstrated) one and
eneralizes poorly outside the demonstration area [8]. Alternative
pproaches [18,47] learn a state-depended forcing term, but they
till use a vanishing time signal to suppress the forcing term and
etrieve asymptotic stability. The tuning of this vanishing signal
ffects the reproduction accuracy. Moreover, time-dependent DSs
enerate time indexed trajectory that may become unfeasible if
n external perturbation distracts the robot from the trajectory.
n the contrary, time-independent DSs generate the next point
ased on the current value of the input and are robust to external
erturbations.1
The Stable Estimator of Dynamical Systems (SEDS) [6] is one

f the first approaches that learn stable and autonomous DSs.
t exploits Lyapunov theory to derive stability constraints for a
MR-DS. The main limitations of SEDS are the relatively long
raining time and the reduced accuracy on complex motions. The
oss of accuracy is caused by the stability constraints, which has
een called the accuracy vs stability dilemma [8]. To alleviate this
ssue, the approach in [11] derives weak stability constraints for a
eural network-based DS. Contraction theory [48] is used in [10]
o derive stability conditions for a GMR-DS in Euclidean space,
nd in [49] to encode stable UQ orientations. The extension of
EDS in [7] significantly reduces inaccuracies and training time
y separately learning a (possibly) unstable DS and a stabilizing
ontrol input.
Alternative approaches leverage a diffeomorphic mapping be-

ween Euclidean spaces to accurately fit the demonstrations
hile preserving stability. Neumann et al. [8] learn a diffeomor-
hism to map the demonstrations into a space where quadratic
tability constraints introduce negligible deformations. The ap-
roach is effective but needs a long training time, as experi-
entally shown in [47]. In a similar direction, Euclideanizing
lows (E-FLOW) [23] fits a diffeomorphism that linearizes the
emonstrations as if they were generated by a linear DS. The
pposite idea, i.e., transform straight lines into complex mo-
ions, is exploited Fast Diffeomorphic Matching (FDM) [9] and
y Imitation Flow (I-FLOW) [24,25]. FDM uses a composition
f locally weighted (with an exponential kernel) translations
o rapidly fit a diffeomorphism from a single demonstration.
DS-RM builds on similar ideas, but it works on Riemannian data

1 The reader is referred to [5,43] for a thorough discussion on advantages and
isadvantages of time-dependent and time-independent DS representations.
3

Fig. 2. A Riemannian manifold M (green surface) and its tangent space TmM
(gray plane) centered at m. The logarithmic Logm (·) and exponential Expm (·)

maps move points from the manifold (a and b) to the tangent space (a and
b) and vice-versa. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

and with multiple demonstrations. FDM is representative of a
class of LfD approaches (including DMP) that learn from a single
demonstration and it is interesting to compare its performance
against SDS-RM. This experimental comparison is conducted in
Section 6.

E-FLOW and I-FLOW exploit deep invertible neural networks
to learn a diffeomorphic mapping. Invertible neural networks
are slightly more accurate than classical methods, as experi-
mentally shown in [24]. However, as shown in [26] and in the
experimental comparison carried out in Section 6, approaches
based on deep networks require long training time and intense
hyperparameters search, which represents a limitation in typical
LfD settings. Therefore, SDS-RM leverages a mature and data-
efficient approach in LfD (GMM/GMR) to fit a diffeomorphism
on a manifold. In our previous work [26], we extend I-FLOW
to Riemannian manifolds by projecting training data in a single
tangent space. However, using a single tangent space is known to
introduce approximation errors [22]. Moreover, a formal stability
proof is missing in [26]. In this respect, SDS-RM builds on rigorous
stability analysis and uses a moving tangent space to project
the data, which minimizes inaccuracies as experimentally shown
in Section 5.4.

Finally, the Riemannian Motion Policy (RMP) framework [50,
51] consists of closed-loop controllers embedded in a second-
order dynamics that exploits the Riemannian metric to optimally
track a reference motion. In this respect, RMP and SDS-RM are
complementary: SDS-RM can be used to generate the desired
motion and RMP to optimally track it.

3. Background

A Riemannian manifold M is a smooth differentiable topo-
logical space, for each point of which m ∈ M, it is possible
to compute a Tangent Space (TS) TmM (see Fig. 2). The TS is
equipped with a positive definite inner product ⟨a, b⟩m ∈ R,
where a, b ∈ TmM and m ∈ M is the point where the
TS is computed. The inner product allows the definition of the
notion of distance on the manifold. Depending on the Riemannian
manifold, points on the TS can be vectors, matrices, or more
complex mathematical objects. For example, a TS of UQs consists
of 3D vectors, while a TS of SPD matrices consists of symmetric
matrices. In this work, we indicate a point on the TS using bold
capital letters, i.e., a ∈ TmM.

The operator that transforms points from a Riemannian man-
ifold to its tangent space is the logarithmic map Logm (·) : M →

TmM. Its inverse operator is called the exponential map Expm (·) :

TmM → M. The parallel transport Tm1→m2 : Tm1M → Tm2M
moves elements between tangent spaces while preserving their

angle.
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Table 2
Re-interpretation of basic standard operations in a Riemannian manifold [53].

Euclidean space Riemannian manifold

Subtraction −→ma = a − m −→ma = Logm (a)
Addition p = m +

−→ma a = Expm

(
−→ma
)

Distance dist(m, a) = ∥a − m∥ dist(m, a) = ∥
−→
mp∥m

Interpolation m(t) = m1 + t−−−→m1m2 m(t) = Expm1
(t−−−→m1m2)

In case of UQ manifold, a point on the manifold is a =

+ u, the distance between two UQs a1 and a2 is d(a1, a2) =

rccos(a2
⊤a1), ā = ν−u is the conjugate of a, and a1∗a2 indicates

he quaternion product. Given this, we can define [20]

xpm (a) =

⎧⎨⎩
[
cos(∥a∥) + sin(∥a∥) a

∥a∥

]
∗ m, ∥a∥ ̸= 0[

1 + [0 0 0]⊤
]
∗ m, otherwise,

(1)

Logm (a) = Log(a ∗ m̄) =

{
arccos(ν) u

∥u∥
, ∥u∥ ̸= 0

[0 0 0]⊤, otherwise.
(2)

Note that the mappings in (1)–(2) are derived from Lie the-
ory [52], which is widely used in robotics. In this formulation,
the mappings are defined in the Lie algebra (the TS at 1 + [0 0
0]), and the quaternion product is used to parallel transport the
vectors from the Lie algebra to the TS placed at a different point
(e.g., m).

