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Given a possibly singular matrix polynomial P (z), we study 
how the eigenvalues, eigenvectors, root polynomials, minimal 
indices, and minimal bases of the pencils in the vector 
space DL(P ) introduced in Mackey, Mackey, Mehl, and 
Mehrmann [SIAM J. Matrix Anal. Appl. 28(4), 971-1004, 
2006] are related to those of P (z). If P (z) is regular, it is 
known that those pencils in DL(P ) satisfying the generic 
assumptions in the so-called eigenvalue exclusion theorem 
are strong linearizations for P (z). This property and the 
block-symmetric structure of the pencils in DL(P ) have 
made these linearizations among the most influential for the 
theoretical and numerical treatment of structured regular 
matrix polynomials. However, it is also known that, if P (z) is 
singular, then none of the pencils in DL(P ) is a linearization 
for P (z). In this paper, we prove that despite this fact 
a generalization of the eigenvalue exclusion theorem holds 
for any singular matrix polynomial P (z) and that such a 
generalization allows us to recover all the relevant quantities 
of P (z) from any pencil in DL(P ) satisfying the eigenvalue 
exclusion hypothesis. Our proof of this general theorem relies 
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Linearization heavily on the representation of the pencils in DL(P ) via 
Bézoutians by Nakatsukasa, Noferini and Townsend [SIAM 
J. Matrix Anal. Appl. 38(1), 181-209, 2015].
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Given an algebraically closed field F with characteristic3 0, this paper deals with a 
matrix polynomial

P (z) =
k∑

i=0
ziPi, Pi ∈ Fm×n, (1)

of grade k, i.e., Pk is allowed to be zero, and with one of the most influential families 
of pencils, i.e., matrix polynomials of grade 1, associated to P (z): the vector space 
of pencils DL(P ) introduced by Mackey, Mackey, Mehl, and Mehrmann in [29] in the 
square case m = n. The matrix polynomial P (z) is said to be regular if m = n and its 
determinant is not identically zero. Otherwise, P (z) is said to be singular. Regular and 
singular matrix polynomials arise in many applications [3,19,41,43] and one of the most 
reliable methods for computing their eigenvalues, eigenvectors and minimal indices and 
bases is via linearization. See Section 2 for precise definitions of these and other concepts 
appearing in this introduction.

A linearization of P (z) in (1) is a matrix pencil L(z) with the same finite eigenvalues 
and associated partial multiplicities as P (z) and also with the same number of right and 
left minimal indices. The linearization L(z) is strong if, in addition, it has an eigenvalue at 
infinity whenever P (z) has an eigenvalue at infinity, with the same partial multiplicities. 
Linearizations and strong linearizations are very important in numerical computations 
because, when F ⊆ C, there exist reliable algorithms for approximating eigenvalues and 
computing minimal indices of matrix pencils, either regular [32] or singular [42]. Applying 
these algorithms to a strong linearization allows us to get the corresponding magnitudes 
of P (z). As a consequence many families of strong linearizations of matrix polynomials 
have been developed and studied in the last two decades. We emphasize in this context 
the seminal work [29]. See also, for instance, [2,12,22,30,34] and the references therein 
among many other references on linearizations.

Among the many existing families of linearizations, the one based on the vector space 
of pencils DL(P ) introduced in [29] has been particularly relevant and influential for 
several reasons in the study and numerical treatment of regular matrix polynomials 

3 The assumption that the base field is closed is for simplicity of exposition, as it ensures for instance 
that finite eigenvalues all lie in F . The assumption that char(F) = 0 is only needed in two technical results, 
Lemma 4.7 and Theorem 4.8, that simplify the proof of our main results. The main results of this paper 
could also be proved without these assumptions, but this would complicate the exposition.
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P (z). To begin with, for many classes of structured regular matrix polynomials P (z)
appearing in applications (symmetric, Hermitian, palindromic, odd, even,...), the pencils 
in DL(P ) allow us to construct linearizations with the same structure as P (z) [22,30], 
which has important theoretical and numerical consequences. In addition, the lineariza-
tions in DL(P ) allow us to recover the left eigenvectors of P (z) from the corresponding 
ones of the linearization exactly in the same way as the right eigenvectors [22,30]. More-
over, the numerical properties of the linearizations in DL(P ) were studied in [21,23], 
where it was argued that, under some reasonable assumptions, some linearizations in 
DL(P ) have satisfactory properties with respect to the conditioning of eigenvalues and 
the backward errors of eigenpairs, though some recent results [5] indicate that such con-
clusions should be reconsidered. Finally, we mention that the linearizations in DL(P )
have played a fundamental role in the description and parametrization of structure-
preserving transformations for matrix polynomials in [18], and that a generalization of 
the space DL(P ), that goes beyond ansatz polynomials of bounded degree by considering 
ansatz polynomials of any degree and even more generally ansatz functions, was studied 
in [34].

An important remark is that, given a regular matrix polynomial P (z) of grade k, not 
every pencil in the vector space DL(P ) is a linearization for P (z). In order to explain 
this fact, let us recall that each nonzero pencil in DL(P ) is uniquely determined by a 
nonzero vector ω = [ω1 ω2 · · · ωk ]T ∈ Fk, called ansatz vector in [29], which gives 
rise to a scalar polynomial v(z) = ω1 zk−1 + ω2 zk−2 + · · · + ωk of grade k − 1, called 
ansatz polynomial in [34]. It was proved in [29, Theorem 6.7] that, for P (z) regular, 
the pencil in DL(P ) with ansatz polynomial v(z) is a linearization for P (z) if and only 
if the sets of eigenvalues of P (z) and of roots of v(z), each including possibly infinite 
eigenvalues or roots,4 are disjoint. This neat result was termed in [29] the eigenvalue 
exclusion theorem and led in [29, Theorem 6.8] to the conclusion that almost all pencils 
in DL(P ) are linearizations of P (z) when P (z) is regular. Moreover, it was proved in 
[29, Theorem 4.3] that a pencil in DL(P ) is a linearization for P (z) if and only if it is 
a strong linearization for P (z). On the other hand, neither fact remains true when the 
matrix polynomial P (z) is singular, since it was proved in [8, Theorem 6.1] that if P (z) is 
a singular square matrix polynomial, then none of the pencils in DL(P ) is a linearization 
for P (z).

