
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Saveriano, Matteo; Abu-Dakka, Fares J.; Kyrki, Ville
Learning stable robotic skills on Riemannian manifolds

Published in:
Robotics and Autonomous Systems

DOI:
10.1016/j.robot.2023.104510

Published: 01/11/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Saveriano, M., Abu-Dakka, F. J., & Kyrki, V. (2023). Learning stable robotic skills on Riemannian manifolds.
Robotics and Autonomous Systems, 169, Article 104510. https://doi.org/10.1016/j.robot.2023.104510

https://doi.org/10.1016/j.robot.2023.104510
https://doi.org/10.1016/j.robot.2023.104510

Robotics and Autonomous Systems 169 (2023) 104510

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Learning stable robotic skills on Riemannianmanifolds
Matteo Saveriano a,∗, Fares J. Abu-Dakka b, Ville Kyrki c
a Automatic Control Lab, Department of Industrial Engineering, University of Trento, Trento, Italy
b Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Germany
c Intelligent Robotics Group, Department of Electrical Engineering and Automation, Aalto University, Finland

a r t i c l e i n f o

Article history:
Received 31 August 2022
Received in revised form 11 July 2023
Accepted 14 August 2023
Available online 19 August 2023

Keywords:
Learning from Demonstration
Learning stable dynamical systems
Riemannian manifold learning

a b s t r a c t

In this paper, we propose an approach to learn stable dynamical systems that evolve on Riemannian
manifolds. Our approach leverages a data-efficient procedure to learn a diffeomorphic transformation,
enabling the mapping of simple stable dynamical systems onto complex robotic skills. By harnessing
mathematical techniques derived from differential geometry, our method guarantees that the learned
skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternions
(UQ) for orientation and symmetric positive definite (SPD) matrices for impedance. Additionally, the
method preserves convergence towards a given target. Initially, the proposed methodology is evaluated
through simulation on a widely recognized benchmark, which involves projecting Cartesian data
onto UQ and SPD manifolds. The performance of our proposed approach is then compared with
existing methodologies. Apart from that, a series of experiments were performed to evaluate the
proposed approach in real-world scenarios. These experiments involved a physical robot tasked with
bottle stacking under various conditions and a drilling task performed in collaboration with a human
operator. The evaluation results demonstrate encouraging outcomes in terms of learning accuracy and
the ability to adapt to different situations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Robots that successfully operate in smart manufacturing have
to be capable of precisely controlling their behavior in terms of
movements and physical interactions [1]. In this regard, modern
industrial and service robots need flexible representations of such
intended behaviors in terms of motion, impedance, and force
skills (see Fig. 1). The development of such representations is a
key aspect in speeding up the integration of robotic solutions in
social and industrial environments.

Learning approaches have the possibility to unlock the full
potential of smart robotic solutions. Among the others, the Learn-
ing from Demonstration (LfD) paradigm [2] aims at developing
learning solutions that allow the robot to enrich its skills via
human guidance. Among the several existing approaches [3,4],
the idea of encoding robotic skills into stable Dynamical Systems
(DSs) has gained interest in the LfD community [5–12]. In this
context, a robotic skill is any robot motion, either with a given
start and goal (point-to-point or discrete motion), or periodic. A
linear point-to-point motion is an example of simple robotic skill
that can be generated, for instance, with a linear DS. Point-to-
point motions with an arbitrarily complex path connecting start

∗ Corresponding author.
E-mail addresses: matteo.saveriano@unitn.it (M. Saveriano),

fares.abu-dakka@tum.de (F.J. Abu-Dakka), ville.kyrki@aalto.fi (V. Kyrki).

and goal points are examples of complex robotic skills that a non-
linear DS can effectively generate. To learn complex robotic skills,
DS-based approaches for LfD assume that the demonstrations of
a robotic skill are observations of the time evolution of a DS. DSs
are flexible motion generators that allow, for example, to encode
periodic and discrete motions [13], to reactively avoid possible
collisions [14–16], or to update the underlying dynamics in an
incremental fashion [17,18].

Although DS-based representations have several interesting
properties, most works assume that the data are observations of
Euclidean space. However, this is not always the case in robotics
where data can belong to a non-Euclidean space. Typical ex-
amples of non-Euclidean data are orientation trajectories rep-
resented as rotation matrices and Unit Quaternions (UQs), and
Symmetric Positive Definite (SPD) matrices for quantities such as
inertia, impedance gains, and manipulability, which all belong to
Riemannian manifolds. Applying standard arithmetic tools from
Euclidean geometry on Riemannian manifolds leads to inaccura-
cies and incorrect representations, which can be avoided if the
proper mathematical tools developed for Riemannian manifolds
are used [19].

In this paper, we propose the following.

• A novel geometry-aware approach to encode demonstra-
tions evolving on a Riemannian manifold into a stable dy-
namical system (SDS-RM).

https://doi.org/10.1016/j.robot.2023.104510
0921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2023.104510
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104510&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:matteo.saveriano@unitn.it
mailto:fares.abu-dakka@tum.de
mailto:ville.kyrki@aalto.fi
https://doi.org/10.1016/j.robot.2023.104510
http://creativecommons.org/licenses/by/4.0/

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Table 1
Comparison among state-of-the-art approaches for LfD on Riemannian manifolds and SDS-RM.

End-Point Multiple demos Multimodal Time-independent Data-efficiency Accuracy+ Training time

DMP [20,21] ✓ – – – high medium low
R-GMM [22] ✓ ✓ – – high medium low
FDMa [9] ✓ – – ✓ high medium low
E-FLOW [23] ✓ ✓ ✓ ✓ low mediumb high
I-FLOW [24–26] ✓ ✓ ✓ ✓ low mediumb high
SDS-RM (ours) ✓ ✓ ✓ ✓ high high low

aFDM is not designed to work on Riemannian manifolds. However, our formulation allows us to use them to learn a diffeomorphism in TS.
bE-FLOW and I-FLOW need a hyperparameter search to reach high accuracy. However, performing a hyperparameters search requires a GPU cluster and it is beyond
the scope of this paper. With trial and error, we found a hyperparameter configuration that gives a medium accuracy.

Fig. 1. Experimental setups involving a robot (Franka Emika Panda) and Rieman-
nian data. (Left) The robot stacks a bottle on a rack. This task requires adaptation
of position and orientation (UQ). (Right) The robot performs collaborative drilling
with a human. This task exploits stiffness (SPD matrix) modulation.

• Mathematical foundations for SDS-RM to work in any Rie-
mannian manifold. In the paper, we provide two manifolds
as case studies: (i) UQ, and (ii) SPD manifolds.

• A data-efficient approach, based on Gaussian Mixture Mod-
els (GMMs), to learn diffeomorphisms on Riemannian man-
ifolds.

• An extension of the LASA handwriting dataset [6], a pop-
ular benchmark in DS-based LfD, to generate UQ and SPD
trajectories. The resulting Riemannian LASA dataset, pub-
licly available at gitlab.com/geometry-aware/riemannian-
lasa-dataset, will serve as a benchmark for a quantitative
comparison of newly developed approaches.

To this end, SDS-RM leverages the concept of diffeomorphism
(a bijective, continuous, and continuously differentiable map-
ping with a continuous and continuously differentiable inverse),
to transform simple and stable (base) dynamics into complex
robotic skills. Building on tools from Riemannian geometry, we
first present rigorous stability proofs for the base and the dif-
feomorphic DSs. We then present a data-efficient approach that
leverages a GMM [27] to learn the diffeomorphic mapping from
linear motion to an arbitrarily complex demonstration, that is,
a demonstration of a point-to-point motion on a Riemannian
manifold with a possibly nonlinear path connecting start and goal
points. As a result, we obtain a DS that accurately represents
data evolving on Riemannian manifolds and that preserves the
convergence to a given target as well as the geometric structure
of the data.

The rest of the paper is organized as follows. Section 2 presents
the related literature. Basic concepts of Riemannian geometry are
given in Section 3. Section 4 provides the theoretical foundations
of SDS-RM. In Section 5, we present an approach to learn stable
skills via diffeomorphic maps. SDS-RM is evaluated on a public
benchmark and compared against a state-of-the-art approach
in Section 6. Experiments on a real robot (Franka Emika Panda)

are presented in Section 7. Section 8 states the conclusion and
proposes further research directions.

2. Related works

Classification on Riemannian manifolds is a well-studied
problem in computer vision. In this regard, [28] proposes a dis-
tance measure for SPD matrices and exploits it in a similarity-
based algorithm used for image classification. In order to recog-
nize faces in videos, Huang et al. [29] propose a metric learning
approach that learns a metric between Euclidean and Rieman-
nian input spaces. Chakraborty et al. [30] extend the convolution
operation to Riemannian manifolds using the weighted Frechét
mean. In general, approaches that attempt to adapt deep neural
networks to non-Euclidean fall under the umbrella of geometric
deep learning [31].

However, LfD is a regression problem that received less in
the literature on manifold learning. Therefore, in the rest of this
section, we discuss LfD both in general and with a specific focus
on DS-based and geometry-aware learning approaches. For a
clear comparison, the main features of SDS-RM and of existing
approaches are summarized in Table 1.

Learning from Demonstration (LfD) provides a user-friendly
framework that allows non-roboticists to teach robots and en-
ables robots to autonomously perform new tasks based on that
human demonstration [2]. Over the last couple of decades, several
LfD approaches have been developed [3,4]. LfD approaches can be
categorized into two main groups depending on the underlying
learning strategy: (i) deterministic approaches that try to repro-
duce the demonstrations with a function approximator, e.g., a
neural network [32,33], and (ii) probabilistic approaches that
learn a probability distribution from the demonstrations. Exam-
ples of this category include GMM [34], Task-Parameterized GMM
(TP-GMM) [35], Probabilistic Movement Primitives (ProMP) [36],
and Kernelized Movement Primitive (KMP) [37].