In case of SPD manifold, the operators are defined as in [53,54]

Expm (a) =m
1
2 expm

(
m−

1
2 am−

1
2

)
m

1
2 , (3)

Logm (a) =m
1
2 logm

(
m−

1
2 am−

1
2

)
m

1
2 , (4)

Tm1→m2 (a) = m
1
2
2 m

1
2
1 am

1
2
1 m

1
2
2 , (5)

where expm(·) and logm(·) are the matrix exponential and log-
arithm functions respectively. Here, the affine-invariant distance
[53] is used to compute d(a,m)

(a,m) =

logm(m−
1
2 am−

1
2

)
F
, (6)

where ∥·∥F is the Frobenius norm.
Other basic operations on manifolds can be computed as

shown in Table 2.

4. Diffeomorphic DS on manifolds

Inspired by [23], we apply a diffeomorphism to a stable (base)
DS evolving on the Riemannian manifold (see Fig. 3). The diffeo-
morphism is learned from a set of demonstrations and deforms
the trajectories of the base DS to accurately match the demon-
strations. In order to effectively apply this idea, we first need to
design a stable DS evolving on the Riemannian manifold. This
DS provides the basic motion that connects the initial point to
the desired goal. Second, we need to show that a diffeomorphic
transformation preserves the stability of the base DS. This result,
known for the Euclidean space, extends to Riemannian manifolds
as shown in this section.

4.1. Base DS on Riemannian manifolds

In Euclidean space, a linear DS in the form

ẋ = −kx(x − g) (7)

is often used as base2 DS. Indeed, if the gain kx > 0, the linear
DS in (7) is globally exponentially stable [55]. This implies that

2 Note that some authors assume, without loss of generality, that g = 0.
4

Fig. 3. The idea of SDS-RM is to learn a diffeomorphic mapping between TSs
to transform the trajectories of a base DS into complex motions. Motion on the
TS is projected back and forth to the underlying Riemannian manifold using
exponential and logarithmic maps respectively.

the linear DS generates trajectories connecting any initial point
x(0) ∈ Rn with any goal g ∈ Rn.

We seek an ‘‘equivalent’’ of the stable linear dynamics for
Riemannian manifolds. In this work, the base DS is the non-linear
dynamics

ȧ = kaa = kaLoga (g) ∈ TaM, (8)

where the logarithmic map is introduced in Section 3 and its
expression depends on the considered Riemannian manifold. The
non-linear DS in (8), called a geodesic DS, shares similarities with
the linear DS in (7) and, for this reason, it is used in this work as
base DS. Indeed, similarly to the term (x−g) in (7), the logarithmic
map in (8) represents the displacement between the current point
a ∈ M and the goal g ∈ M. It is worth mentioning that in (8) we
consider the TS at the current state a instead of a fixed TS at the
goal g. As discussed in [22], working in a single TS is inaccurate
and introduces severe deformations in the learned trajectory. On
the contrary, in our formulation we always place the TS at the
current point, therefore minimizing the distortion.

As stated in Theorem 1, The base DS in (8) is also stable if
the gain ka > 0. This implies that the base DS in (8) generates
trajectories connecting any initial point a(0) with any goal g
(see Fig. 4). Stability results are formally stated in Theorem 1
(asymptotic stability) and Remark 3 (exponential stability).

Theorem 1. Let the gain ka > 0. Assume also that Logg(a) =

−Tg→aLoga (g), where Tg→a is the parallel transport from g to a.
Under these assumptions, the DS in (8) has a globally (in its domain
of definition) asymptotically stable equilibrium at g.

Proof. Let us express the velocity field (8) in g using parallel
transport. By assumption, it holds that

Tg→aȧ = −kaLogg(a) ∈ TgM. (9)

To prove the stability of (9), one can define the Lyapunov candi-
date function [56]

V (a) = ⟨a, a⟩g = ⟨Logg(a), Logg(a)⟩g (10)

and follow the same arguments outlined in [42, Section 4.2.2] for
SPD matrices. □

Remark 1. The assumption made in Theorem 1 that logg(a) =

−Tg→aLoga (g) holds for any Riemannian manifold [57, Theorem
6].
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emark 2. The results of Theorem 1 hold where the logarithmic
ap is uniquely defined, i.e., in a region that does not contain
oints conjugate to g [56]. For SPD matrices, this holds every-
here [53]. Hence, Theorem 1 is globally valid on the manifold
f SPD matrices. For unit m-sphere (including UQ), instead, the
ogarithmic map Loga (·) is defined everywhere apart from the
ntipodal point −a [58].

Even if it is not strictly required in our approach, it is inter-
sting to show that, like the linear DS in (7), the DS in (8) is
xponentially stable.

emark 3. Under the assumptions of Theorem 1, the DS in (8)
as a globally (in its domain of definition) exponentially stable
quilibrium at g [42, Section 4.2.2].

.2. Diffeomorphic DS

A diffeomorphic map or a diffeomorphism ψ is a bijective,
ontinuous, and with continuous inverse ψ−1 change of coor-
dinates. In this work, we assume that ψ : TaM → TaM,
i.e., the diffeomorphism transforms a global coordinate a ∈ TaM
into another global coordinate b = ψ(a) ∈ TaM. Further,
the diffeomorphism ψ is assumed to be bounded, i.e., it maps
bounded vectors into bounded vectors.

In order to match a set of demonstrations, we apply ψ to the
base DS in (8). More in detail, let us assume that a = Loga (g), and
that the dynamics of the global coordinates ȧ is described by (8).
By taking the time derivative of b, we obtain the DS [23]

ḃ =
∂ψ

∂a
ȧ = kaJψ (ψ−1(b))ψ−1(b), (11)

where Jψ (·) is the Jacobian matrix of ψ evaluated at a particular
point and the inverse mapping a = ψ−1(b) is used to remove the
dependency on a. Having assumed thatψ is a bounded diffeomor-
phism, the right side of (11) satisfies the Lipschitz condition and,
therefore, the DS in (11) admits a unique solution. The stability
of the diffeomorphic dynamics in (11) is stated by the following
theorem.

Theorem 2. The diffeomorphic DS in (11) inherits the stability
properties of the base DS in (8). That is if the base DS is globally (in
its domain of definition) asymptotically stable so is the diffeomorphic
DS.