Theorem 6.1 in [8] is, at a first glance, a very discouraging result, since it seems 
to indicate that the good properties mentioned above of the pencils in DL(P ) cannot 
be used at all for singular matrix polynomials. Moreover, it seems to put DL(P ) at 
disadvantage with respect to other families of linearizations of matrix polynomials, which 
are linearizations for both regular and singular matrix polynomials [4,7–10,12,36]. The 
main purpose of this paper is to prove that the pencils in DL(P ), though they are not 
linearizations, can still be used to compute the complete eigenstructure of singular matrix 

4 Recall that the scalar polynomial v(z) = ω1 zk−1 + ω2 zk−2 + · · · + ωk of grade k − 1 has a root at 
infinity of multiplicity � < k − 1 if ω1 = · · · = ω� = 0 and ω�+1 �= 0.
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polynomials, since they reveal all the structural data of any singular matrix polynomial 
under exactly the same hypotheses of the eigenvalue exclusion theorem proved in [29] for 
regular polynomials. Thus, for instance, the pencils in DL(P ) can be used to construct 
Hermitian pencils that reveal all the structural data of any, possibly singular, Hermitian 
matrix polynomial. In this context, the main result of this paper is the following theorem.

Theorem 1.1. Let P (z) be an m ×n, possibly singular, matrix polynomial with coefficients 
in Fm×n and of grade k ≥ 2, right nullity p and left nullity q, and let v(z) be a scalar 
polynomial of grade k − 1 with coefficients in F . Suppose that the sets of eigenvalues 
of P (z) and of roots of v(z), each including possibly infinite eigenvalues or roots, are 
disjoint. Denote by L(z) the pencil in DL(P ) with ansatz polynomial v(z). Then:

1. The right minimal indices of P (z) are γ1 ≤ · · · ≤ γp if and only if the right minimal 
indices of L(z) are 0 = · · · = 0︸ ︷︷ ︸

p(k−1) times

≤ γ1 ≤ · · · ≤ γp;

2. The left minimal indices of P (z) are η1 ≤ · · · ≤ ηq if and only if the left minimal 
indices of L(z) are 0 = · · · = 0︸ ︷︷ ︸

q(k−1) times

≤ η1 ≤ · · · ≤ ηq;

3. λ ∈ F ∪ {∞} is an eigenvalue of P (z) if and only if λ is an eigenvalue of L(z), 
and its partial multiplicities as an eigenvalue of P (z) and as an eigenvalue of L(z)
coincide.

Note that, if P (z) is regular, then Theorem 1.1 implies the eigenvalue exclusion theo-
rem in [29]: indeed, items 1 and 2 become vacuous as there are no minimal indices (that 
is, in item 1 p = 0 and in item 2 q = 0), while item 3 is equivalent to saying that L(z) is a 
strong linearization of P (z). Hence, we can view Theorem 1.1 as a generalization of [29, 
Theorem 6.7]. Observe that Theorem 1.1 immediately implies that, if P (z) is singular, 
then L(z) is not a linearization for P (z), because the number of left (or right) minimal 
indices of P (z) is different than the number of left (or right) minimal indices of L(z)
[11]. However, the key point is that for practical purposes such a pencil is not worse than 
a strong linearization: the minimal indices of L(z) are those of P (z) with the addition 
of a fixed number of extra zero minimal indices. Hence, the additional minimal indices 
can be trivially identified since the right and left nullities of P (z) are just those of L(z)
divided by k. In fact, arguably the recovery of the minimal indices from the pencils in 
DL(P ) for a singular P (z) is simpler than their recovery from other families of pencils 
that are strong linearizations, including the classical companion pencils, whose minimal 
indices are not exactly those of P (z), but shifted sequences of them [4,8,9,12,36].

We disclose in advance that the proof of Theorem 1.1 requires considerable work and 
that it relies heavily on the bivariate polynomial approach to DL(P ) pencils introduced in 
[34], that maps the pencils in DL(P ) into Lerer-Tismenetsky Bézoutians. We emphasize 
that this approach also allows us to consider for the first time in the literature DL(P )
pencils for matrix polynomials P (z) that may be rectangular without extra effort.



92 F.M. Dopico, V. Noferini / Linear Algebra and its Applications 677 (2023) 88–131

The results in this paper are connected with those in [14] concerning matrix poly-
nomials, though the approaches in the two papers are completely different. Given an 
m × n complex matrix polynomial, the authors of [14] consider only one pencil L(z) in 
DL(P ), the one with ansatz polynomial v(z) = 1, i.e., the ansatz polynomial with ∞
as unique root. For this particular pencil L(z), it was proved in [14], without assuming 
the eigenvalue exclusion condition, that Theorem 1.1 holds with the exception of item 
3 for the eigenvalue λ = ∞, for which it was proved that though it has different partial 
multiplicities in L(z) and in P (z), the ones in P (z) can be recovered from the ones in 
L(z). The approach in [14] is ad hoc in that sense that it relies on making some ma-
trix manipulations that exploit the very peculiar structure of the pencil in DL(P ) with 
ansatz polynomial v(z) = 1 and on the concept of strongly minimal linearization of a 
matrix polynomial. The latter is different from the standard definitions of linearization 
and strong linearization coming from [19]. Hence, the results in [14] are presented in a 
form rather different from Theorem 1.1. In this paper, in contrast, we systematically 
consider all the (uncountably many) pencils in the vector space DL(P ) and we prove 
that they satisfy Theorem 1.1 working with their representation as Bézoutians via a 
bivariate polynomial mapping.