In both groups, it is possible to learn and retrieve a static
or a dynamic mapping between input and output. In a static
mapping the current input, e.g., the time, is mapped into the
desired output, e.g., the robot’s joint angles, while a DS maps
the input, e.g., the robot joint angles, into its time derivative(s),
i.e., the joint velocities. In this paper, we focus on learning stable
DSs from data belonging to Riemannian manifolds. However, in
order to provide a more comprehensive review of the exist-
ing literature, we also highlight some recent Riemannian-based
approaches that learn static mappings. Zeestraten et al. [38] ex-
ploited Riemannian metrics to learn orientation trajectories with
TP-GMM. Huang et al. [37] proposed to train KMP in the tan-
gent space of unit quaternion trajectories. Kinaesthetic is used
to estimate full stiffness matrices of an interaction task, which
is subsequently used to learn force-based variable impedance
profiles using Riemannian metric-based GMM/Gaussian Mixture
Regression (GMR) [39]. Later the authors proposed to train KMP
on the tangent space of SPD matrices [40]. Jaquier et al. [41]
formulated a tensor-based GMM/GMR on SPD manifold, which

2

https://gitlab.com/geometry-aware/riemannian-lasa-dataset
https://gitlab.com/geometry-aware/riemannian-lasa-dataset
https://gitlab.com/geometry-aware/riemannian-lasa-dataset

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

later has been exploited in manipulability transfer and tracking
problem [42]. Calinon [22] extended the GMM formulation to
a variety of manifolds including UQ and SPD. We name this
approach Riemannian GMM (R-GMM). R-GMM is a prominent ap-
proach to performing learning from multiple demonstrations on
Riemannian manifolds and we compare its performance against
SDS-RM in Section 6.

Encoding manipulation skills into stable DSs is achieved by
leveraging time-dependent or time-independent DSs. Dynamic
Movement Primitives (DMPs) [5] are a prominent approach to
encoding robotic skills into time-dependent representations. The
classical DMP formulation has been extended in different ways
[43]. Among the others, extensions to Riemannian manifolds are
relevant for this work. Abu-Dakka et al. extend classical DMPs to
encode discrete [44] and periodic [45] unit quaternion trajecto-
ries, while the work in [20] also considers rotation matrices. The
stability of orientation DMPs is shown in [46]. In [21], DMPs are
reformulated to generate discrete SPD profiles. DMPs exploit a
time-driven forcing term, learned from a single demonstration, to
accurately reproduce the desired skill. The advantage of having
a time-driven forcing term is that the learning scale well to
high-dimensional spaces—as the learned term only depends on
a scalar input. The disadvantage is that the generated motion is
forced to follow the stereotypical (i.e., demonstrated) one and
generalizes poorly outside the demonstration area [8]. Alternative
approaches [18,47] learn a state-depended forcing term, but they
still use a vanishing time signal to suppress the forcing term and
retrieve asymptotic stability. The tuning of this vanishing signal
affects the reproduction accuracy. Moreover, time-dependent DSs
generate time indexed trajectory that may become unfeasible if
an external perturbation distracts the robot from the trajectory.
On the contrary, time-independent DSs generate the next point
based on the current value of the input and are robust to external
perturbations.1

The Stable Estimator of Dynamical Systems (SEDS) [6] is one
of the first approaches that learn stable and autonomous DSs.
It exploits Lyapunov theory to derive stability constraints for a
GMR-DS. The main limitations of SEDS are the relatively long
training time and the reduced accuracy on complex motions. The
loss of accuracy is caused by the stability constraints, which has
been called the accuracy vs stability dilemma [8]. To alleviate this
issue, the approach in [11] derives weak stability constraints for a
neural network-based DS. Contraction theory [48] is used in [10]
to derive stability conditions for a GMR-DS in Euclidean space,
and in [49] to encode stable UQ orientations. The extension of
SEDS in [7] significantly reduces inaccuracies and training time
by separately learning a (possibly) unstable DS and a stabilizing
control input.

Alternative approaches leverage a diffeomorphic mapping be-
tween Euclidean spaces to accurately fit the demonstrations
while preserving stability. Neumann et al. [8] learn a diffeomor-
phism to map the demonstrations into a space where quadratic
stability constraints introduce negligible deformations. The ap-
proach is effective but needs a long training time, as experi-
mentally shown in [47]. In a similar direction, Euclideanizing
Flows (E-FLOW) [23] fits a diffeomorphism that linearizes the
demonstrations as if they were generated by a linear DS. The
opposite idea, i.e., transform straight lines into complex mo-
tions, is exploited Fast Diffeomorphic Matching (FDM) [9] and
by Imitation Flow (I-FLOW) [24,25]. FDM uses a composition
of locally weighted (with an exponential kernel) translations
to rapidly fit a diffeomorphism from a single demonstration.
SDS-RM builds on similar ideas, but it works on Riemannian data

1 The reader is referred to [5,43] for a thorough discussion on advantages and
disadvantages of time-dependent and time-independent DS representations.

Fig. 2. A Riemannian manifold M (green surface) and its tangent space TmM
(gray plane) centered at m. The logarithmic Logm (·) and exponential Expm (·)

maps move points from the manifold (a and b) to the tangent space (a and
b) and vice-versa. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

and with multiple demonstrations. FDM is representative of a
class of LfD approaches (including DMP) that learn from a single
demonstration and it is interesting to compare its performance
against SDS-RM. This experimental comparison is conducted in
Section 6.

E-FLOW and I-FLOW exploit deep invertible neural networks
to learn a diffeomorphic mapping. Invertible neural networks
are slightly more accurate than classical methods, as experi-
mentally shown in [24]. However, as shown in [26] and in the
experimental comparison carried out in Section 6, approaches
based on deep networks require long training time and intense
hyperparameters search, which represents a limitation in typical
LfD settings. Therefore, SDS-RM leverages a mature and data-
efficient approach in LfD (GMM/GMR) to fit a diffeomorphism
on a manifold. In our previous work [26], we extend I-FLOW
to Riemannian manifolds by projecting training data in a single
tangent space. However, using a single tangent space is known to
introduce approximation errors [22]. Moreover, a formal stability
proof is missing in [26]. In this respect, SDS-RM builds on rigorous
stability analysis and uses a moving tangent space to project
the data, which minimizes inaccuracies as experimentally shown
in Section 5.4.

Finally, the Riemannian Motion Policy (RMP) framework [50,
51] consists of closed-loop controllers embedded in a second-
order dynamics that exploits the Riemannian metric to optimally
track a reference motion. In this respect, RMP and SDS-RM are
complementary: SDS-RM can be used to generate the desired
motion and RMP to optimally track it.

3. Background

A Riemannian manifold M is a smooth differentiable topo-
logical space, for each point of which m ∈ M, it is possible
to compute a Tangent Space (TS) TmM (see Fig. 2). The TS is
equipped with a positive definite inner product ⟨a, b⟩m ∈ R,
where a, b ∈ TmM and m ∈ M is the point where the
TS is computed. The inner product allows the definition of the
notion of distance on the manifold. Depending on the Riemannian
manifold, points on the TS can be vectors, matrices, or more
complex mathematical objects. For example, a TS of UQs consists
of 3D vectors, while a TS of SPD matrices consists of symmetric
matrices. In this work, we indicate a point on the TS using bold
capital letters, i.e., a ∈ TmM.

The operator that transforms points from a Riemannian man-
ifold to its tangent space is the logarithmic map Logm (·) : M →

TmM. Its inverse operator is called the exponential map Expm (·) :

TmM → M. The parallel transport Tm1→m2 : Tm1M → Tm2M
moves elements between tangent spaces while preserving their
angle.

3

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Table 2
Re-interpretation of basic standard operations in a Riemannian manifold [53].

Euclidean space Riemannian manifold

Subtraction −→ma = a − m −→ma = Logm (a)
Addition p = m +

−→ma a = Expm

(
−→ma
)

Distance dist(m, a) = ∥a − m∥ dist(m, a) = ∥
−→
mp∥m

Interpolation m(t) = m1 + t−−−→m1m2 m(t) = Expm1
(t−−−→m1m2)

In case of UQ manifold, a point on the manifold is a =

ν + u, the distance between two UQs a1 and a2 is d(a1, a2) =

arccos(a2
⊤a1), ā = ν−u is the conjugate of a, and a1∗a2 indicates

the quaternion product. Given this, we can define [20]

Expm (a) =

⎧⎨⎩
[
cos(∥a∥) + sin(∥a∥) a

∥a∥

]
∗ m, ∥a∥ ̸= 0[

1 + [0 0 0]⊤
]
∗ m, otherwise,

(1)

Logm (a) = Log(a ∗ m̄) =

{
arccos(ν) u

∥u∥
, ∥u∥ ̸= 0

[0 0 0]⊤, otherwise.
(2)

Note that the mappings in (1)–(2) are derived from Lie the-
ory [52], which is widely used in robotics. In this formulation,
the mappings are defined in the Lie algebra (the TS at 1 + [0 0
0]), and the quaternion product is used to parallel transport the
vectors from the Lie algebra to the TS placed at a different point
(e.g., m).

In case of SPD manifold, the operators are defined as in [53,54]

Expm (a) =m
1
2 expm

(
m−

1
2 am−

1
2

)
m

1
2 , (3)

Logm (a) =m
1
2 logm

(
m−

1
2 am−

1
2

)
m

1
2 , (4)

Tm1→m2 (a) = m
1
2
2 m

1
2
1 am

1
2
1 m

1
2
2 , (5)

where expm(·) and logm(·) are the matrix exponential and log-
arithm functions respectively. Here, the affine-invariant distance
[53] is used to compute d(a,m)

d(a,m) =

logm(m−
1
2 am−

1
2

)
F
, (6)

where ∥·∥F is the Frobenius norm.
Other basic operations on manifolds can be computed as

shown in Table 2.