Proof. From the proof of Theorem 1, it holds that V (a) defined
in (10) is a Lyapunov function for the base DS in (8). As shown
in [23, Section 3.2], the function Vψ (b) = ⟨ψ−1(b), ψ−1(b)⟩g′ ,
where g′ is the point where ψ−1(Loga (g)) = 0, is a valid
Lyapunov function for the diffeomorphic DS in (11). □

Remark 4. Theorem 2 states the convergence of the DS (11) to
the equilibrium g′. This point may differ from the equilibrium g of
the base DS (8). However, in LfD, we are interested in converging
to a given goal—let’s say g for simplicity. Assuming that the in-
verse mapping ψ−1(·) is identity at the goal, i.e., ψ−1(Loga (g)) =

Loga (g) = 0, it is straightforward to show from Theorem 2 that
the DS (11) also convergences to g.

Given the global coordinate b, we compute the corresponding
manifold point b through the exponential map as

b = Expa(b). (12)

Recalling that the exponential map is a local diffeomorphism, the
composite mapping Expa(b) = Expa ◦ ψ(a) can be considered a
diffeomorphism between manifolds.
5

5. Learning stable skills via diffeomorphisms

The stability theorems provided in Section 4 give solid the-
oretical foundations to our learning approach. In this section,
we describe how to generate training data suitable to learn a
diffeomorphic map on manifolds. The approach, as well as the
derivations in Section 4, are quite general and allow the use of
different approaches to find the sought diffeomorphism. We then
describe how GMM/GMR, a consolidated and data-efficient ap-
proach for LfD, can be extended to learn such a diffeomorphism.
Finally, we discuss how to apply our approach to two popular
Riemannian manifolds, namely the unit quaternions and the SPD
matrices.

5.1. Data pre-processing

We aim at learning a diffeomorphism ψ(·) that maps the
trajectory a(t), solution of the base DS in (8), into an arbitrarily
complex demonstration. To this end, let us assume the user
provides a set of D ≥ 1 demonstrations each containing L points
on a Riemannian manifold. Demonstrations are organized in the
set B =

{
bd
l

}L,D
l=1,d=1, where each bd

l ∈ M. We also assume
that the demonstrations converge to the same goal (b1

L = · · · =

bD
L = g) and that a sampling time δt is known. When collecting

demonstrations using kinesthetic teaching, it is possible to ob-
serve some variations in the final point. In this case, we re-scale
the trajectories to converge to the same goal, which is defined
by the user (e.g., as the average of the end points). It is worth
mentioning that, when orientation trajectories are collected from
demonstrations with a real robot, it is needed to extract UQs
from rotation matrices. This is because the robot’s forward kine-
matics is typically expressed as a homogeneous transformation
matrix [59]. While numerically extracting UQs from a sequence
of rotation matrices, it can happen that the approach returns a
quaternion at time t and its antipodal at t + 1. This is because
antipodal UQs represents the same rotation. To prevent this dis-
continuity, one can check that the dot product qt · qt+1 > 0,
otherwise, replace qt+1 with −qt+1.

Given the set of demonstrationsB, we generate a set of D base
trajectories by projecting (8) on the manifold. More in detail, we
set the initial condition ad

1 = bd
1 and project the tangent space

velocity on the manifold using the exponential map as

ad
l+1 = Expadl

(
δt ȧd

l

)
∀ l, d (13)

The time derivative ȧd
l is defined as in (8), and the exponen-

tial/logarithmic maps for UQ and SPD manifolds are defined as
in Section 3.

The D base trajectories are organized in a set A =
{
ad
l

}L,D
l=1,d=1.

n order to transform the datasets A and B into suitable training
ata we proceed as follows. We use the logarithmic map adl =

ogadl (g), ∀l, d to project the goal g in each TS placed at adl . We
se the logarithmic map bd

l = Logadl (b
d
l ), ∀l, d to project each

oint in B in the TS placed at adl . As a result, we obtain the sets
=
{
adl
}L,D
l=1,d=1 and B =

{
bd
l

}L,D
l=1,d=1. In other words, we have in

the points from the base the DS (8) that exponentially converge
owards g and in B their demonstrated values. Note that each adl
nd bd

l is expressed in the same TS to make them comparable.
After this procedure, the learning problem becomes how to

it a mapping between A and B while preserving the stability.
xploiting the theoretical results in Theorem 2 and Remark 4, this
earning problem is solved by fitting a diffeomorphism between

and B. The resulting approach is presented in the rest of this
ection.
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.2. GMM /GMR-based diffeomorphism

A GMM [27] models the joint probability distribution p(·) be-
ween training data as a weighted sum of K Gaussian components
(·), i.e.,

(a, b|Θk) =

K∑
k=1

πkN (a, b|µk,Σk), (14)

here each Θk = {πk,µk,Σk} contains learning parameters. The
K mixing weights πk satisfy

∑K
k=1 πk = 1, while the means and

covariance matrices are defined as

µk =

[
µa

k
µb

k

]
, Σk =

[
Σaa

k Σab
k

Σba
k Σbb

k

]
. (15)

As shown in [13] for periodic DSs in Euclidean space, we
an use conditioning and expectation on the joint distribution
n (14) to compute the mapping ψ(a) and its inverse ψ−1(b). The
sought mappings ψ(a) = E[p(b|a)] and ψ−1(b) = E[p(a|b)] are
computed in closed-form using GMR [27,60] as:

ψ(a) =

K∑
k=1

hk(a)
(
µb

k

+Σba
k (Σaa

k )−1(a − µa
k)
)
,

hk(a) =
πkN (a|µa

k,Σ
aa
k )∑K

i=1 πiN (a|µa
i ,Σ

aa
i )
,

(16)

nd

−1(b) =

K∑
k=1

hk(b)
(
µa

k

+Σab
k (Σbb

k )−1(b − µb
k)
)
,

hk(b) =
πkN (b|µb

k,Σ
bb
k )∑K

i=1 πiN (b|µb
i ,Σ

bb
i )
.

(17)

t is worth noticing that since both ψ(a) and its inverse ψ−1(b)
exist and are differentiable, ψ(a) is a diffeomorphism.

In order to build the DS in (11), we need to compute the
Jacobian matrix Jψ (a) which has the closed-form expression given
in (18). For completeness, we provide the full derivation of Jψ (a)
in Appendix A. Note that the term ψ̂(a) in (18) is already com-
puted in (16) and can be reused to speed up the computation of
the Jacobian.

Jψ (a) =

K∑
k=1

hk(a)
[
Σba

k (Σaa
k )−1

+

( K∑
i=1

hi(a)
(
Σaa

i

)−1 (a − µa
i )−

hk(a)
(
Σaa

k

)−1 (a − µa
k)
)
ψ̂(a)⊤

]
,

ψ̂(a) = µb
k + Σba

k (Σaa
k )−1(a − µa

k).