It is worth mentioning that, with the exception of the particular pencil considered 
in [14], this paper presents the first example of a wide family of pencils related to a 
matrix polynomial P (z) that are not linearizations, according to the standard definition 
introduced by Gohberg, Lancaster and Rodman [19], but that still allows for the recovery 
of all the structural data of P (z). Since the recovery of such structural data is what is 
really wanted in applications, the results we have obtained for the pencils in DL(P )
indicate that the Gohberg, Lancaster and Rodman’s concepts of linearization and strong 
linearization may be unnecessarily rigid.

The paper is organized as follows. Section 2 summarizes the background material that 
is necessary in the rest of the paper. Some preliminary technical results that are used in 
the proofs of the main results are presented and proved in Section 3. Items 1 and 2 of 
Theorem 1.1 are proved in Section 4, while item 3 is proved in Section 5. Section 6 studies 
how to recover minimal bases, eigenvectors, and root polynomials of a possibly singular 
matrix polynomial P (z) from those of pencils in the vector space DL(P ). Finally, some 
conclusions are presented in Section 7.

2. Background material

In this section, we revise the necessary background material. Throughout this paper, 
we consider an algebraically closed field F with characteristic 0, the ring of polynomials 
F [z] with coefficients in F , and its field of fractions F(z). The sets of m × n constant 
matrices over F , of m × n matrix polynomials over F , and of m × n rational matrices 
over F are denoted by Fm×n, F [z]m×n and F(z)m×n, respectively.
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2.1. Basics on matrix polynomials

The normal rank, or simply the rank, of a matrix polynomial P (z) ∈ F [z]m×n is 
denoted by rank P (z) and is the size of its largest non-identically-zero minor or, equiva-
lently, its rank over the field F (z). The matrix polynomial P (z) is regular if it is square 
and det P (z) is not identically zero. Otherwise, P (z) is said to be singular. An element 
λ ∈ F is a finite eigenvalue of P (z) if the rank of the constant matrix P (λ) ∈ Fm×n is 
less than the normal rank of P (z), i.e., if rank P (λ) < rank P (z).

A square matrix polynomial U(z) ∈ F [z]n×n is said to be unimodular if its determinant 
is a nonzero element of F or, equivalently, if it is invertible and its inverse is a matrix 
polynomial.

The Smith canonical form of P (z) with r = rank P (z) is S(z) = U(z)P (z)V (z), where 
U(z), V (z) are unimodular matrix polynomials and S(z) = diag(d1(z), d2(z), . . . , dr(z), 0, . . . , 0)
is diagonal and such that each nonzero diagonal entry d1(z), d2(z), . . . , dr(z) divides the 
next one [17]. The diagonal elements of S(z) are unique up to multiplication by units 
of F [z] and the nonzero ones are called invariant factors of P (z). Given λ ∈ F , each 
invariant factor can be written uniquely as di(λ) = (z − λ)�i ωi(z), where ωi(λ) �= 0 and 
�i is a nonnegative integer, for i = 1, . . . , r. Thus, λ ∈ F is an eigenvalue of P (z) if and 
only if at least one �i is strictly larger than zero. Those �i that are positive are called 
the partial multiplicities of λ as an eigenvalue of P (z) and the corresponding factors 
(z − λ)�i are the elementary divisors of P (z) for the eigenvalue λ.

The partial multiplicities at infinity of P (z) are defined after fixing a grade k for 
P (z), where k is an integer greater than or equal to the degree of P (z), denoted by 
deg P (z) and defined as the largest degree of its entries. Then, the reversal of P (z) with 
respect to the grade k is defined as Revk P (z) = zkP (z−1). Very often the grade k is 
chosen to be equal to deg P (z); if this is the case we will omit the suffix k and simply 
write Rev P (z). The partial multiplicities of ∞ in P (z), seen as a grade k polynomial, 
are then defined to be equal to the partial multiplicities of 0 for Revk P (z). It is clear 
that different choices of the grade k lead to different partial multiplicities at ∞: more 
precisely, if k = deg P (z) + h, for some h > 0, and rank P (z) = r, then Rev P (z) has 
partial multiplicities at 0 equal to 0 < η1 ≤ · · · ≤ ηs if and only if Revk P (z) has partial 
multiplicities at 0 equal to h = · · · = h︸ ︷︷ ︸

r−s times

≤ η1 + h ≤ · · · ≤ ηs + h. Note that here s may 

be or may be not zero, and accordingly ∞ may be not or may be an eigenvalue of P (z)
when k = deg P (z). However, if k > deg P (z) and r > 0, then ∞ is always an eigenvalue 
of P (z) with r partial multiplicities.

The right kernel, or right null space, of P (z) ∈ F [z]m×n over the field F(z) is defined 
as

ker P (z) = {x(z) ∈ F(z)n×1 : P (z)x(z) = 0} .

The left kernel of P (z) over F(z) is defined as the right kernel of the transpose of P (z), 
which is denoted as P (z)T . In this paper, we mainly work with right kernels, since the 
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results for left kernels are completely analogous, and for this reason we will for simplicity 
just write “kernel” to mean “right kernel”. It is clear that ker P (z) has polynomial bases, 
i.e., bases whose vectors belong to F [z]n×1. Among the polynomial bases of ker P (z), 
those which have minimal sum of the degrees of their vectors are called (right) minimal 
bases of P (z). There are infinitely many (right) minimal bases of P (z), but all of them 
have the same ordered sequence of the degrees of their vectors [16]. Such degrees are 
called the right minimal indices of P (z). Left minimal bases and indices of P (z) are 
defined as the right ones of P (z)T .

The index sum theorem [11] states that, for every matrix polynomial P (z) ∈ F [z]m×n

of grade k and rank r, the sum of all the left and right minimal indices plus the sum of 
all finite and infinite partial multiplicities is equal to k r.