4. Diffeomorphic DS on manifolds

Inspired by [23], we apply a diffeomorphism to a stable (base)
DS evolving on the Riemannian manifold (see Fig. 3). The diffeo-
morphism is learned from a set of demonstrations and deforms
the trajectories of the base DS to accurately match the demon-
strations. In order to effectively apply this idea, we first need to
design a stable DS evolving on the Riemannian manifold. This
DS provides the basic motion that connects the initial point to
the desired goal. Second, we need to show that a diffeomorphic
transformation preserves the stability of the base DS. This result,
known for the Euclidean space, extends to Riemannian manifolds
as shown in this section.

4.1. Base DS on Riemannian manifolds

In Euclidean space, a linear DS in the form

ẋ = −kx(x − g) (7)

is often used as base2 DS. Indeed, if the gain kx > 0, the linear
DS in (7) is globally exponentially stable [55]. This implies that

2 Note that some authors assume, without loss of generality, that g = 0.

Fig. 3. The idea of SDS-RM is to learn a diffeomorphic mapping between TSs
to transform the trajectories of a base DS into complex motions. Motion on the
TS is projected back and forth to the underlying Riemannian manifold using
exponential and logarithmic maps respectively.

the linear DS generates trajectories connecting any initial point
x(0) ∈ Rn with any goal g ∈ Rn.

We seek an ‘‘equivalent’’ of the stable linear dynamics for
Riemannian manifolds. In this work, the base DS is the non-linear
dynamics

ȧ = kaa = kaLoga (g) ∈ TaM, (8)

where the logarithmic map is introduced in Section 3 and its
expression depends on the considered Riemannian manifold. The
non-linear DS in (8), called a geodesic DS, shares similarities with
the linear DS in (7) and, for this reason, it is used in this work as
base DS. Indeed, similarly to the term (x−g) in (7), the logarithmic
map in (8) represents the displacement between the current point
a ∈ M and the goal g ∈ M. It is worth mentioning that in (8) we
consider the TS at the current state a instead of a fixed TS at the
goal g. As discussed in [22], working in a single TS is inaccurate
and introduces severe deformations in the learned trajectory. On
the contrary, in our formulation we always place the TS at the
current point, therefore minimizing the distortion.

As stated in Theorem 1, The base DS in (8) is also stable if
the gain ka > 0. This implies that the base DS in (8) generates
trajectories connecting any initial point a(0) with any goal g
(see Fig. 4). Stability results are formally stated in Theorem 1
(asymptotic stability) and Remark 3 (exponential stability).

Theorem 1. Let the gain ka > 0. Assume also that Logg(a) =

−Tg→aLoga (g), where Tg→a is the parallel transport from g to a.
Under these assumptions, the DS in (8) has a globally (in its domain
of definition) asymptotically stable equilibrium at g.

Proof. Let us express the velocity field (8) in g using parallel
transport. By assumption, it holds that

Tg→aȧ = −kaLogg(a) ∈ TgM. (9)

To prove the stability of (9), one can define the Lyapunov candi-
date function [56]

V (a) = ⟨a, a⟩g = ⟨Logg(a), Logg(a)⟩g (10)

and follow the same arguments outlined in [42, Section 4.2.2] for
SPD matrices. □

Remark 1. The assumption made in Theorem 1 that logg(a) =

−Tg→aLoga (g) holds for any Riemannian manifold [57, Theorem
6].

4

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Remark 2. The results of Theorem 1 hold where the logarithmic
map is uniquely defined, i.e., in a region that does not contain
points conjugate to g [56]. For SPD matrices, this holds every-
where [53]. Hence, Theorem 1 is globally valid on the manifold
of SPD matrices. For unit m-sphere (including UQ), instead, the
logarithmic map Loga (·) is defined everywhere apart from the
antipodal point −a [58].

Even if it is not strictly required in our approach, it is inter-
esting to show that, like the linear DS in (7), the DS in (8) is
exponentially stable.

Remark 3. Under the assumptions of Theorem 1, the DS in (8)
has a globally (in its domain of definition) exponentially stable
equilibrium at g [42, Section 4.2.2].

4.2. Diffeomorphic DS

A diffeomorphic map or a diffeomorphism ψ is a bijective,
continuous, and with continuous inverse ψ−1 change of coor-
dinates. In this work, we assume that ψ : TaM → TaM,
i.e., the diffeomorphism transforms a global coordinate a ∈ TaM
into another global coordinate b = ψ(a) ∈ TaM. Further,
the diffeomorphism ψ is assumed to be bounded, i.e., it maps
bounded vectors into bounded vectors.

In order to match a set of demonstrations, we apply ψ to the
base DS in (8). More in detail, let us assume that a = Loga (g), and
that the dynamics of the global coordinates ȧ is described by (8).
By taking the time derivative of b, we obtain the DS [23]

ḃ =
∂ψ

∂a
ȧ = kaJψ (ψ−1(b))ψ−1(b), (11)

where Jψ (·) is the Jacobian matrix of ψ evaluated at a particular
point and the inverse mapping a = ψ−1(b) is used to remove the
dependency on a. Having assumed thatψ is a bounded diffeomor-
phism, the right side of (11) satisfies the Lipschitz condition and,
therefore, the DS in (11) admits a unique solution. The stability
of the diffeomorphic dynamics in (11) is stated by the following
theorem.

Theorem 2. The diffeomorphic DS in (11) inherits the stability
properties of the base DS in (8). That is if the base DS is globally (in
its domain of definition) asymptotically stable so is the diffeomorphic
DS.

Proof. From the proof of Theorem 1, it holds that V (a) defined
in (10) is a Lyapunov function for the base DS in (8). As shown
in [23, Section 3.2], the function Vψ (b) = ⟨ψ−1(b), ψ−1(b)⟩g′ ,
where g′ is the point where ψ−1(Loga (g)) = 0, is a valid
Lyapunov function for the diffeomorphic DS in (11). □

Remark 4. Theorem 2 states the convergence of the DS (11) to
the equilibrium g′. This point may differ from the equilibrium g of
the base DS (8). However, in LfD, we are interested in converging
to a given goal—let’s say g for simplicity. Assuming that the in-
verse mapping ψ−1(·) is identity at the goal, i.e., ψ−1(Loga (g)) =

Loga (g) = 0, it is straightforward to show from Theorem 2 that
the DS (11) also convergences to g.

Given the global coordinate b, we compute the corresponding
manifold point b through the exponential map as

b = Expa(b). (12)

Recalling that the exponential map is a local diffeomorphism, the
composite mapping Expa(b) = Expa ◦ ψ(a) can be considered a
diffeomorphism between manifolds.

5. Learning stable skills via diffeomorphisms

The stability theorems provided in Section 4 give solid the-
oretical foundations to our learning approach. In this section,
we describe how to generate training data suitable to learn a
diffeomorphic map on manifolds. The approach, as well as the
derivations in Section 4, are quite general and allow the use of
different approaches to find the sought diffeomorphism. We then
describe how GMM/GMR, a consolidated and data-efficient ap-
proach for LfD, can be extended to learn such a diffeomorphism.
Finally, we discuss how to apply our approach to two popular
Riemannian manifolds, namely the unit quaternions and the SPD
matrices.

5.1. Data pre-processing

We aim at learning a diffeomorphism ψ(·) that maps the
trajectory a(t), solution of the base DS in (8), into an arbitrarily
complex demonstration. To this end, let us assume the user
provides a set of D ≥ 1 demonstrations each containing L points
on a Riemannian manifold. Demonstrations are organized in the
set B =

{
bd
l

}L,D
l=1,d=1, where each bd

l ∈ M. We also assume
that the demonstrations converge to the same goal (b1

L = · · · =

bD
L = g) and that a sampling time δt is known. When collecting

demonstrations using kinesthetic teaching, it is possible to ob-
serve some variations in the final point. In this case, we re-scale
the trajectories to converge to the same goal, which is defined
by the user (e.g., as the average of the end points). It is worth
mentioning that, when orientation trajectories are collected from
demonstrations with a real robot, it is needed to extract UQs
from rotation matrices. This is because the robot’s forward kine-
matics is typically expressed as a homogeneous transformation
matrix [59]. While numerically extracting UQs from a sequence
of rotation matrices, it can happen that the approach returns a
quaternion at time t and its antipodal at t + 1. This is because
antipodal UQs represents the same rotation. To prevent this dis-
continuity, one can check that the dot product qt · qt+1 > 0,
otherwise, replace qt+1 with −qt+1.

Given the set of demonstrationsB, we generate a set of D base
trajectories by projecting (8) on the manifold. More in detail, we
set the initial condition ad

1 = bd
1 and project the tangent space

velocity on the manifold using the exponential map as

ad
l+1 = Expadl

(
δt ȧd

l

)
∀ l, d (13)

The time derivative ȧd
l is defined as in (8), and the exponen-

tial/logarithmic maps for UQ and SPD manifolds are defined as
in Section 3.

The D base trajectories are organized in a set A =
{
ad
l

}L,D
l=1,d=1.

In order to transform the datasets A and B into suitable training
data we proceed as follows. We use the logarithmic map adl =

Logadl (g), ∀l, d to project the goal g in each TS placed at adl . We
use the logarithmic map bd

l = Logadl (b
d
l), ∀l, d to project each

point in B in the TS placed at adl . As a result, we obtain the sets
A =

{
adl
}L,D
l=1,d=1 and B =

{
bd
l

}L,D
l=1,d=1. In other words, we have in

A the points from the base the DS (8) that exponentially converge
towards g and in B their demonstrated values. Note that each adl
and bd

l is expressed in the same TS to make them comparable.
After this procedure, the learning problem becomes how to

fit a mapping between A and B while preserving the stability.
Exploiting the theoretical results in Theorem 2 and Remark 4, this
learning problem is solved by fitting a diffeomorphism between
A and B. The resulting approach is presented in the rest of this
section.