(18)

5.3. Point-to-point motion on Riemannian manifolds

The GMM/GMR-based diffeomorphism presented in the pre-
vious section does not explicitly consider that we aim at repro-
ducing discrete motions, i.e., motions with a specific initial and
final point. In particular, there is no guarantee that the learned
diffeomorphism is an identity at the goal, i.e., that ψ(Logg(g)) =

ψ(0) = ψ−1(0) = 0, which is sufficient to guarantee that
base and diffeomorphic DSs have the same goal (Remark 4). This
property is of importance in DS-based LfD, as we are generally
6

Fig. 4. The convergence rate of the base DS in (8) depends on the gain ka =
k
Lδt .

The figure shows the trajectory of the first entry a11 of a 2 × 2 SPD matrix for
a11(0) = 3, g11 = 1, L = 100, δt = 0.01 s, and k ∈ [1, 2, 3, 5].

nterested in converging to a given target that is independent of
he learning process. Moreover, since the base and diffeomorphic
Ss have the same initial condition (a0 = b0), it is also beneficial

that the learned diffeomorphism is an identity at the initial point,
i.e., that ψ(Loga0 (g)) = a0 = ψ−1(Loga0 (b0)) = b0, to prevent
iscontinuities in the initial velocity.
In order to force the diffeomorphism to be an identity at the

oal, we augment the learned GMM with a ‘‘small’’ component
laced at Logg(g) = 0. More in details, we augment the K learned
omponents of the GMM (14) with πK+1 and N (a, b|µK+1,ΣK+1)
nd set µK+1 = 0 and ΣK+1 = kN I. We re-scale the priors from
to K as πk = πk − πK+1/K to ensure that the K + 1 priors sum

up to one. Conditioning with this new component makes points
be mapped arbitrarily close to the goal. The distance to the goal
depends on the gain kN . In this work, we set kN = 1 × 10−5

nd πK+1 = 0.01. We use a similar strategy to enforce a smooth
tart. Given the initial point on the manifold a0 = b0 = a,
e project it into the TS and place a small Gaussian around

t, i.e., π0 = 0.01 and N (a, b|µ0 = [Loga(g)⊤, 0⊤
]
⊤,Σ0 =

1 × 10−5I). Conditioning with this new component ensures that
ψ(Loga(g)) ≈ ψ−1(Loga(b0)) ≈ Loga(g).

The possibility to change the goal, even on-the-fly (goal switch-
ing), is one of the appealing properties of DS-based skill rep-
resentations. Changing the goal in our SDS-RM also is possible.
However, as already known for other DS-based approaches [21],
switching the goal may cause jumps in the generated trajectories
and consequently high acceleration of the robot. In order to
avoid this problem, we exploit a geodesic dynamics that smoothly
varies the goal from g to gnew . In formulas

˙new = kgLogg(gnew), (19)

here kg > 0 ensures convergence to gnew as stated in Theo-
em 1. An example of this procedure applied to UQ is shown in
ection 7.1.
The tunable gain kb controls the convergence rate of the base

S in (8) (see Fig. 4). Given the demonstrations B =
{
bd
l

}L,D
l=1,d=1

nd the sampling time δt , we want that ad
L – obtained using (13)

reaches bd
L within a certain time. As shown in Fig. 4, too small

alues of kb may fail to ensure that ad
L ≈ bd

L . On the contrary, too
arge values of kb cause a large part of the trajectory to be close
o bd

L . This makes the learning problem harder as similar points
eed to be mapped into potentially different ones, i.e., the data
istribution tends to be multi-modal. Inspired by results from
inear systems analysis, we can rewrite the control gain as ka =
k
Lδt . Dividing by Lδt makes the control gain independent from
he number of samples and training time. Therefore, the newly
ntroduced parameter k produces the same results at different
emporal scales. Given the initial point on the manifold a(0), one
an choose how well the base trajectory has to reach the goal and
efine k accordingly.
The proposed approach to learn stable DS on Riemannian

anifolds is summarized in Algorithm 1.
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Algorithm 1: SDS-RM
1: Pre-process data

– Collect demonstrations B =
{
bd
l

}L,D
l=1,d=1

– Define the sampling time δt
– Compute base trajectories A =

{
ad
l

}L,D
l=1,d=1 using (13)

– Project to TS using Loga(g) ((2) or (4)) to obtain
A =

{
adl
}L,D
l=1,d=1, B =

{
bd
l

}L,D
l=1,d=1. (For SPD profiles,

vectorize data using Mandel’s notation.)

2: Learn a diffeomorphism represented as a GMM

– Place a small Gaussian component at the origin of the
TS (πK+1 = π , N (a, b|0, kN I))

– Place a small Gaussian component at the initial point
(π0 = π , N (a, b|a, kN I))

3: Generate Riemannian motion via GMR

– Compute ψ−1 from (17), Jψ from (18), and the velocity
from (11).

– Project on the manifold using (13).

Fig. 5. Results obtained with SDS-RM on the ‘‘N’’ shape.

5.4. Learning in current and fixed TS

In this example, we show the benefits of learning manifold
otions in the tangent space placed at the current point, called

he current TS in this work, in contrast to projecting the entire
rajectory in a unique (fixed) TS. We use the ‘‘N’’ shape on S2

rovided in [22] and shown in Fig. 5 (black dots). The trajec-
ory is designed to span both the north and south hemispheres,
here the Lie algebra is known to introduce a non-negligible
pproximation [22].
We follow the steps in Algorithm 1 using in one case the

urrent TS and the Lie algebra (i.e., the TS at the north pole)
n the other. Qualitative results in Fig. 5(a) confirm that using
he current TS, SDS-RM can effectively encode the trajectory. The
ame result can be obtained using a TS at the goal and parallel
ransporting the data at each step (see the assumption in Theo-
em 1). However, this choice would increase the computational
omplexity due to the need for parallel transport. As expected,
sing the Lie algebra results in severe distortions (Fig. 5(b)).

. Validation

In this section, we validate the proposed approach on a public
enchmark – properly modified to represent trajectories evolving
 2

7

on UQ and SPD manifolds – and compare the results against
FDM [9], R-GMM [22], and E-FLOW [23]. It is worth mention-
ing that FDM has not been designed to work on Riemannian
manifolds. However, the procedure described in Section 4 allows
exploiting different approaches to fit a diffeomorphism between
TSs.