2.2. Linearizations of matrix polynomials and DL(P ) pencils

In applications of matrix polynomials, one is usually interested in computing their 
eigenvalues, together with their associated partial multiplicities, and their minimal in-
dices. Often, this is done by linearizing the matrix polynomial P (z) ∈ F [z]m×n one is 
interested in. Linearizations are pencils that allow us to obtain the required information 
of P (z) by coupling a theoretical analysis that relates this information with its analogue 
for L(z) together with an algorithm such as, for instance, those in [32,42]. More precisely 
a pencil L(z) = L0 +L1z is a linearization of P (z) if there exist unimodular matrix poly-
nomials U(z), V (z) such that U(z)L(z)V (z) = I ⊕ P (z); if, moreover, Rev1 L(z) is a 
linearization for Revk P (z), then L(z) is said to be a strong linearization for P (z) con-
sidered as a polynomial of grade k [19]. Strong linearizations preserve all the finite and 
infinite eigenvalues, together with their partial multiplicities, as well as the dimensions 
of the left and right kernels. However, they typically do not preserve minimal indices 
[11], though the minimal indices of the most standard classes of strong linearizations 
available in the literature allow us to obtain very easily those of the matrix polynomial 
[8,12].

In this paper, we will study a family of pencils associated with a matrix polyno-
mial P (z) ∈ F [z]m×n that are not linearizations according to the definition above (in 
particular, they do not preserve the dimensions of the left and right kernels), but that 
still preserve all the finite and infinite eigenvalues of P (z), together with their partial 
multiplicities, and moreover allow for the recovery of the minimal indices of P (z) in a 
way which is (at least) as simple as for the most standard types of linearizations. This 
family of pencils is described in the rest of this subsection. We emphasize that in this 
description the considered matrix polynomial is arbitrary, i.e., it may be rectangular, 
square and singular, or square and regular. This generality is in contrast with previous 
references [29,34] that deal with this family but restrict their attention to square matrix 
polynomials that, moreover, are often also required to be regular. It is easy to check 
that those properties of the pencils in this family that are needed in this work hold for 
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general matrix polynomials, which motivates us to consider in this work fully general 
matrix polynomials.

The so-called DL(P ) vector space of pencils associated with a matrix polynomial 
P (z) ∈ F [z]m×n was first defined by Mackey, Mackey, Mehl and Mehrmann in [29]. For 
a fixed matrix polynomial P (z) of grade k and size m × n, each pencil in DL(P ) has 
size km × kn and is uniquely determined by a nonzero ansatz vector ω in Fk. In turn, in 
this paper we identify nonzero ansatz vectors with nonzero scalar ansatz polynomials5

of grade k − 1 via the bijection

ω ∈ Fk 
→ v(x) = ωT

⎡⎢⎢⎣
xk−1

...
x
1

⎤⎥⎥⎦ ∈ F [x]k−1, (2)

where F [x]k−1 denotes the vector space of scalar polynomials in the variable x of grade 
k − 1, or, equivalently, of degree at most k − 1. If L(z) is the pencil in DL(P ) associated 
with the ansatz polynomial v(z), we denote it by L(z) =: DL(P, v), omitting in the right-
hand side of this identity the variable z for brevity. The eigenvalue exclusion theorem 
[29, Theorem 6.7] states that, when P (z) is a regular matrix polynomial, DL(P, v) is a 
strong linearization for P (z) if and only if the set of the roots of v(z) (when seen as a 
grade k − 1 scalar polynomial) and the set of the eigenvalues of P (z) (when seen as a 
grade k matrix polynomial) are disjoint. For a given regular matrix polynomial P (z), 
this “disjointness” condition is satisfied for almost all ansatz polynomials v(z), which 
motivates to label DL(P ) as a vector space of “potential linearizations” for P (z). In 
contrast, it was proved in [8, Theorem 6.1] that if P (z) is square and singular, then none 
of the pencils in DL(P ) is a linearization for P (z).

In [34], Nakatsukasa, Noferini and Townsend proposed a convenient interpretation of 
block matrices as bivariate matrix polynomials. Any k×k block matrix B of size km ×kn

with blocks Bij each of size m × n, 1 ≤ i, j ≤ k, is associated with the following m × n

bivariate matrix polynomial of grade k − 1 in both variables

F (x, y) =
[
yk−1Im · · · yIm Im

]
B

⎡⎢⎢⎣
xk−1In

...
xIn

In

⎤⎥⎥⎦ =
k−1∑
i=0

k−1∑
j=0

yixjBk−i,k−j , (3)

where Im and In denote the identity matrices of sizes m × m and n × n, respectively. 
This map is manifestly a bijection between m × n bivariate matrix polynomials of grade 
k − 1 in both x and y and km × kn matrices partitioned into k × k blocks all of size 

5 In [29], what we call the ansatz polynomial was instead called the v-polynomial. However, we prefer to 
follow instead the nomenclature of [34] because it fits better with the Bézoutian description of DL(P, v), 
and the latter is crucial to present relatively simple proofs of our results.
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m × n. This framework has the advantage of greatly simplifying many operations that 
are associated with the pencils in the DL(P ) vector space: see, for example, [34, Tables 
1 and 2]. In particular, it was shown in [34] that when m = n the pencil DL(P, v) is 
mapped by the bijection above to the Lerer-Tismenetsky Bézoutian [1,25,26] associated 
with P (x) and (x − z)v(x)In. This statement will be very important in this paper and 
deserves a detailed explanation in terms of bivariate polynomials and block matrices; 
moreover, we will generalize it to the case m �= n. Note that given P (z) ∈ F [z]m×n of 
grade k, the pencil DL(P, v) =: L1z +L0 ∈ F [z]km×kn can be seen as a k×k block pencil 
or, equivalently, as a block matrix whose blocks belong to F [z]m×n and have grade 1. 
Hence, we can view it via the bijection (3) as a trivariate matrix polynomial in x, y, z
having grade 1 in z and grade k − 1 in both x and y. We can express concisely this 
Lerer-Tismenetsky-Bézout connection as follows: functionally, the bijection (3) maps