5

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

5.2. GMM /GMR-based diffeomorphism

A GMM [27] models the joint probability distribution p(·) be-
tween training data as a weighted sum of K Gaussian components
N (·), i.e.,

p(a, b|Θk) =

K∑
k=1

πkN (a, b|µk,Σk), (14)

where each Θk = {πk,µk,Σk} contains learning parameters. The
K mixing weights πk satisfy

∑K
k=1 πk = 1, while the means and

covariance matrices are defined as

µk =

[
µa

k
µb

k

]
, Σk =

[
Σaa

k Σab
k

Σba
k Σbb

k

]
. (15)

As shown in [13] for periodic DSs in Euclidean space, we
can use conditioning and expectation on the joint distribution
in (14) to compute the mapping ψ(a) and its inverse ψ−1(b). The
sought mappings ψ(a) = E[p(b|a)] and ψ−1(b) = E[p(a|b)] are
computed in closed-form using GMR [27,60] as:

ψ(a) =

K∑
k=1

hk(a)
(
µb

k

+Σba
k (Σaa

k)−1(a − µa
k)
)
,

hk(a) =
πkN (a|µa

k,Σ
aa
k)∑K

i=1 πiN (a|µa
i ,Σ

aa
i)
,

(16)

and

ψ−1(b) =

K∑
k=1

hk(b)
(
µa

k

+Σab
k (Σbb

k)−1(b − µb
k)
)
,

hk(b) =
πkN (b|µb

k,Σ
bb
k)∑K

i=1 πiN (b|µb
i ,Σ

bb
i)
.

(17)

It is worth noticing that since both ψ(a) and its inverse ψ−1(b)
exist and are differentiable, ψ(a) is a diffeomorphism.

In order to build the DS in (11), we need to compute the
Jacobian matrix Jψ (a) which has the closed-form expression given
in (18). For completeness, we provide the full derivation of Jψ (a)
in Appendix A. Note that the term ψ̂(a) in (18) is already com-
puted in (16) and can be reused to speed up the computation of
the Jacobian.

Jψ (a) =

K∑
k=1

hk(a)
[
Σba

k (Σaa
k)−1

+

(K∑
i=1

hi(a)
(
Σaa

i

)−1 (a − µa
i)−

hk(a)
(
Σaa

k

)−1 (a − µa
k)
)
ψ̂(a)⊤

]
,

ψ̂(a) = µb
k + Σba

k (Σaa
k)−1(a − µa

k).

(18)

5.3. Point-to-point motion on Riemannian manifolds

The GMM/GMR-based diffeomorphism presented in the pre-
vious section does not explicitly consider that we aim at repro-
ducing discrete motions, i.e., motions with a specific initial and
final point. In particular, there is no guarantee that the learned
diffeomorphism is an identity at the goal, i.e., that ψ(Logg(g)) =

ψ(0) = ψ−1(0) = 0, which is sufficient to guarantee that
base and diffeomorphic DSs have the same goal (Remark 4). This
property is of importance in DS-based LfD, as we are generally

Fig. 4. The convergence rate of the base DS in (8) depends on the gain ka =
k
Lδt .

The figure shows the trajectory of the first entry a11 of a 2 × 2 SPD matrix for
a11(0) = 3, g11 = 1, L = 100, δt = 0.01 s, and k ∈ [1, 2, 3, 5].

interested in converging to a given target that is independent of
the learning process. Moreover, since the base and diffeomorphic
DSs have the same initial condition (a0 = b0), it is also beneficial
that the learned diffeomorphism is an identity at the initial point,
i.e., that ψ(Loga0 (g)) = a0 = ψ−1(Loga0 (b0)) = b0, to prevent
discontinuities in the initial velocity.

In order to force the diffeomorphism to be an identity at the
goal, we augment the learned GMM with a ‘‘small’’ component
placed at Logg(g) = 0. More in details, we augment the K learned
components of the GMM (14) with πK+1 and N (a, b|µK+1,ΣK+1)
and set µK+1 = 0 and ΣK+1 = kN I. We re-scale the priors from
1 to K as πk = πk − πK+1/K to ensure that the K + 1 priors sum
up to one. Conditioning with this new component makes points
be mapped arbitrarily close to the goal. The distance to the goal
depends on the gain kN . In this work, we set kN = 1 × 10−5

and πK+1 = 0.01. We use a similar strategy to enforce a smooth
start. Given the initial point on the manifold a0 = b0 = a,
we project it into the TS and place a small Gaussian around
it, i.e., π0 = 0.01 and N (a, b|µ0 = [Loga(g)⊤, 0⊤

]
⊤,Σ0 =

1 × 10−5I). Conditioning with this new component ensures that
ψ(Loga(g)) ≈ ψ−1(Loga(b0)) ≈ Loga(g).

The possibility to change the goal, even on-the-fly (goal switch-
ing), is one of the appealing properties of DS-based skill rep-
resentations. Changing the goal in our SDS-RM also is possible.
However, as already known for other DS-based approaches [21],
switching the goal may cause jumps in the generated trajectories
and consequently high acceleration of the robot. In order to
avoid this problem, we exploit a geodesic dynamics that smoothly
varies the goal from g to gnew . In formulas

ġnew = kgLogg(gnew), (19)

where kg > 0 ensures convergence to gnew as stated in Theo-
rem 1. An example of this procedure applied to UQ is shown in
Section 7.1.

The tunable gain kb controls the convergence rate of the base
DS in (8) (see Fig. 4). Given the demonstrations B =

{
bd
l

}L,D
l=1,d=1

and the sampling time δt , we want that ad
L – obtained using (13)

– reaches bd
L within a certain time. As shown in Fig. 4, too small

values of kb may fail to ensure that ad
L ≈ bd

L . On the contrary, too
large values of kb cause a large part of the trajectory to be close
to bd

L . This makes the learning problem harder as similar points
need to be mapped into potentially different ones, i.e., the data
distribution tends to be multi-modal. Inspired by results from
linear systems analysis, we can rewrite the control gain as ka =
k
Lδt . Dividing by Lδt makes the control gain independent from
the number of samples and training time. Therefore, the newly
introduced parameter k produces the same results at different
temporal scales. Given the initial point on the manifold a(0), one
can choose how well the base trajectory has to reach the goal and
define k accordingly.

The proposed approach to learn stable DS on Riemannian
manifolds is summarized in Algorithm 1.

6

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Algorithm 1: SDS-RM
1: Pre-process data

– Collect demonstrations B =
{
bd
l

}L,D
l=1,d=1

– Define the sampling time δt
– Compute base trajectories A =

{
ad
l

}L,D
l=1,d=1 using (13)

– Project to TS using Loga(g) ((2) or (4)) to obtain
A =

{
adl
}L,D
l=1,d=1, B =

{
bd
l

}L,D
l=1,d=1. (For SPD profiles,

vectorize data using Mandel’s notation.)

2: Learn a diffeomorphism represented as a GMM

– Place a small Gaussian component at the origin of the
TS (πK+1 = π , N (a, b|0, kN I))

– Place a small Gaussian component at the initial point
(π0 = π , N (a, b|a, kN I))

3: Generate Riemannian motion via GMR

– Compute ψ−1 from (17), Jψ from (18), and the velocity
from (11).

– Project on the manifold using (13).

Fig. 5. Results obtained with SDS-RM on the ‘‘N’’ shape.

5.4. Learning in current and fixed TS

In this example, we show the benefits of learning manifold
motions in the tangent space placed at the current point, called
the current TS in this work, in contrast to projecting the entire
trajectory in a unique (fixed) TS. We use the ‘‘N’’ shape on S2

provided in [22] and shown in Fig. 5 (black dots). The trajec-
tory is designed to span both the north and south hemispheres,
where the Lie algebra is known to introduce a non-negligible
approximation [22].

We follow the steps in Algorithm 1 using in one case the
current TS and the Lie algebra (i.e., the TS at the north pole)
in the other. Qualitative results in Fig. 5(a) confirm that using
the current TS, SDS-RM can effectively encode the trajectory. The
same result can be obtained using a TS at the goal and parallel
transporting the data at each step (see the assumption in Theo-
rem 1). However, this choice would increase the computational
complexity due to the need for parallel transport. As expected,
using the Lie algebra results in severe distortions (Fig. 5(b)).

6. Validation

In this section, we validate the proposed approach on a public
benchmark – properly modified to represent trajectories evolving

on UQ and SPD manifolds – and compare the results against
FDM [9], R-GMM [22], and E-FLOW [23]. It is worth mention-
ing that FDM has not been designed to work on Riemannian
manifolds. However, the procedure described in Section 4 allows
exploiting different approaches to fit a diffeomorphism between
TSs.

6.1. The Riemannian LASA dataset

In the LfD literature, there is no available dataset to test DS-
based algorithm on Riemannian manifolds. Therefore, we have
created a new one by modifying the popular benchmark – the
LASA handwriting data-set [6] – to generate manifold (namely
UQ and SPD) motions. The LASA handwriting contains 30 classes
of 2D Euclidean motions starting from different initial points and
converging to the same goal [0, 0]⊤. Each motion is demonstrated
7 times. A demonstration has exactly 1000 samples and includes
position, velocity, and acceleration profiles.

The key idea to generate Riemannian data from Euclidean
points is to consider each demonstration as an observation of a
motion in the TS of a given Riemannian manifold. This allows us
to use the exponential map to project the motion onto the man-
ifold. As discussed in Section 3, the TS is computed wrt a point
on the manifold. For converging motions, as the one generated
by SDS-RM, the TS can be conveniently placed at the goal. We
defined the goal as qg = 1 + [0, 0, 0]⊤ for UQs and as G =

diag([100, 100]) for SPD matrices, but other choices are possible.
It is worth noticing that the described procedure is rather general
and can be applied to Euclidean benchmarks different from the
LASA dataset.