6.1. The Riemannian LASA dataset

In the LfD literature, there is no available dataset to test DS-
based algorithm on Riemannian manifolds. Therefore, we have
created a new one by modifying the popular benchmark – the
LASA handwriting data-set [6] – to generate manifold (namely
UQ and SPD) motions. The LASA handwriting contains 30 classes
of 2D Euclidean motions starting from different initial points and
converging to the same goal [0, 0]⊤. Each motion is demonstrated
7 times. A demonstration has exactly 1000 samples and includes
position, velocity, and acceleration profiles.

The key idea to generate Riemannian data from Euclidean
points is to consider each demonstration as an observation of a
motion in the TS of a given Riemannian manifold. This allows us
to use the exponential map to project the motion onto the man-
ifold. As discussed in Section 3, the TS is computed wrt a point
on the manifold. For converging motions, as the one generated
by SDS-RM, the TS can be conveniently placed at the goal. We
defined the goal as qg = 1 + [0, 0, 0]⊤ for UQs and as G =

diag([100, 100]) for SPD matrices, but other choices are possible.
It is worth noticing that the described procedure is rather general
and can be applied to Euclidean benchmarks different from the
LASA dataset.

Data in the original LASA dataset are 2D (xy-plane), but the TS
of UQs and 2 × 2 SPD matrices are3 3D. To add the third dimen-
sion, we consider the 7 demonstrations of each motion class as
a matrix Ci for i = 1, . . . , 30 with 14 rows and 1000 columns.
Out of each Ci, we extract the 4 matrices C1,i = Ci[0 : 2, :], C2,i =

Ci[4 : 6, :], C3,i = Ci[8 : 10, :], and C4,i = Ci[[12, 13, 0], :]. As a
result, we obtain 4 demonstrations for each motion class, with
the third component sampled for the demonstration along the x-
axis. In this way, the third component is similar across different
demonstrations of the same motion – as in a typical LfD setting
– and contains sufficient complexity. Finally, the 3D trajectories
contained in the matrices C1,i to C4,i are then projected to the
corresponding manifold using the exponential map. For UQ, we
scale the data between [−1, 1] before projecting them on the unit
sphere.

6.2. Evaluation procedure

We use the Riemannian LASA dataset described in the pre-
vious section to compare SDS-RM against two baselines and
three state-of-the-art approaches. The baselines are built con-
sidering as base DS the Euclidean dynamics in (7) and a GMM-
based diffeomorphism in Euclidean space. The baseline for UQs,
named DS+Normalize, performs an extra normalization step to
fulfill manifold constraints. The baseline for SPD matrices, named
DS+Cholesky, exploits Cholesky decomposition and Mandel’s no-
tation to vectorize the matrix for training and re-build an SPD
matrix from the generated vector. The other approaches included
in the comparison are FDM, R-GMM, and E-FLOW. The Rieman-
nian LASA dataset contains 30 classes. In this experiment, we
consider a subset of 26 individual motions that neglects the
4 multi-modal motions. The multi-modal motions, obtained by
combining 2 or 3 individual motions, contain different patterns

3 The TS of a SPD matrix is a symmetric matrix which can be vectorized. For
× 2 SPD matrices the TS has 3 independent components.
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Fig. 6. Qualitative results obtained on the Riemannian LASA dataset. Reproduced trajectories (brown solid lines) are obtained by applying the diffeomorphism learned
with SDS-RM on the TS demonstrations (black dashed lines). It is worth noticing that TS data are in 3D, but we choose a view angle that makes the plot similar to
the original 2D data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Four motion classes of the Riemannian LASA dataset. (Top) Demonstra-
tions (black dashed lines) and trajectories generated by SDS-RM (brown solid
lines) evolving on the SPD cone. (Bottom) Demonstrations (black dashed lines)
and trajectories generated by SDS-RM (green solid lines) evolving on the UQ
sphere. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in different areas of the state space. An approach that effectively
learns from multiple demonstrations, like SDS-RM, R-GMM, and
E-FLOW, can encode such a variability. This is qualitatively shown
in the last four plots of Fig. 6. On the contrary, approaches that
learn from a single demonstration, like FDM and DMP, are ex-
pected to perform poorly. In order to have a fair comparison with
FDM, we neglect the 4 multi-modal motions in our comparison.
For each of the 26 classes, we considered all the 4 available
demonstrations in SDS-RM and only one (average) demonstration
for FDM. We down-sampled the trajectories to contain exactly
100 points to significantly speed up the testing procedures and
test the data efficiency of each approach.

The two baselines, as well as R-GMM and SDS-RM, have a
ingle hyperparameter k that is the number of Gaussian compo-
nents. For FDM, instead, the hyperparameter k is the number of
kernel functions used to fit the diffeomorphism. On the contrary,
E-FLOW has a few open hyperparameters including the network
structure (number of layers, neurons per layer), the learning rate,
and the number of epochs. Performing an exhaustive hyperpa-
rameters search requires a GPU cluster and it is beyond the scope
of this work. Hence, we keep fixed the structure of the network
and the learning rate (provided by the author’s implementation)
8

and vary the number of epochs k. Table 3 reports the value of k
sed in this experiment.
The performance of each approach is measured considering

he accuracy in reproducing the demonstrations contained in the
ataset and the Training Time (TT). The accuracy is measured as
he Root Mean Square Error (RMSE) between each demonstration
nd the corresponding generated motion (first 100 steps), i.e., a
rajectory generated starting from the same point on the mani-
old. Depending on the manifold (UQ or SPD), distances between
oints are computed considering the proper Riemannian distance
see Section 3). The TT is divided by the number of classes to
epresent the time needed to encode a single motion.

.3. Results

The accuracy of SDS-RM in learning the motions in the Rie-
annian LASA dataset is qualitatively shown in Fig. 6. We show

he demonstrated (black dashed lines) and reproduced (brown
olid lines) motions in the TS. Recall that, in the Riemannian LASA
ataset, UQ and SPD motions share the same TS up to a scaling
actor. Therefore, we expect similar results in both manifolds. This
s also shown in Fig. 7 where the learned trajectories for 4 motion
lasses in the dataset are projected on the SPD (top row) and UQ
bottom row) manifold. As expected, the generated motion on the
anifold follows accurately the demonstration.
The quantitative results of this evaluation are shown in Ta-

le 3. For each approach, we use a metric to experimentally verify
he violation of geometric constraints. For UQ, we compute the
aximum deviation of the norm of each generated quaternion

rom 1 and found that the deviation is about 1 × 10−16. For SPD
atrices, we compute the minimum value of the eigenvalues of

he generated matrices and found that it was always positive.
s expected, all the considered approaches are able to fulfill
he underlying geometric constraints and therefore to properly
epresent manifold data.