DL(P, v) ∈ F [z]km×kn


→ BP,v(x, y, z) := P (y)(x − z)v(x) − P (x)(y − z)v(y)
x − y

∈ F [x, y, z]m×n, (4)

where we observe that BP,v(x, y, z) = BP,v(y, x, z). The relation (4) was crucial in [34] to 
enormously simplify the original proof of the eigenvalue exclusion theorem when P (z) is 
regular, and to derive some novel results. As said in the introduction (see Theorem 1.1), 
in this paper we essentially aim to extend the eigenvalue exclusion theorem to the case 
where P (z) is singular (square or rectangular). This extension means that if the set of the 
roots of v(z) (when seen as a grade k−1 scalar polynomial) and the set of the eigenvalues 
of P (z) (when seen as a grade k matrix polynomial) are disjoint, then we will prove that 
DL(P, v) has the same eigenvalues and partial multiplicities as P (z), while the minimal 
indices of DL(P, v) are precisely those of P (z) together with some extra minimal indices 
equal to zero. Therefore, it is not surprising that the bijection (4) plays also a central 
role in this paper. In this context, we emphasize that (4) was derived in [34] without 
any need to assume that P (z) is regular [34, Remark 3.2], though in many of the results 
that followed next in [34] it was assumed that P (z) is regular.

Remark 2.1. In principle, the bijection (3) could be defined using any polynomial basis 
for the space of scalar polynomials of degree at most k − 1, i.e., the restriction to the 
monomial basis is convenient, but not necessary. This was indeed already observed in [34]
and rediscovered in [15]. It leads to an immediate generalization of the space DL(P ). 
While we restrict to the monomial basis for the sake of a much simpler exposition, 
we observe that the results of this paper also generalize to DL(P ) in non-monomial 
bases. This follows easily by observing that (a) a bijection between such a space and 
the “traditional” DL(P ) in the monomial basis is given by multiplying each pencil in 
the generalized DL(P ) by MT ⊗ Im on the left and by M ⊗ In on the right, where 
M is the k × k nonsingular constant change-of-polynomial-basis matrix, and that (b) 
all the relevant structures, i.e., eigenvalues, partial multiplicities, minimal indices and 
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bases, root polynomials, are well behaved under strict equivalence. This remark could 
have practical relevance, because DL(P ) in certain non-monomial bases may be useful 
to exploit the better numerical properties of some basis. One example, albeit limited to 
the scalar case m = n = 1, is presented in [33] where a method based on the Bézout 
resultant matrix (i.e., DL(P )) in the Chebyshev basis was used to compute real common 
zeros of bivariate functions.

2.3. Root polynomials

Maximal sets of root polynomials [13,35] (see also [19] for the regular case and [38]
for an extension to rational functions) are another crucial tool in this paper. They are 
useful for the analysis of singular matrix polynomials because they carry the relevant 
information about the partial multiplicities of a matrix polynomial at a given eigenvalue 
λ. More precisely, suppose that M(z) ∈ F [z]n×p is a right minimal basis for the matrix 
polynomial P (z) ∈ F [z]m×n, which is a short way of stating that the columns of M(z)
form a minimal basis of the right kernel of P (z). Then, for any λ ∈ F we define kerλ P (z)
as the subspace of Fn spanned by the columns of M(λ). A polynomial vector r(z) ∈ F [z]n
is said to be a root polynomial at λ of order � ≥ 1 for P (z) if

1. P (z) r(z) = (z − λ)�w(z), for some w(z) ∈ F [z]m such that w(λ) �= 0, and
2. r(λ) /∈ kerλ P (z).

Suppose that {ri(z)}t
i=1 is a set of root polynomials at λ for P (z), with orders �1 ≥ · · · ≥

�t, and let R(z) ∈ F [z]n×t be the matrix whose ith column is ri(z). The set {ri(z)}t
i=1 is 

said to be λ-independent if the matrix [M(λ) R(λ)] has full column rank; it is said to 
be complete if it is λ-independent and t = dim ker P (λ) − dim kerλ P (z); and it is said to 
be maximal if it is complete and satisfies the property that, for each i = 1, . . . , t, there 
is no root polynomial r̂(z) such that r1(z), . . . , ri−1(z), ̂r(z) are λ-independent and the 
order of r̂(z) is strictly larger than the order of ri(z). It was proved in [13,38] that all 
the concepts defined above are independent of the particular right minimal basis M(z)
of P (z) that is considered and that root polynomials at λ for P (z) exist if and only if λ
is a finite eigenvalue of P (z).

All maximal sets of root polynomials of a given matrix polynomial P (z) at a given 
point λ have the same orders [13, Theorem 4.1-Item 2] and these orders coincide with 
the partial multiplicities of λ as an eigenvalue of P (z) [13, Theorem 4.2]. Moreover, the 
following theorem that appeared in [13, Theorem 4.1-Item 3] will be important in this 
paper.

Theorem 2.2. Let {ri(z)}t
i=1 be a complete set of root polynomials at λ ∈ F for P (z) ∈

F [z]m×n with orders κ1 ≥ · · · ≥ κt. Suppose, moreover, that the partial multiplicities of 
λ as an eigenvalue of P (z) are �1 ≥ · · · ≥ �t. Then, �i ≥ κi for all i = 1, . . . , t. Moreover, 
the following are equivalent:
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1. {ri(z)}t
i=1 is a maximal set of root polynomials at λ for P (z);

2. �i = κi for all i = 1, . . . , t;
3.
∑t

i=1 κi =
∑t

i=1 �i.

The definitions above of root polynomials and λ-independent, complete and maximal 
sets of root polynomials correspond to the right versions of these concepts. Left root 
polynomials and λ-independent, complete and maximal sets of left root polynomials are 
defined as the right ones for P (z)T . The definition of root polynomials at infinity for P (z)
requires certain care, but their properties are analogous to those of root polynomials at 
finite points. They can be found in [13, Section 6].