Data in the original LASA dataset are 2D (xy-plane), but the TS
of UQs and 2 × 2 SPD matrices are3 3D. To add the third dimen-
sion, we consider the 7 demonstrations of each motion class as
a matrix Ci for i = 1, . . . , 30 with 14 rows and 1000 columns.
Out of each Ci, we extract the 4 matrices C1,i = Ci[0 : 2, :], C2,i =

Ci[4 : 6, :], C3,i = Ci[8 : 10, :], and C4,i = Ci[[12, 13, 0], :]. As a
result, we obtain 4 demonstrations for each motion class, with
the third component sampled for the demonstration along the x-
axis. In this way, the third component is similar across different
demonstrations of the same motion – as in a typical LfD setting
– and contains sufficient complexity. Finally, the 3D trajectories
contained in the matrices C1,i to C4,i are then projected to the
corresponding manifold using the exponential map. For UQ, we
scale the data between [−1, 1] before projecting them on the unit
sphere.

6.2. Evaluation procedure

We use the Riemannian LASA dataset described in the pre-
vious section to compare SDS-RM against two baselines and
three state-of-the-art approaches. The baselines are built con-
sidering as base DS the Euclidean dynamics in (7) and a GMM-
based diffeomorphism in Euclidean space. The baseline for UQs,
named DS+Normalize, performs an extra normalization step to
fulfill manifold constraints. The baseline for SPD matrices, named
DS+Cholesky, exploits Cholesky decomposition and Mandel’s no-
tation to vectorize the matrix for training and re-build an SPD
matrix from the generated vector. The other approaches included
in the comparison are FDM, R-GMM, and E-FLOW. The Rieman-
nian LASA dataset contains 30 classes. In this experiment, we
consider a subset of 26 individual motions that neglects the
4 multi-modal motions. The multi-modal motions, obtained by
combining 2 or 3 individual motions, contain different patterns

3 The TS of a SPD matrix is a symmetric matrix which can be vectorized. For
2 × 2 SPD matrices the TS has 3 independent components.

7

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Fig. 6. Qualitative results obtained on the Riemannian LASA dataset. Reproduced trajectories (brown solid lines) are obtained by applying the diffeomorphism learned
with SDS-RM on the TS demonstrations (black dashed lines). It is worth noticing that TS data are in 3D, but we choose a view angle that makes the plot similar to
the original 2D data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Four motion classes of the Riemannian LASA dataset. (Top) Demonstra-
tions (black dashed lines) and trajectories generated by SDS-RM (brown solid
lines) evolving on the SPD cone. (Bottom) Demonstrations (black dashed lines)
and trajectories generated by SDS-RM (green solid lines) evolving on the UQ
sphere. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in different areas of the state space. An approach that effectively
learns from multiple demonstrations, like SDS-RM, R-GMM, and
E-FLOW, can encode such a variability. This is qualitatively shown
in the last four plots of Fig. 6. On the contrary, approaches that
learn from a single demonstration, like FDM and DMP, are ex-
pected to perform poorly. In order to have a fair comparison with
FDM, we neglect the 4 multi-modal motions in our comparison.
For each of the 26 classes, we considered all the 4 available
demonstrations in SDS-RM and only one (average) demonstration
for FDM. We down-sampled the trajectories to contain exactly
100 points to significantly speed up the testing procedures and
test the data efficiency of each approach.

The two baselines, as well as R-GMM and SDS-RM, have a
single hyperparameter k that is the number of Gaussian compo-
nents. For FDM, instead, the hyperparameter k is the number of
kernel functions used to fit the diffeomorphism. On the contrary,
E-FLOW has a few open hyperparameters including the network
structure (number of layers, neurons per layer), the learning rate,
and the number of epochs. Performing an exhaustive hyperpa-
rameters search requires a GPU cluster and it is beyond the scope
of this work. Hence, we keep fixed the structure of the network
and the learning rate (provided by the author’s implementation)

and vary the number of epochs k. Table 3 reports the value of k
used in this experiment.

The performance of each approach is measured considering
the accuracy in reproducing the demonstrations contained in the
dataset and the Training Time (TT). The accuracy is measured as
the Root Mean Square Error (RMSE) between each demonstration
and the corresponding generated motion (first 100 steps), i.e., a
trajectory generated starting from the same point on the mani-
fold. Depending on the manifold (UQ or SPD), distances between
points are computed considering the proper Riemannian distance
(see Section 3). The TT is divided by the number of classes to
represent the time needed to encode a single motion.

6.3. Results

The accuracy of SDS-RM in learning the motions in the Rie-
mannian LASA dataset is qualitatively shown in Fig. 6. We show
the demonstrated (black dashed lines) and reproduced (brown
solid lines) motions in the TS. Recall that, in the Riemannian LASA
dataset, UQ and SPD motions share the same TS up to a scaling
factor. Therefore, we expect similar results in both manifolds. This
is also shown in Fig. 7 where the learned trajectories for 4 motion
classes in the dataset are projected on the SPD (top row) and UQ
(bottom row) manifold. As expected, the generated motion on the
manifold follows accurately the demonstration.

The quantitative results of this evaluation are shown in Ta-
ble 3. For each approach, we use a metric to experimentally verify
the violation of geometric constraints. For UQ, we compute the
maximum deviation of the norm of each generated quaternion
from 1 and found that the deviation is about 1 × 10−16. For SPD
matrices, we compute the minimum value of the eigenvalues of
the generated matrices and found that it was always positive.
As expected, all the considered approaches are able to fulfill
the underlying geometric constraints and therefore to properly
represent manifold data.

SDS-RM accurately represents manifold data and it outper-
forms the baselines as well as the state-of-the-art approaches
FDM, R-GMM, and E-FLOW. The baselines are effective in ful-
filling manifold constraints (the unit norm for UQ, symmetry
and positive definiteness for SPD), but fail to accurately encode
Riemannian data. SDS-RM is 45% more accurate than FDM. This

8

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Table 3
Results for different learning approaches applied to the Riemannian LASA dataset. We report mean and standard deviation for RMSE
and TT.
M Approach k RMSE TT [s]

SDS-RM (ours) 10 0.029 ± 0.019 0.755 ± 0.241
DS + Normalize 10 0.126 ± 0.113 1.621 ± 0.707

S3 FDM [9] 250 0.043 ± 0.030 0.201 ± 0.053
R-GMM [22] 10 0.036 ± 0.016 0.387 ± 0.047
E-FLOW [23] 1000 0.141 ± 0.128 112.25 ± 0.570

SDS-RM (ours) 10 0.029 ± 0.019 1.514 ± 0.726
DS + Cholesky 10 0.121 ± 0.043 1.899 ± 0.490

S2
++

FDM [9] 250 0.042 ± 0.029 0.221 ± 0.023
R-GMM [22] 10 0.037 ± 0.017 14.514 ± 1.560
E-FLOW [23] 1000 0.140 ± 0.126 127.55 ± 8.434

Authors would like to thank N. Perrin and P. Schlehuber-Caissier for providing the source code of the FDM approach in [9].

Fig. 8. Results for the data-efficiency test. SDS-RM is trained by sub-sampling
each demonstration to 100 points. (a) SDS-RM reproduces accurately the
sub-sampled demonstrations. (b) Adjusting the sampling time SDS-RM repro-
duces accurately the original demonstrations (1000 points) without re-training.
(c) E-FLOW is inaccurate when learning from sub-sampled demonstrations.
(d) E-FLOW achieves the SDS-RM accuracy when learning from the original
demonstrations (1000 points).

is an expected result as FDM learns from a single demonstra-
tion obtained in this case by averaging the 4 demonstrations in
each class. We expect a similar result by applying DMP-based
approaches [20,21]. Regarding the training time, SDS-RM learns
a UQ motion (4D) on average in 0.755 s, while FDM takes only
0.201 s. For SPD data (2 × 2 matrices), SDS-RM needs on average
in 1.514 s the learn a motion, while FDM takes only 0.221 s. This
is also expected as FDM uses only 1 demonstration for training,
resulting in 4 times fewer data than SDS-RM. To summarize, FDM
learns very quickly and it is recommended in applications where
< 0.5 s training time is needed. However, most applications
do not have such a strict training time requirement but need
accurate motions. In this case, SDS-RM offers high accuracy with
a reasonable training time.

R-GMM learns from multiple demonstrations, but it outputs
the same trajectory irrespective of the initial pose. This results in
a loss of accuracy, with SDS-RM being about 25% more accurate
than R-GMM. Regarding the training time, R-GMM learns faster

than SDS-RM a UQ motion (0.387 s on average), but it is almost
10 times slower on SPD. Overall, we conclude that SDS-RM offers
a better compromise between accuracy and training time.

E-FLOW has the worst performance in terms of accuracy
and training time. This has two main reasons. First, approaches
based on invertible neural networks are sensitive to the hyperpa-
rameters choice, but performing an exhaustive hyperparameters
search would have significantly increased the training time. Sec-
ond, approaches based on invertible neural networks are data
greedy. In other words, they require a relatively large amount
of data to accurately learn. To demonstrate this, we performed
a data-efficiency test by learning a motion in the Riemannian
LASA dataset using 100 and 1000 points for each demonstration.
Results comparing SDS-RM with E-FLOW are shown in Fig. 8.
SDS-RM has the same accuracy (RMSE) in both cases, meaning
data 100 points are already enough to accurately learn the mo-
tion. On the contrary, E-FLOW improves significantly using 1000
points (and the same hyperparameters setting). However, it needs
about 900 s to fit a single motion with 1000 points. This may
be acceptable in some applications, but it is a clear limitation in
smart manufacturing where both precision and usability play a
key role.

7. Robot experiments

This section presents experiments4 with a 7 Degree of Free-
dom (DoF) manipulator (Franka Emika Panda). The robot’s behav-
ior is governed by the Cartesian impedance controller

Fp = Kp (pd − p)+ Dp (ṗd − ṗ) ,
Fo = Ko Logqqd (q) + Do (ωd − ω)

(20)

where the subscript p stands for position, o for orientation, and
d for desired. pd and qd are desired position and orientation
(expressed as UQ) of the robot end-effector. p and q indicate the
measured position and orientation of the end-effector. Desired
and measured linear (angular) velocities are indicated as ṗd and
ṗ (ωd and ω). Kp/o and Dp/o are the robot stiffness and damping
matrices expressed in the robot base frame. Given the stiffness
matrices Kp/o – computed as detailed later in this section – the
damping matrices Dp/o are obtained by the double diagonalization
design [61]. Cartesian forces defined in (20) are mapped into joint
torques using the transpose of the manipulator Jacobian (J⊤),

τd = J⊤
[
Fp
Fo

]
, (21)

4 A video of the experiments is available as supplementary material.

9

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Fig. 9. Demonstrated (dashed lines) and reproduced (solid lines) pose
trajectories for the bottle stacking experiment.