SDS-RM accurately represents manifold data and it outper-
orms the baselines as well as the state-of-the-art approaches
DM, R-GMM, and E-FLOW. The baselines are effective in ful-
illing manifold constraints (the unit norm for UQ, symmetry
nd positive definiteness for SPD), but fail to accurately encode
iemannian data. SDS-RM is 45% more accurate than FDM. This
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Table 3
Results for different learning approaches applied to the Riemannian LASA dataset. We report mean and standard deviation for RMSE
and TT.
M Approach k RMSE TT [s]

SDS-RM (ours) 10 0.029 ± 0.019 0.755 ± 0.241
DS + Normalize 10 0.126 ± 0.113 1.621 ± 0.707

S3 FDM [9] 250 0.043 ± 0.030 0.201 ± 0.053
R-GMM [22] 10 0.036 ± 0.016 0.387 ± 0.047
E-FLOW [23] 1000 0.141 ± 0.128 112.25 ± 0.570

SDS-RM (ours) 10 0.029 ± 0.019 1.514 ± 0.726
DS + Cholesky 10 0.121 ± 0.043 1.899 ± 0.490

S2
++

FDM [9] 250 0.042 ± 0.029 0.221 ± 0.023
R-GMM [22] 10 0.037 ± 0.017 14.514 ± 1.560
E-FLOW [23] 1000 0.140 ± 0.126 127.55 ± 8.434

Authors would like to thank N. Perrin and P. Schlehuber-Caissier for providing the source code of the FDM approach in [9].
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Fig. 8. Results for the data-efficiency test. SDS-RM is trained by sub-sampling
each demonstration to 100 points. (a) SDS-RM reproduces accurately the
sub-sampled demonstrations. (b) Adjusting the sampling time SDS-RM repro-
duces accurately the original demonstrations (1000 points) without re-training.
(c) E-FLOW is inaccurate when learning from sub-sampled demonstrations.
(d) E-FLOW achieves the SDS-RM accuracy when learning from the original
demonstrations (1000 points).

is an expected result as FDM learns from a single demonstra-
tion obtained in this case by averaging the 4 demonstrations in
each class. We expect a similar result by applying DMP-based
approaches [20,21]. Regarding the training time, SDS-RM learns
a UQ motion (4D) on average in 0.755 s, while FDM takes only
0.201 s. For SPD data (2 × 2 matrices), SDS-RM needs on average
n 1.514 s the learn a motion, while FDM takes only 0.221 s. This
s also expected as FDM uses only 1 demonstration for training,
esulting in 4 times fewer data than SDS-RM. To summarize, FDM
earns very quickly and it is recommended in applications where

0.5 s training time is needed. However, most applications
o not have such a strict training time requirement but need
ccurate motions. In this case, SDS-RM offers high accuracy with
reasonable training time.
R-GMM learns from multiple demonstrations, but it outputs

he same trajectory irrespective of the initial pose. This results in
loss of accuracy, with SDS-RM being about 25% more accurate
han R-GMM. Regarding the training time, R-GMM learns faster
9

than SDS-RM a UQ motion (0.387 s on average), but it is almost
10 times slower on SPD. Overall, we conclude that SDS-RM offers
a better compromise between accuracy and training time.

E-FLOW has the worst performance in terms of accuracy
and training time. This has two main reasons. First, approaches
based on invertible neural networks are sensitive to the hyperpa-
rameters choice, but performing an exhaustive hyperparameters
search would have significantly increased the training time. Sec-
ond, approaches based on invertible neural networks are data
greedy. In other words, they require a relatively large amount
of data to accurately learn. To demonstrate this, we performed
a data-efficiency test by learning a motion in the Riemannian
LASA dataset using 100 and 1000 points for each demonstration.
Results comparing SDS-RM with E-FLOW are shown in Fig. 8.
SDS-RM has the same accuracy (RMSE) in both cases, meaning
data 100 points are already enough to accurately learn the mo-
tion. On the contrary, E-FLOW improves significantly using 1000
points (and the same hyperparameters setting). However, it needs
about 900 s to fit a single motion with 1000 points. This may
be acceptable in some applications, but it is a clear limitation in
smart manufacturing where both precision and usability play a
key role.

7. Robot experiments

This section presents experiments4 with a 7 Degree of Free-
dom (DoF) manipulator (Franka Emika Panda). The robot’s behav-
ior is governed by the Cartesian impedance controller

Fp = Kp (pd − p)+ Dp (ṗd − ṗ) ,
Fo = Ko Logqqd (q) + Do (ωd − ω)

(20)

here the subscript p stands for position, o for orientation, and
for desired. pd and qd are desired position and orientation

expressed as UQ) of the robot end-effector. p and q indicate the
easured position and orientation of the end-effector. Desired
nd measured linear (angular) velocities are indicated as ṗd and

˙ (ωd and ω). Kp/o and Dp/o are the robot stiffness and damping
atrices expressed in the robot base frame. Given the stiffness
atrices Kp/o – computed as detailed later in this section – the
amping matrices Dp/o are obtained by the double diagonalization
esign [61]. Cartesian forces defined in (20) are mapped into joint
orques using the transpose of the manipulator Jacobian (J⊤),

d = J⊤
[
Fp
Fo

]
, (21)

4 A video of the experiments is available as supplementary material.
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Fig. 9. Demonstrated (dashed lines) and reproduced (solid lines) pose
rajectories for the bottle stacking experiment.

.1. Bottle stacking

The task of stacking bottles in a rack requires continuous
djustment of position and orientation (see Fig. 10). Apart from
eaching a desired (stacking) pose, the robot should follow ac-
urately the demonstrated trajectory to prevent hitting the rack.
e provide 3 kinesthetic demonstrations (dashed lines in Fig. 9)

tarting at different locations and converging to the stacking pose
efined by pg = [0.474, 0.185, 0.155]⊤ m and qg = −0.520 +