3. Preliminary results

This section includes some auxiliary results that are useful to prove the main results in 
this paper. The lemmata in Subsection 3.1 are essential to study in Section 4 the minimal 
indices of the pencils in DL(P ). The results in Subsection 3.2 allow us to simplify many of 
the proofs in the rest of the paper, because they show, via a Möbius transformation, that 
it is enough to establish them only for matrix polynomials P (z) and ansatz polynomials 
v(z) in (4) without eigenvalues and roots at infinity, respectively.

3.1. Technical lemmata on certain Vandermonde-structured matrices

In this subsection we provide some results on matrices that have a tensor product 
Vandermonde structure; these results are crucial for the construction in Section 4 of a 
minimal basis of ker L(z), where L(z) = DL(P, v), for a singular matrix polynomial P (z)
and an ansatz polynomial v(z) whose roots are not eigenvalues of P (z).

Let us start with Lemma 3.1, that assumes a tensor product structure with a classical 
(i.e. not confluent) Vandermonde matrix.

Lemma 3.1. Let � ≤ k be two positive integers. For i = 1, . . . , �, let Ai ∈ Fn×mi with 
rank Ai = mi and let αi ∈ F be such that αi �= αj if i �= j. Let

V (z) =

⎡⎢⎢⎣
zk−1

...
z
1

⎤⎥⎥⎦
be the Vandermonde vector of degree k − 1 depending on the variable z ∈ F . Then 
the matrix C = [V (α1) ⊗ A1 · · · V (α�) ⊗ A� ] ∈ Fkn×m has full column rank m =∑�

i=1 mi.

Proof. Let S = [V (α1) · · · V (α�)], which can be seen as a k × � submatrix of a k × k

Vandermonde matrix. Then, standard properties of Vandermonde matrices imply that 
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S has full column rank �. Since we can factorize C = (S ⊗ In) diag(A1, . . . , A�), we have 
rank C = rank diag(A1, . . . , A�) = m. �

We have stated Lemma 3.1 mainly for illustrative purposes, as it is simpler to analyze 
than the general case, but to our goals in Section 4 it is only useful if all the roots of 
the ansatz polynomial v(z) are simple. This is in fact not typical in practice since the 
most common choices for v(z) are either 1 or zk−1 [14,22,29], that have a unique root 
of multiplicity k − 1 at ∞ and at 0, respectively. However, by looking at the proof, 
we observe that Lemma 3.1 would still hold if we replaced S by any full column rank 
matrix, not necessarily Vandermonde. Our next goal is to generalize in Lemma 3.3 the 
result to a tensor product structure inherited by a confluent Vandermonde matrix (see 
[20, Chapter 22] for information on confluent Vandermonde matrices). Lemma 3.2 is a 
preliminary step for this goal.

Lemma 3.2. Let � ≤ k be two positive integers, let α ∈ F , let M(z) ∈ F [z]n×p be a matrix 
polynomial such that M(α) has full column rank, and let V (z) ∈ F [z]k×1 be defined as 
in Lemma 3.1. Let us denote by [V (z) ⊗ M(z)]′ and [V (z) ⊗ M(z)](β) the derivative and 
the βth derivative with respect to z, respectively, and by [ · ]|z=α evaluation at α. Then 
the matrix

Mα,k,�,M(z) =
[
V (z) ⊗ M(z) [V (z) ⊗ M(z)]′ · · · [V (z) ⊗ M(z)](�−1) ]∣∣

z=α
∈ Fkn×�p

has full column rank.

Proof. The block entry of Mα,k,�,M(z) (before evaluation at α) in block row k − φ and 
block column β + 1 is

[zφM(z)](β) =
β∑

j=0
[zφ](j)

(
β
j

)
[M(z)](β−j).

Since the jth derivative of zφ is 0 for j > φ and in the summation only the first β

derivatives of M(z) appear, we can encode these relations by expressing Mα,k,�,M(z) as 
the product Mα,k,�,M(z) = AB, where

A =
[
V (�−1)(α) . . . V ′(α) V (α)

]
⊗ In ∈ Fkn×�n (5)

corresponds to the last columns of a block upper triangular matrix, and

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . M(α)
...

...
...

0 0 M(α) . . .

(
� − 1

2

)
M (�−3)(α)

0 M(α) 2M ′(α) . . . (� − 1)M (�−2)(α)
M(α) M ′(α) M ′′(α) . . . M (�−1)(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ F �n×�p, (6)
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is block lower antitriangular. Observe that, generally, the block Bij is(
j − 1
� − i

)
M (i+j−�−1)(α) if i + j > � and 0 otherwise. Note that A is a k × � submatrix 

of a k × k confluent Vandermonde matrix tensor product the identity, and hence it has 
full column rank. As a consequence, rank Mα,k,�,M(z) = rank B = � rank M(α) = �p. �

Lemma 3.2 implies the announced generalization of Lemma 3.1.

Lemma 3.3. Let �1, . . . , �s, k be positive integers such that � :=
∑s

i=1 �i ≤ k and let 
V (z) ∈ F [z]k×1 be defined as in Lemma 3.1. For i = 1, . . . , s, let αi ∈ F be such that 
αi �= αj if i �= j, let Mi(z) ∈ F [z]n×pi be a matrix polynomial such that Mi(αi) has full 
column rank, and let Mαi,k,�i,Mi(z) ∈ Fkn×�ipi be defined as in Lemma 3.2. Then

C = [Mα1,k,�1,M1(z) Mα2,k,�2,M2(z) · · · Mαs,k,�s,Ms(z) ] ∈ Fkn×
(∑s

i=1 �ipi

)

has full column rank.

Before proving Lemma 3.3, we observe that �i and Mi(z) are allowed to differ for 
different values of i and that the matrices Mi(z) may also have a different number of 
columns (but they must have the same number of rows). However, it is a necessary 
assumption that Mi(αi) has full column rank for all i. For our scopes in this paper, 
however, Mi(z) will not depend on the index i (whereas �i may). Observe also that ∑s

i=1 �ipi ≤ (
∑s

i=1 �i) maxi pi ≤ kn. Thus, the number of columns of C is less than or 
equal to the number of its rows.