7.1. Bottle stacking

The task of stacking bottles in a rack requires continuous
adjustment of position and orientation (see Fig. 10). Apart from
reaching a desired (stacking) pose, the robot should follow ac-
curately the demonstrated trajectory to prevent hitting the rack.
We provide 3 kinesthetic demonstrations (dashed lines in Fig. 9)
starting at different locations and converging to the stacking pose
defined by pg = [0.474, 0.185, 0.155]⊤ m and qg = −0.520 +

[0.542, 0.442, 0.491]⊤. The demonstrations are of the form
{{pdemo

l,d , qdemo
l,d }

L
l=1}

D
d=1 where L is the total length of the demon-

strations and D = 3 is the number of demonstrations. Demon-
strated positions and orientations are encoded into two stable
DSs using SDS-RM. We, empirically, use 10 Gaussian components
for each system. It is worth mentioning that, in order to fit
position trajectories, we, simply, replace logarithmic and expo-
nential maps in Algorithm 1 with an identity map. Results of the
learning process are shown in Fig. 9 (solid lines). The robot is
controlled with the Cartesian impedance controller (20) where
pd and qd are generated with SDS-RM. The stiffness matrices are
kept to constant high values (Kp = diag([1000, 1000, 1000]) N/m
and Ko = diag([150, 150, 150]) Nm/rad) in this task. With the
selected impedance gains, the robot is able to follow the desired
pose trajectories, as shown in the top row of Fig. 10.

One of the interesting properties of DS-based trajectory gener-
ators is the possibility to converge to different goals. Changing the
goal is possible also on Riemannian manifolds by following the
approach we have presented in Section 5.3. To demonstrate the
robustness of SDS-RM to goal switching we repeated the stacking
task in different conditions. In each case, the shifted goal pose
is obtained by manually placing the robot in a suitable release
configuration (from which the bottle was released inside the rack)
without correcting for small differences in the z-axis. Fig. 10
(middle) shows the robot successfully stacking the bottle at a dif-
ferent position (pg = [0.385, 0.143, 0.172]⊤ m). Fig. 10 (bottom)
shows the robot successfully performing the stacking task with a
rotated rack, which implies a significant change in the stacking
orientation (qg = −0.58 + [0.37, 0.63, 0.35]⊤) and a less pro-
nounced change in the goal position (pg = [0.469, 0.200, 0.165]⊤
m).

The results of this experiment show that SDS-RM accurately
encodes full pose trajectories while ensuring convergence to a
given target (even if not explicitly demonstrated) and fulfill-
ing the underlying geometric constraints (the deviation of the
norm from 1 is about 1 × 10−16) in variable orientation data.
For comparison, the baseline DS+Normalize fails to accurately

reach the goal, and, as a result, the robot stacks the bottle in
the wrong configuration (see the accompanying video). A similar
lack of accuracy also affects E-FLOW, as experimentally shown in
Section 6.3. R-GMM generates the same motion irrespective of
the initial/goal point, which means it would fail in stacking the
bottle in a different location.

7.2. Cooperative drilling

In this task, the robot picks a wooden plate from a container
and moves it to a demonstrated pose where a human operator
will drill it (see Fig. 1). Therefore, the robot has to be stiff at
the end of the motion to keep the desired pose during the
interaction (drilling). During the motion, low impedance gains
can be used to make the robot compliant. More importantly,
the robot needs to be compliant at the beginning of the motion
in order to gently pick the wooden plate from the container.
Otherwise, small inaccuracies in the generated motion trajectory
may cause abrupt movements of the container. We provide 3
kinesthetic demonstrations (see Fig. 11(a)) from different starting
poses and converging to the same goal. The demonstrations are
of the form {{pdemo

l,d , qdemo
l,d }

L
l=1}

D
d=1 where L is the total length of

the demonstrations and D = 3 is the number of demonstrations.
As in the previous experiment, demonstrated positions and

orientations are encoded into two stable DSs using SDS-RM. We
use 10 Gaussian components for each system. The desired vari-
able stiffness profiles are generated using the variability in the
demonstrations as suggested in several previous works [62–64].
More in detail, we first notice that the Cartesian impedance con-
troller (20) assumes that position and orientation are decoupled.
In other words, it assumes that positional errors only affect the
force, while rotational errors only affect the torque. This allows
us to learn independent linear and angular stiffness profiles. The
idea is to compute the desired stiffness profile from the inverse
of the covariance matrix.

For the linear stiffness matrix Kp, we first compute the covari-
ance matrix for each of the D demonstrated positions and for each
time step l = 1, . . . , L as

Σp,l =
1
D

D∑
i=1

(
pdemo
l,i − µp,l

) (
pdemo
l,i − µp,l

)
⊤, (22)

where the mean µp,l is computed as

µp,l =
1
D

D∑
i=1

pdemo
l,i . (23)

Then, we compute the eigenvalue decomposition of each Σp,l =

VlΛlVl
⊤, where Vl is an orthogonal matrix and Λl = diag([λ1,l,

λ2,l, λ3,l]). Since all the demonstrations end up in the same posi-
tion, we know that the eigenvalues of Σp,L vanishes, i.e., ΛL = 0
and V = I. Moreover, we want the stiffness to be maximum at L.
Therefore, we compute the desired stiffness profile as

Kdemo
p,l = Vl

⎡⎢⎣
1

λ1,l+k̄p
0 0

0 1
λ2,l+k̄p

0

0 0 1
λ3,l+k̄p

⎤⎥⎦Vl
⊤, (24)

where the maximum linear stiffness gain is set to k̄p = 1000N/m.
As shown in Fig. 11(b), the stiffness profile in (24) converges to
Kp,L = diag([k̄p, k̄p, k̄p]) N/m and varies according to the vari-
ability in the demonstrations. Note that existing approaches also
impose a minimum value for the stiffness. This is straightforward
to implement but it was not needed in the performed experiment
as the minimum value of the stiffness computed by means of (24)
was already enough to track the desired trajectory.

10

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

Fig. 10. Results of the bottle stacking experiment collected from three runs; each starts from the same starting pose towards different goals. Left panels show the
snapshots of the robot execution; right panels show desired and executed motion trajectories. (Top) The robot reproduces the trajectory generated by SDS-RM from
known (demonstrated) starting and goal poses. (Middle) The robot stacks the bottle at a different position (pg = [0.385, 0.143, 0.172]⊤ m). (Bottom) The rack is
rotated and the robot stacks the bottle at a different pose (pg = [0.469, 0.200, 0.165]⊤ m and qg = −0.58 + [0.37, 0.63, 0.35]⊤).

Fig. 11. Results for the cooperative drilling experiment.

The angular stiffness matrix Ko is typically kept constant [62,
63] or diagonal [64] in related work. We propose instead to
exploit the variance of the demonstrations in the tangent space
of the UQ to derive a full stiffness profile. This is possible as
the tangent space is locally Euclidean. The first step is to project
the demonstrated orientations in the tangent space at the goal
quaternion qg, obtaining {{qdemo

l,d = Logqg (q
demo
l,d)}Ll=1}

D
d=1. We com-

pute the covariance matrix of the tangent space demonstrations
qdemo
l,d as

Σq,l =
1
D

D∑
i=1

(
qdemo
l,i − µq,l

) (
qdemo
l,i − µq,l

)
⊤, (25)

where the mean µq,l =
1
D

∑D
i=1 q

demo
l,i . As for the linear stiffness,

we compute the eigenvalue decomposition of Σo,l = UlΓlUl,
where Ul is an orthogonal matrix and Γl = diag([γ1,l, γ2,l, γ3,l]).
Since all the tangent space data end up to zero – as the tangent
space is placed at the goal – we know that the eigenvalues of Σo,L
vanishes, i.e., ΓL = 0 and U = I. Moreover, we want the stiffness
to be maximum at L. Therefore, we compute the desired stiffness
profile as

Kdemo
o,l = Ul

⎡⎢⎣
1

γ1,l+k̄o
0 0

0 1
γ2,l+k̄o

0

0 0 1
γ3,l+k̄o

⎤⎥⎦Ul
⊤, (26)

where the maximum angular stiffness gain is set to k̄0 = 150
Nm/rad. As shown in Fig. 11(b), the stiffness profile computed
in (24) converges to Ko,L = diag([k̄o, k̄o, k̄o]) Nm/rad and varies
according to the variability in the demonstrations.

The generated linear and angular stiffness profiles are encoded
into two stable DSs using SDS-RM. We, empirically, use 15 Gaus-
sian components for each system. The results of the learning
procedure, shown in Fig. 11(b), confirm that SDS-RM accurately
reproduces complex SPD profiles while ensuring convergence to
a given goal.

After the learning, the pose trajectory and stiffness profiles
are used to control the robot (see Fig. 11(c)). The robot picks

11

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

the wooden plate from a (blue) container and reaches the drill
pose. During the motion, the robot is complaint which allows a
safer response to possible external perturbations. For instance,
a high initial stiffness combined with (small) inaccuracies in
the generated trajectory could have generated a jerky motion
of the container while the robot lifts the wooden plate. The
goal pose, instead, is reached with maximum stiffness. As shown
in Fig. 11(c), during the drilling task the maximum position
deviation along the drilling direction (x-axis) is 3.1 cm (gener-
ating a reaction force of 31N), while the maximum orientation
deviation about the z-axis (where the robot perceives the highest
momentum) is 1.8 deg (generating a reaction torque of 4.7N/m).
This shows that the robot is capable to keep the goal pose, letting
the human co-worker drill the wooden plate.