0.542, 0.442, 0.491]⊤. The demonstrations are of the form
{pdemo

l,d , qdemo
l,d }

L
l=1}

D
d=1 where L is the total length of the demon-

trations and D = 3 is the number of demonstrations. Demon-
trated positions and orientations are encoded into two stable
Ss using SDS-RM. We, empirically, use 10 Gaussian components
or each system. It is worth mentioning that, in order to fit
osition trajectories, we, simply, replace logarithmic and expo-
ential maps in Algorithm 1 with an identity map. Results of the
earning process are shown in Fig. 9 (solid lines). The robot is
ontrolled with the Cartesian impedance controller (20) where
d and qd are generated with SDS-RM. The stiffness matrices are
ept to constant high values (Kp = diag([1000, 1000, 1000]) N/m
nd Ko = diag([150, 150, 150]) Nm/rad) in this task. With the
elected impedance gains, the robot is able to follow the desired
ose trajectories, as shown in the top row of Fig. 10.
One of the interesting properties of DS-based trajectory gener-

tors is the possibility to converge to different goals. Changing the
oal is possible also on Riemannian manifolds by following the
pproach we have presented in Section 5.3. To demonstrate the
obustness of SDS-RM to goal switching we repeated the stacking
ask in different conditions. In each case, the shifted goal pose
s obtained by manually placing the robot in a suitable release
onfiguration (from which the bottle was released inside the rack)
ithout correcting for small differences in the z-axis. Fig. 10
middle) shows the robot successfully stacking the bottle at a dif-
erent position (pg = [0.385, 0.143, 0.172]⊤ m). Fig. 10 (bottom)
hows the robot successfully performing the stacking task with a
otated rack, which implies a significant change in the stacking
rientation (qg = −0.58 + [0.37, 0.63, 0.35]⊤) and a less pro-
ounced change in the goal position (pg = [0.469, 0.200, 0.165]⊤
).
The results of this experiment show that SDS-RM accurately

ncodes full pose trajectories while ensuring convergence to a
iven target (even if not explicitly demonstrated) and fulfill-
ng the underlying geometric constraints (the deviation of the
orm from 1 is about 1 × 10−16) in variable orientation data.
or comparison, the baseline DS+Normalize fails to accurately
10
each the goal, and, as a result, the robot stacks the bottle in
he wrong configuration (see the accompanying video). A similar
ack of accuracy also affects E-FLOW, as experimentally shown in
ection 6.3. R-GMM generates the same motion irrespective of
he initial/goal point, which means it would fail in stacking the
ottle in a different location.

.2. Cooperative drilling

In this task, the robot picks a wooden plate from a container
nd moves it to a demonstrated pose where a human operator
ill drill it (see Fig. 1). Therefore, the robot has to be stiff at
he end of the motion to keep the desired pose during the
nteraction (drilling). During the motion, low impedance gains
an be used to make the robot compliant. More importantly,
he robot needs to be compliant at the beginning of the motion
n order to gently pick the wooden plate from the container.
therwise, small inaccuracies in the generated motion trajectory
ay cause abrupt movements of the container. We provide 3
inesthetic demonstrations (see Fig. 11(a)) from different starting
oses and converging to the same goal. The demonstrations are
f the form {{pdemo

l,d , qdemo
l,d }

L
l=1}

D
d=1 where L is the total length of

he demonstrations and D = 3 is the number of demonstrations.
As in the previous experiment, demonstrated positions and

rientations are encoded into two stable DSs using SDS-RM. We
se 10 Gaussian components for each system. The desired vari-
ble stiffness profiles are generated using the variability in the
emonstrations as suggested in several previous works [62–64].
ore in detail, we first notice that the Cartesian impedance con-

roller (20) assumes that position and orientation are decoupled.
n other words, it assumes that positional errors only affect the
orce, while rotational errors only affect the torque. This allows
s to learn independent linear and angular stiffness profiles. The
dea is to compute the desired stiffness profile from the inverse
f the covariance matrix.
For the linear stiffness matrix Kp, we first compute the covari-

nce matrix for each of the D demonstrated positions and for each
ime step l = 1, . . . , L as

p,l =
1
D

D∑
i=1

(
pdemo
l,i − µp,l

) (
pdemo
l,i − µp,l

)
⊤, (22)

where the mean µp,l is computed as

µp,l =
1
D

D∑
i=1

pdemo
l,i . (23)

hen, we compute the eigenvalue decomposition of each Σp,l =

lΛlVl
⊤, where Vl is an orthogonal matrix and Λl = diag([λ1,l,

λ2,l, λ3,l]). Since all the demonstrations end up in the same posi-
tion, we know that the eigenvalues of Σp,L vanishes, i.e., ΛL = 0
and V = I. Moreover, we want the stiffness to be maximum at L.
Therefore, we compute the desired stiffness profile as

Kdemo
p,l = Vl

⎡⎢⎣
1

λ1,l+k̄p
0 0

0 1
λ2,l+k̄p

0

0 0 1
λ3,l+k̄p

⎤⎥⎦Vl
⊤, (24)

here the maximum linear stiffness gain is set to k̄p = 1000N/m.
s shown in Fig. 11(b), the stiffness profile in (24) converges to
p,L = diag([k̄p, k̄p, k̄p]) N/m and varies according to the vari-

ability in the demonstrations. Note that existing approaches also
impose a minimum value for the stiffness. This is straightforward
to implement but it was not needed in the performed experiment
as the minimum value of the stiffness computed by means of (24)
was already enough to track the desired trajectory.
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r

Fig. 10. Results of the bottle stacking experiment collected from three runs; each starts from the same starting pose towards different goals. Left panels show the
snapshots of the robot execution; right panels show desired and executed motion trajectories. (Top) The robot reproduces the trajectory generated by SDS-RM from
known (demonstrated) starting and goal poses. (Middle) The robot stacks the bottle at a different position (pg = [0.385, 0.143, 0.172]⊤ m). (Bottom) The rack is
otated and the robot stacks the bottle at a different pose (pg = [0.469, 0.200, 0.165]⊤ m and qg = −0.58 + [0.37, 0.63, 0.35]⊤).
w
N
i
a

i
s
p
r
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Fig. 11. Results for the cooperative drilling experiment.
11
The angular stiffness matrix Ko is typically kept constant [62,
63] or diagonal [64] in related work. We propose instead to
exploit the variance of the demonstrations in the tangent space
of the UQ to derive a full stiffness profile. This is possible as
the tangent space is locally Euclidean. The first step is to project
the demonstrated orientations in the tangent space at the goal
quaternion qg, obtaining {{qdemo

l,d = Logqg (q
demo
l,d )}Ll=1}

D
d=1. We com-

pute the covariance matrix of the tangent space demonstrations
qdemo
l,d as

Σq,l =
1
D

D∑
i=1

(
qdemo
l,i − µq,l

) (
qdemo
l,i − µq,l

)
⊤, (25)

where the mean µq,l =
1
D

∑D
i=1 q

demo
l,i . As for the linear stiffness,

we compute the eigenvalue decomposition of Σo,l = UlΓlUl,
where Ul is an orthogonal matrix and Γl = diag([γ1,l, γ2,l, γ3,l]).
Since all the tangent space data end up to zero – as the tangent
space is placed at the goal – we know that the eigenvalues of Σo,L
vanishes, i.e., ΓL = 0 and U = I. Moreover, we want the stiffness
to be maximum at L. Therefore, we compute the desired stiffness
profile as