Proof of Lemma 3.3. For each i, let Mαi,k,�i,Mi(z) = AiBi be a factorization as in the 
proof of Lemma 3.2. Then, C = AB with

A = [A1 A2 · · · As ] ∈ Fkn×�n, B = B1 ⊕ B2 ⊕ · · · ⊕ Bs ∈ F �n×
(∑s

i=1 �ipi

)
,

where Ai, Bi have the structures of (5) and (6), respectively. Then, A is a k×� submatrix 
of a k×k, possibly confluent, Vandermonde matrix tensor product the identity. Therefore, 
it has full column rank. Hence, rank C = rank B =

∑s
i=1 rank Bi =

∑s
i=1 �ipi, proving 

the statement. �
3.2. A commuting diagram between DL(P ) pencils and Möbius transformations

Let gcd stand for greatest common divisor. Recall that, given a matrix polynomial 
P (z) ∈ F [z]m×n of degree k and a Möbius function r(z) = n(z)/d(z), where n(z) =
αz+β, d(z) = γz+δ satisfy gcd(n(z), d(z)) = 1 (or equivalently A =

[
α β
γ δ

]
is invertible), 

the associated Möbius transformation of grade g ≥ k of P (z) is

Mg,r(z)(P ) = d(z)gP

(
n(z)
d(z)

)
∈ F [z]m×n,
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where we omit the dependence on z in the left-hand side for simplicity. These transfor-
mations have been studied in papers such as [31,35]. Crucially, the map z 
→ n(z)/d(z) is 
an automorphism of F ∪ {∞} (upon agreeing that, conventionally, for all nonzero α ∈ F , 
α/0 = ∞; moreover n(∞) = α and d(∞) = γ). In particular, the following results are 
known (see, for example, [31, Theorems 5.3 and 7.5] and [35, Theorem 4.1]).

Theorem 3.4. Suppose that P (z) ∈ F [z]m×n has grade g, that Q(z) = Mg,r(z)(P ) ∈
F [z]m×n is the Möbius transform of grade g induced by r(z) = n(z)/d(z) of P (z), and 
assume that Q(z) has also grade g. Let λ, μ ∈ F ∪ {∞} satisfy λd(μ) = n(μ). Then:

1. λ is an eigenvalue of P (z) with nonzero partial multiplicities δ1 ≤ · · · ≤ δs if and 
only if μ is an eigenvalue of Q(z) with nonzero partial multiplicities δ1 ≤ · · · ≤ δs;

2. m1(z), . . . , mp(z) ∈ F [z]n×1 are a right minimal basis of P (z) with right minimal 
indices ν1 ≤ · · · ≤ νp if and only if u1(z), . . . , up(z) ∈ F [z]n×1 are a right minimal 
basis of Q(z) with right minimal indices ν1 ≤ · · · ≤ νp, where ui(z) = Mνi,r(z)(mi)
for all i = 1, . . . , p.

3. n1(z), . . . , nq(z) ∈ F [z]m×1 are a left minimal basis of P (z) with left minimal indices 
η1 ≤ · · · ≤ ηq if and only if v1(z), . . . , vq(z) ∈ F [z]m×1 are a left minimal basis of 
Q(z) with left minimal indices η1 ≤ · · · ≤ ηq, where vi(z) = Mηi,r(z)(ni) for all 
i = 1, . . . , q.

With this in mind, we show in Theorem 3.6 how the operations of constructing a 
DL(P ) pencil of a matrix polynomial and applying Möbius transformations relate. We 
prove the simple Lemma 3.5 as a preliminary step.

Lemma 3.5. Let n(z) = αz + β, d(z) = γz + δ ∈ F [z] be scalar polynomials of grade 1
such that gcd(n(z), d(z)) = 1 and let F [z]k−1 be the vector space of scalar polynomials of 
grade k − 1. Then, Bn,d = {n(z)k−1, n(z)k−2d(z), . . . , n(z)d(z)k−2, d(z)k−1} is a basis of 
F [z]k−1. Therefore, there exists an invertible change of basis matrix B ∈ Fk×k such that

B

⎡⎢⎢⎢⎢⎣
zk−1

zk−2

...
z
1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
n(z)k−1

n(z)k−2d(z)
...

n(z)d(z)k−2

d(z)k−1

⎤⎥⎥⎥⎥⎥⎦ . (7)

Proof. Let r(z) = n(z)/d(z). The statement is a corollary of [31, Theorem 3.18], that 
says that p(z) 
→ Mk−1,r(z)(p) is an F -linear automorphism of F [z]k−1. �
Theorem 3.6. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k and v(z) be an 
ansatz polynomial of grade k − 1. Let n(z), d(z) be coprime linear scalar polynomials 
and denote by Mg,r(z)(X) the Möbius transform of grade g of the matrix polynomial 
X(z) induced by r(z) = n(z)/d(z), that is, Mg,r(z)(X) = d(z)gX(n(z)/d(z)). Denote by 
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L(z) = zL1 + L0 the DL(P ) pencil of P (z) with ansatz polynomial v(z), i.e., DL(P, v), 
and by M(z) = zM1 + M0 the DL(Q) pencil of Q(z) := Mk,r(z)(P ) with ansatz polyno-
mial u(z) := Mk−1,r(z)(v), i.e., DL(Q, u). Moreover, let B be the k × k change of basis 
matrix in Lemma 3.5. Then,

(BT ⊗ Im) M1,r(z)(L) (B ⊗ In) = M(z).

In other words, the following diagram commutes:

(P, v) zL1 + L0

(Q, u) zM1 + M0

(k,k-1)-Möbius 1-Möbius + (B ⊗ I)-congruence

DL

DL

Proof. It is convenient, for the sake of clarity in the proof, to distinguish notation-
ally between the variables associated with the triple (P, v, L) and those associated with 
(Q, u, M): to this goal, we will put hats on the variables associated with P, v and L. 
Under the bijection (3) and taking into account (4),

L(ẑ) 
→ P (ŷ)(x̂ − ẑ)v(x̂) − P (x̂)(ŷ − ẑ)v(ŷ)
x̂ − ŷ

.