8. Conclusions

In this paper, we presented Stable Dynamical System on Rie-
mannian Manifolds (SDS-RM), an approach to learn stable DSs
evolving on Riemannian manifolds. SDS-RM builds on theoretical
stability results, derived for dynamics evolving on Riemannian
manifolds, to learn stable and accurate DS representations of
Riemannian data. Similar to its Euclidean counterparts, SDS-RM
learns a diffeomorphic transformation between a simple stable
system and a set of complex demonstrations. The key difference
wrt Euclidean approaches is that SDS-RM uses tools from differ-
ential geometry to correctly represent complex manifold data,
such as orientations and stiffness matrices, with their under-
lying geometric constraints, e.g., unit norm for unit quaternion
orientation and symmetry and positive definiteness for stiffness
matrices. The proposed approach is first evaluated in simulation
and compared with an existing approach, modified to deal with
Riemannian data. Due to the lack of publicly available Riemannian
datasets, we developed a procedure to augment a popular – and
potentially any other – Euclidean benchmark with UQ and SPD
profiles. Finally, in order to perform a thorough evaluation, we
also conducted a set of experiments with a real robot performing
bottle stacking and cooperative (with a human operator) drilling.
Overall, the conducted evaluation shows that SDS-RM represents
a good compromise between accuracy and training time and that
it can be effectively adopted to generate complex robotic skills on
manifolds.

In our evaluation, we show the adaptation capabilities of
SDS-RM by changing initial and/or goal points. However, in more
general settings, it is needed to incorporate task-dependant pa-
rameters to adapt the execution to different domains. Augment-
ing SDS-RM with task-dependant parameters while maintaining
its stability properties is an interesting research direction that we
intend to explore in future work.

Moreover, SDS-RM has been evaluated on orientation (UQ)
and stiffness (SPD) profiles, but it may be extended to other
Riemannian manifolds. Therefore, our future research will also
focus on investigating the possibility to learn stable DS on diverse
manifolds like Grassmann or hyperbolic. Grassmann manifolds
elegantly encode orthogonal projections, while hyperbolic man-
ifolds represent a continuous embedding of discrete structures
with possible application to task and motion planning. These
manifolds are widely unexploited in robotics and can potentially
unlock new applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The link to the data is shared in the manuscript. Code will be
shared on request.

Acknowledgments

Part of the research presented in this work has been conducted
when: M. Saveriano was at the Department of Computer Science,
University of Innsbruck, Innsbruck, Austria, and F. Abu-Dakka
was at the Intelligent Robotics Group, Department of Electrical
Engineering and Automation, Aalto University, Finland.

This work has been partially supported by the Austrian Re-
search Foundation (Euregio IPN 86-N30, OLIVER), by CHIST-ERA
project IPALM (Academy of Finland decision 326304), by the
European Union under NextGenerationEU project iNest
(ECS 00000043), and by euROBIN project under grant agreement
No. 101070596.

Appendix A. Jacobian of the mean of a GMR

Recall that

ψ(a) =

K∑
k=1

hk(a)ψ̂(a),

ψ̂(a) = µb
k + Σba

k (Σaa
k)−1(a − µa

k).

(27)

Using the chain rule and (27), Jψ (a) writes as:

Jψ (a) =
∂ψ(a)
∂a

=

K∑
k=1

∂hk(a)
∂a

ψ̂(a)⊤

+ hk(a)
∂ψ̂(a)
∂a

.

(28)

Let us compute the two partial derivatives at the right side
of (28) separately. Considering the expression of ψ̂(a) in (27), and
applying the chain rule, it is easy to verify that

∂ψ̂(a)
∂a

= Σab
k (Σaa

k)−1. (29)

Using the quotient rule, and setting N̂k = N (a|µa
k,Σ

aa
k), the

expression of ∂hk(a)
∂a writes as

∂hk(a)
∂a

=
πk

∂N̂k
∂a
∑K

i=1 πiN̂i(∑K
i=1 πiN̂i

)2
−
πkN̂k

∑K
i=1 πi

∂N̂i
∂a(∑K

i=1 πiN̂i

)2 .

(30)

Recall that the derivative of a multivariate Gaussian distribution
N̂ wrt the input is given by [65]

∂N̂
∂a

= −N̂Σ−1(a − µ). (31)

Using (31) to compute the derivatives in (30) we obtain:

∂hk(a)
∂a

=
−πkN̂k(Σaa

k)−1(a − µa
k)
∑K

i=1 πiN̂i(∑K
i=1 πiN̂i

)2
+
πkN̂k

∑K
i=1 πiN̂i(Σaa

i)−1(a − µa
i)(∑K

i=1 πiN̂i

)2
=

πkN̂k∑K
i=1 πiN̂i

(
−(Σaa

k)−1(a − µa
k)
∑K

i=1 πiN̂i∑K
i=1 πiN̂i

12

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

+

∑K
i=1 πiN̂i(Σaa

i)−1(a − µa
i)∑K

i=1 πiN̂i

)
= hk(a)

(
−(Σaa

k)−1(a − µP
k)

+

K∑
i=1

hi(a)(Σaa
i)−1(a − µa

i)

)
. (32)

By substituting (29) and (32) into (28), we obtain the sought
expression of the Jacobian in (18).

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2023.104510.

References

[1] J. Kuffner, J. Xiao, Motion for manipulation tasks, in: Springer Handbook
of Robotics, Springer, 2016, pp. 897–930.

[2] S. Schaal, Is imitation learning the route to humanoid robots? Trends Cogn.
Sci. 3 (6) (1999) 233–242.

[3] A. Billard, S. Calinon, R. Dillmann, Learning from humans, in: Springer
Handbook of Robotics, Second Ed., 2016.

[4] H. Ravichandar, A.S. Polydoros, S. Chernova, A. Billard, Recent advances in
robot learning from demonstration, Ann. Rev. Control Robot Autonomous
Syst. 3 (1) (2020) 297–330.

[5] A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical
movement primitives: Learning attractor models for motor behaviors,
Neural Comput. 25 (2) (2013) 328–373.

[6] S.M. Khansari-Zadeh, A. Billard, Learning stable non-linear dynamical
systems with Gaussian mixture models, IEEE Trans. Robot. 27 (5) (2011)
943–957.

[7] S.M. Khansari-Zadeh, A. Billard, Learning control Lyapunov function to
ensure stability of dynamical system-based robot reaching motions, Robot.
Auton. Syst. 62 (6) (2014) 752–765.

[8] K. Neumann, J.J. Steil, Learning robot motions with stable dynamical sys-
tems under diffeomorphic transformations, Robot. Auton. Syst. 70 (2015)
1–15.

[9] N. Perrin, P. Schlehuber-Caissier, Fast diffeomorphic matching to learn
globally asymptotically stable nonlinear dynamical systems, Systems
Control Lett. 96 (2016) 51–59.

[10] C. Blocher, M. Saveriano, D. Lee, Learning stable dynamical systems using
contraction theory, in: Nternational Conference on Ubiquitous Robots and
Ambient Intelligence, 2017, pp. 124–129.

[11] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, C. Xu, Fast and stable learning of
dynamical systems based on extreme learning machine, Trans. Syst. Man
Cybern.: Syst. 49 (6) (2017) 1175–1185.

[12] A. Lemme, F. Reinhart, K. Neumann, J.J. Steil, Neural learning of vector
fields for encoding stable dynamical systems, Neurocomputing 141 (2014)
3–14.

[13] F. Khadivar, I. Lauzana, A. Billard, Learning dynamical systems with
bifurcations, Robot. Auton. Syst. 136 (2021) 103700.

[14] M. Ginesi, D. Meli, A. Roberti, N. Sansonetto, P. Fiorini, Dynamic move-
ment primitives: Volumetric obstacle avoidance using dynamic potential
functions, J. Intell. Robot. Syst. 101 (4) (2021) 1–20.

[15] M. Saveriano, F. Hirt, D. Lee, Human-aware motion reshaping using
dynamical systems, Pattern Recognit. Lett. 99 (2017) 96–104.

[16] M. Saveriano, D. Lee, Learning barrier functions for constrained motion
planning with dynamical systems, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2019, pp. 112–119.

[17] K. Kronander, S.M. Khansari-Zadeh, A. Billard, Incremental motion learning
with locally modulated dynamical systems, Robot. Auton. Syst. 70 (2015)
52–62.

[18] M. Saveriano, D. Lee, Incremental skill learning of stable dynamical sys-
tems, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, IEEE, 2018, pp. 6574–6581.

[19] M.P. Do Carmo, J. Flaherty Francis, Riemannian Geometry, Vol. 6, Springer,
1992.

[20] A. Ude, B. Nemec, T. Petric, J. Morimoto, Orientation in Cartesian space
dynamic movement primitives, in: ICRA, 2014, pp. 2997–3004.

[21] F.J. Abu-Dakka, V. Kyrki, Geometry-aware dynamic movement primitives,
in: ICRA, 2020, pp. 4421–4426.

[22] S. Calinon, Gaussians on Riemannian manifolds: Applications for robot
learning and adaptive control, IEEE Robot. Autom. Mag. (RAM) 27 (2)
(2020) 33–45.

[23] M.A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, N. Ratliff, Euclideanizing flows:
Diffeomorphic reduction for learning stable dynamical systems, in: A.M.
Bayen, A. Jadbabaie, G. Pappas, P.A. Parrilo, B. Recht, C. Tomlin, M. Zeilinger
(Eds.), Conference on Learning for Dynamics and Control, in: Proceedings
of Machine Learning Research, vol.120, 2020, pp. 630–639.

[24] J. Urain, M. Ginesi, D. Tateo, J. Peters, Imitationflow: Learning deep
stable stochastic dynamic systems by normalizing flows, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020, pp.
5231–5237.

[25] J. Urain, D. Tateo, J. Peters, Learning stable vector fields on Lie groups,
2021, arXiv preprint arXiv:2110.11774.