Kdemo
o,l = Ul

⎡⎢⎣
1

γ1,l+k̄o
0 0

0 1
γ2,l+k̄o

0

0 0 1
γ3,l+k̄o

⎤⎥⎦Ul
⊤, (26)

here the maximum angular stiffness gain is set to k̄0 = 150
m/rad. As shown in Fig. 11(b), the stiffness profile computed

n (24) converges to Ko,L = diag([k̄o, k̄o, k̄o]) Nm/rad and varies
ccording to the variability in the demonstrations.
The generated linear and angular stiffness profiles are encoded

nto two stable DSs using SDS-RM. We, empirically, use 15 Gaus-
ian components for each system. The results of the learning
rocedure, shown in Fig. 11(b), confirm that SDS-RM accurately
eproduces complex SPD profiles while ensuring convergence to
given goal.
After the learning, the pose trajectory and stiffness profiles

re used to control the robot (see Fig. 11(c)). The robot picks
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he wooden plate from a (blue) container and reaches the drill
ose. During the motion, the robot is complaint which allows a
afer response to possible external perturbations. For instance,
high initial stiffness combined with (small) inaccuracies in

he generated trajectory could have generated a jerky motion
f the container while the robot lifts the wooden plate. The
oal pose, instead, is reached with maximum stiffness. As shown
n Fig. 11(c), during the drilling task the maximum position
eviation along the drilling direction (x-axis) is 3.1 cm (gener-
ting a reaction force of 31N), while the maximum orientation
eviation about the z-axis (where the robot perceives the highest
omentum) is 1.8 deg (generating a reaction torque of 4.7N/m).
his shows that the robot is capable to keep the goal pose, letting
he human co-worker drill the wooden plate.

. Conclusions

In this paper, we presented Stable Dynamical System on Rie-
annian Manifolds (SDS-RM), an approach to learn stable DSs
volving on Riemannian manifolds. SDS-RM builds on theoretical
tability results, derived for dynamics evolving on Riemannian
anifolds, to learn stable and accurate DS representations of
iemannian data. Similar to its Euclidean counterparts, SDS-RM
earns a diffeomorphic transformation between a simple stable
ystem and a set of complex demonstrations. The key difference
rt Euclidean approaches is that SDS-RM uses tools from differ-
ntial geometry to correctly represent complex manifold data,
uch as orientations and stiffness matrices, with their under-
ying geometric constraints, e.g., unit norm for unit quaternion
rientation and symmetry and positive definiteness for stiffness
atrices. The proposed approach is first evaluated in simulation
nd compared with an existing approach, modified to deal with
iemannian data. Due to the lack of publicly available Riemannian
atasets, we developed a procedure to augment a popular – and
otentially any other – Euclidean benchmark with UQ and SPD
rofiles. Finally, in order to perform a thorough evaluation, we
lso conducted a set of experiments with a real robot performing
ottle stacking and cooperative (with a human operator) drilling.
verall, the conducted evaluation shows that SDS-RM represents
good compromise between accuracy and training time and that

t can be effectively adopted to generate complex robotic skills on
anifolds.
In our evaluation, we show the adaptation capabilities of

DS-RM by changing initial and/or goal points. However, in more
eneral settings, it is needed to incorporate task-dependant pa-
ameters to adapt the execution to different domains. Augment-
ng SDS-RM with task-dependant parameters while maintaining
ts stability properties is an interesting research direction that we
ntend to explore in future work.

Moreover, SDS-RM has been evaluated on orientation (UQ)
nd stiffness (SPD) profiles, but it may be extended to other
iemannian manifolds. Therefore, our future research will also
ocus on investigating the possibility to learn stable DS on diverse
anifolds like Grassmann or hyperbolic. Grassmann manifolds
legantly encode orthogonal projections, while hyperbolic man-
folds represent a continuous embedding of discrete structures
ith possible application to task and motion planning. These
anifolds are widely unexploited in robotics and can potentially
nlock new applications.
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Appendix A. Jacobian of the mean of a GMR

Recall that

ψ(a) =

K∑
k=1

hk(a)ψ̂(a),

ψ̂(a) = µb
k + Σba

k (Σaa
k )−1(a − µa

k).

(27)

sing the chain rule and (27), Jψ (a) writes as:

ψ (a) =
∂ψ(a)
∂a

=

K∑
k=1

∂hk(a)
∂a

ψ̂(a)⊤

+ hk(a)
∂ψ̂(a)
∂a

.

(28)

et us compute the two partial derivatives at the right side
f (28) separately. Considering the expression of ψ̂(a) in (27), and
pplying the chain rule, it is easy to verify that

∂ψ̂(a)
∂a

= Σab
k (Σaa

k )−1. (29)

sing the quotient rule, and setting N̂k = N (a|µa
k,Σ

aa
k ), the

xpression of ∂hk(a)
∂a writes as

∂hk(a)
∂a

=
πk

∂N̂k
∂a
∑K

i=1 πiN̂i(∑K
i=1 πiN̂i

)2
−
πkN̂k

∑K
i=1 πi

∂N̂i
∂a(∑K

i=1 πiN̂i

)2 .

(30)

Recall that the derivative of a multivariate Gaussian distribution
N̂ wrt the input is given by [65]

∂N̂
∂a

= −N̂Σ−1(a − µ). (31)

sing (31) to compute the derivatives in (30) we obtain:

∂hk(a)
∂a

=
−πkN̂k(Σaa

k )−1(a − µa
k)
∑K

i=1 πiN̂i(∑K
i=1 πiN̂i

)2
+
πkN̂k

∑K
i=1 πiN̂i(Σaa

i )−1(a − µa
i )(∑K

i=1 πiN̂i

)2
=

πkN̂k∑K

(
−(Σaa

k )−1(a − µa
k)
∑K

i=1 πiN̂i∑K

i=1 πiN̂i i=1 πiN̂i
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+

∑K
i=1 πiN̂i(Σaa

i )−1(a − µa
i )∑K

i=1 πiN̂i

)
= hk(a)

(
−(Σaa

k )−1(a − µP
k )

+

K∑
i=1

hi(a)(Σaa
i )−1(a − µa

i )

)
. (32)

By substituting (29) and (32) into (28), we obtain the sought
expression of the Jacobian in (18).

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2023.104510.
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