[26] W. Wang, M. Saveriano, F.J. Abu-Dakka, Learning deep robotic skills on
Riemannian manifolds, IEEE Access 10 (2022) 114143–114152.

[27] D.A. Cohn, Z. Ghahramani, M.I. Jordan, Active learning with statistical
models, J. Artif. Intell. Res. 4 (1996) 129–145.

[28] Z. Gao, Y. Wu, M. Harandi, Y. Jia, A robust distance measure for similarity-
based classification on the SPD manifold, IEEE Trans. Neural Netw. Learn.
Syst. 31 (9) (2020) 3230–3244.

[29] Z. Huang, R. Wang, S. Shan, L. Van Gool, X. Chen, Cross Euclidean-to-
Riemannian metric learning with application to face recognition from
video, IEEE Trans. Pattern Anal. Mach. Intell. 40 (12) (2017) 2827–2840.

[30] R. Chakraborty, J. Bouza, J.H. Manton, B.C. Vemuri, Manifoldnet: A deep
neural network for manifold-valued data with applications, IEEE Trans.
Pattern Anal. Mach. Intell. 44 (2) (2022) 799–810.

[31] M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric
deep learning: Going beyond Euclidean data, IEEE Signal Process. Mag. 34
(4) (2017) 18–42.

[32] M.Y. Seker, M. Imre, J.H. Piater, E. Ugur, Conditional neural movement
primitives, in: Robotics: Science and Systems, Vol. 10, 2019.

[33] S. Bahl, M. Mukadam, A. Gupta, D. Pathak, Neural dynamic policies for
end-to-end sensorimotor learning, in: NeurIPS, 2020.

[34] D.A. Reynolds, Gaussian mixture models, Encycl. Biom. 741 (2009)
659–663.

[35] S. Calinon, D. Bruno, D.G. Caldwell, A task-parameterized probabilistic
model with minimal intervention control, in: ICRA, 2014, pp. 3339–3344.

[36] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement
primitives, in: NeurIPS, 2013, pp. 2616–2624.

[37] Y. Huang, F.J. Abu-Dakka, J. Silvério, D.G. Caldwell, Toward orientation
learning and adaptation in Cartesian space, IEEE Trans. Robot. 37 (1) (2021)
82–98.

[38] M.J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, D.G. Caldwell, An
approach for imitation learning on Riemannian manifolds, IEEE Robot.
Autom. Lett. 2 (3) (2017) 1240–1247.

[39] F.J. Abu-Dakka, L. Rozo, D.G. Caldwell, Force-based variable impedance
learning for robotic manipulation, Robot. Auton. Syst. 109 (2018) 156–167.

[40] F. Abu-Dakka, Y. Huang, J. Silvério, V. Kyrki, A probabilistic framework for
learning geometry-based robot manipulation skills, Robot. Auton. Syst. 141
(2021) 103761.

[41] N. Jaquier, S. Calinon, Gaussian mixture regression on symmetric positive
definite matrices manifolds: Application to wrist motion estimation with
sEMG, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, IEEE, 2017, pp. 59–64.

[42] N. Jaquier, L. Rozo, D.G. Caldwell, S. Calinon, Geometry-aware ma-
nipulability learning, tracking and transfer, Int. J. Robot. Res. (IJRR)
(2020).

[43] M. Saveriano, F.J. Abu-Dakka, A. Kramberger, L. Peternel, Dynamic move-
ment primitives in robotics: A tutorial survey, 2021, arXiv preprint arXiv:
2102.03861.

[44] F.J. Abu-Dakka, B. Nemec, J.A. Jørgensen, T.R. Savarimuthu, N. Krüger,
A. Ude, Adaptation of manipulation skills in physical contact with the
environment to reference force profiles, Auton. Robots 39 (2) (2015)
199–217.

[45] F.J. Abu-Dakka, M. Saveriano, L. Peternel, Periodic DMP formulation for
quaternion trajectories, in: IEEE International Conference of Advanced
Robotics, 2021, pp. 658–663.

[46] M. Saveriano, F. Franzel, D. Lee, Merging position and orientation motion
primitives, in: ICRA, 2019, pp. 7041–7047.

[47] M. Saveriano, An energy-based approach to ensure the stability of learned
dynamical systems, in: IEEE International Conference on Robotics and
Automation, 2020, pp. 4407–4413.

[48] W. Lohmiller, J. Slotine, On contraction analysis for nonlinear systems,
Automatica 34 (6) (1998) 683–696.

[49] H. Ravichandar, A. Dani, Learning position and orientation dynamics from
demonstrations via contraction analysis, Auton. Robots 43 (4) (2019)
897–912.

[50] N.D. Ratliff, J. Issac, D. Kappler, S. Birchfield, D. Fox, Riemannian motion
policies, 2018, arXiv preprint arXiv:1801.02854.

13

https://doi.org/10.1016/j.robot.2023.104510
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb24
http://arxiv.org/abs/2110.11774
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb42
http://arxiv.org/abs/2102.03861
http://arxiv.org/abs/2102.03861
http://arxiv.org/abs/2102.03861
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb49
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb49
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb49
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb49
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb49
http://arxiv.org/abs/1801.02854

M. Saveriano, F.J. Abu-Dakka and V. Kyrki Robotics and Autonomous Systems 169 (2023) 104510

[51] M. Mukadam, C.-A. Cheng, D. Fox, B. Boots, N. Ratliff, Riemannian mo-
tion policy fusion through learnable Lyapunov function reshaping, in:
Conference on Robot Learning, PMLR, 2020, pp. 204–219.

[52] J. Sola, J. Deray, D. Atchuthan, A micro Lie theory for state estimation in
robotics, 2018, arXiv preprint arXiv:1812.01537.

[53] X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor
computing, Int. J. Comput. Vis. 66 (1) (2006) 41–66.

[54] S. Sra, R. Hosseini, Conic geometric optimization on the manifold of
positive definite matrices, SIAM J. Optim. 25 (1) (2015) 713–739.

[55] J. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall Englewood Cliffs,
1991.

[56] F. Pait, D. Colón, Some properties of the Riemannian distance function
and the position vector X, with applications to the construction of
Lyapunov functions, in: IEEE Conference on Decision and Control, 2010,
pp. 6277–6280.

[57] S. Fiori, Manifold calculus in system theory and control–fundamentals and
first-order systems, Symmetry 13 (11) (2021).

[58] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for
geometric measurements, J. Math. Imaging Vision 25 (1) (2006) 127–154.

[59] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning
and Control, Springer, 2009.

[60] S. Calinon, Robot Programming by Demonstration: A Probabilistic
Approach, EPFL/CRC Press, 2009.

[61] A. Albu-Schaffer, C. Ott, U. Frese, G. Hirzinger, Cartesian impedance control
of redundant robots: Recent results with the DLR-light-weight-arms, in:
2003 IEEE International Conference on Robotics and Automation, 2003,
pp. 3704–3709.

[62] S. Calinon, I. Sardellitti, D.G. Caldwell, Learning-based control strategy for
safe human-robot interaction exploiting task and robot redundancies, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,
pp. 249–254.

[63] J. Silvério, Y. Huang, F.J. Abu-Dakka, L. Rozo, D.G. Caldwell, Uncertainty-
aware imitation learning using kernelized movement primitives, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,
2019, pp. 90–97.

[64] K. Kronander, A. Billard, Learning compliant manipulation through kines-
thetic and tactile human-robot interaction, IEEE Trans. Haptics 7 (3) (2013)
367–380.

[65] K.B. Petersen, M.S. Pedersen, The Matrix Cookbook, Technical University of
Denmark, 2012.

Matteo Saveriano received his B.Sc. and M.Sc. degree
in automatic control engineering from University of
Naples, Italy, in 2008 and 2011, respectively. He re-
ceived is Ph.D. from the Technical University of Munich
in 2017. Currently, he is an assistant professor at the
Department of Industrial Engineering (DII), University
of Trento, Italy. Previously, he was an assistant profes-
sor at the University of Innsbruck and a post-doctoral
researcher at the German Aerospace Center (DLR). He
is an Associate Editor for RA-L. His research activi-
ties include robot learning, human–robot interaction,

understanding and interpreting human activities.

Fares J. Abu-Dakka received his B.Sc. degree in Me-
chanical Engineering from Birzeit University, Palestine
in 2003 and his DEA and Ph.D. degrees in robotics
motion planning from the Polytechnic University of Va-
lencia, Spain in 2006 and 2011, respectively. Between
2013 and 2016, he held a visiting professor position at
ISA of the Carlos III University of Madrid, Spain. In the
period between 2016 and 2019, he was a Postdoc at
Istituto Italiano di Tecnologia. During 2019–2022, he
was a Research Fellow at Aalto University. Currently,
since 2022, he is a Senior Scientist and leading the

Robot Learning Group at MIRMI, Technical University of Munich, Germany. His
research lies in the intersection of control theory, differential geometry, and
machine learning in order to enhance robot manipulation performance and
safety. He is an Associate Editor for IEEE-ICRA, IEEE-IROS, and IEEE-RA-L.

Ville Kyrki is Associate Professor in automaton tech-
nology at the Department of Electrical Engineering and
Automaton, Aalto University, Finland. During 2009–
2012 he was a professor in computer science with
specialization in intelligent robotics at the Lappeen-
ranta University of Technology, Finland. He received
the M.Sc. and Ph.D. degrees in computer science from
Lappeenranta University of Technology in 1999 and
2002, respectively. He conducts research mainly in
intelligent robotic systems, with emphasis on methods
and systems that cope with imperfect knowledge and

uncertain senses.

14

http://refhub.elsevier.com/S0921-8890(23)00149-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb51
http://arxiv.org/abs/1812.01537
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb53
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb53
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb53
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb56
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb57
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb57
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb57
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb58
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb58
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb58
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb59
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb59
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb59
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb60
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb60
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb60
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb61
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb62
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb63
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb64
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb64
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb64
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb64
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb64
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb65
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb65
http://refhub.elsevier.com/S0921-8890(23)00149-5/sb65