Taking into account (3), (7), and the fact that Mk−1,r(z)(
∑k−1

i=0 wiz
i) =∑k−1

i=0 wi n(z)i d(z)k−1−i, we see that left multiplication of L(ẑ) by BT ⊗ Im corresponds 
functionally to a Möbius transformation of grade k − 1 induced by ŷ = r(y); similarly, 
right multiplication of L(ẑ) by B ⊗ In corresponds to a Möbius transformation of grade 
k −1 induced by x̂ = r(x); and finally the action of M1,r(z) implements at the functional 
level a Möbius transformation of grade 1 induced by ẑ = r(z). Hence, using (4), the 
pencil (BT ⊗ I)M1,r(z)(L)(B ⊗ I) corresponds functionally to

d(z)d(x)k−1d(y)k−1 P (r(y))(r(x) − r(z))v(r(x)) − P (r(x))(r(y) − r(z))v(r(y))
r(x) − r(y) . (8)

On the other hand, once again using (4),

M(z) 
→ Q(y)(x − z)u(x) − Q(x)(y − z)u(y)
x − y

,
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or, equivalently after using the definitions of Q and u, M(z) is mapped by (3) to the 
trivariate matrix polynomial

d(y)kd(x)k−1P (r(y))(x − z)v(r(x)) − d(x)kd(y)k−1P (r(x))(y − z)v(r(y))
x − y

. (9)

Bearing in mind that (3) is a bijection, proving the statement is therefore equivalent to 
showing that (8) and (9) are equal as trivariate polynomial functions in x, y, z. Dividing 
(8) and (9) by d(y)k−1d(x)k−1, the statement is then implied by

P (r(y))(d(z)r(x) − n(z))v(r(x)) − P (r(x))(d(z)r(y) − n(z))v(r(y))
r(x) − r(y) =

= d(y)P (r(y))(x − z)v(r(x)) − d(x)P (r(x))(y − z)v(r(y))
x − y

.

Breaking each side as the difference of two similar terms, equating each pair of terms, 
and cancelling common factors, we see that in turn the latter equality is implied by

{
(x − y)(d(z)r(x) − n(z)) = (r(x) − r(y))d(y)(x − z);
(x − y)(d(z)r(y) − n(z)) = (r(x) − r(y))d(x)(y − z).

(10)

We prove the first functional equation of the system (10), as the second one follows from 
the first one with the changes x 
→ y and y 
→ x and changing the signs of both sides. 
Multiplying both sides of the first equation in (10) by d(x) we obtain

(x − y)(d(z)n(x) − n(z)d(x)) = (n(x)d(y) − n(y)d(x))(x − z),

whose correctness can be checked by using n(s) = αs + β, d(s) = γs + δ, and then 
expanding both sides to see that both are equal to (x − y)(x − z)(δα − βγ). �

A consequence of Theorem 3.6 is that we can assume in the rest of the paper without 
loss of generality that both the matrix polynomial P (z) and the ansatz polynomial 
v(z) do not have eigenvalues and roots at infinity, which simplifies considerably the 
developments. Indeed, if ∞ is an eigenvalue of P (z) or a root of v(z), then we can 
apply a Möbius transformation induced by an appropriate r(z) to both so that neither 
Q(z) = Mk,r(z)(P ) nor u(z) = Mk−1,r(z)(v) has infinite eigenvalues/roots. Note that 
it is always possible to find such r(z) because the set of eigenvalues/roots of P and v
has a finite number of elements and F is algebraically closed, hence infinite. Taking into 
account Theorem 3.4 and the fact that the strict equivalences BT ⊗ Im and B ⊗ In

preserve the eigenvalues, the partial multiplicities and the minimal indices, Theorem 3.6
then allows us to obtain statements on the triple (P, v, L = DL(P, v)) from those on the 
triple (Q, u, M = DL(Q, u)).
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4. The minimal indices of DL(P, v)

In this section we will prove items 1 and 2 of Theorem 1.1. We will prove first item 1 
and then obtain item 2 as a simple corollary. The proof of item 1 proceeds by building 
a particular right minimal basis of the pencil DL(P, v) in (4). Throughout this section, 
we suppose that the, possibly singular, nonzero matrix polynomial P (z) ∈ F [z]m×n has 
grade k ≥ 2, that the scalar ansatz polynomial v(z) has grade k − 1, and that the sets of 
eigenvalues of P (z) and of roots of v(z) are disjoint. We denote DL(P, v) =: zL1 +L0 =:
L(z). Moreover, having in mind to exploit Theorem 3.6, we further suppose that v(z)
has no infinite roots, which implies that v(z) has degree exactly k − 1.

We start by reviewing some basic concepts on minimal bases that are used in this sec-
tion and that can be found at [16,28]. Recall that we are working in an algebraically closed 
field F . For brevity, we say that a polynomial matrix A(z) ∈ F [z]n×p, with n ≥ p, is a min-
imal basis if its columns form a minimal basis of the rational subspace they span, which 
is denoted by span A(z). Given a polynomial matrix P (z) ∈ F [z]m×n, we say that A(z)
is a (right) minimal basis of P (z) if A(z) is a minimal basis and span A(z) = ker P (z). 
Let us write A(z) in terms of its columns as A(z) = [A1(z) · · · Ap(z) ]. Then, we de-
fine the column-wise reversal of A(z) as (cwRev A)(z) = [Rev A1(z) · · · Rev Ap(z) ], 
where we emphasize that each reversal is taken with respect to the degree of the corre-
sponding column, and by convention deg 0 = −∞. We denote {A(z)} = (cwRev A)(0). 
This constant matrix is termed in [16] the high order coefficient matrix of A(z). The 
rules in the following lemma follow immediately from the definition of the high order 
coefficient matrix.

Lemma 4.1. Let A(z) ∈ F [z]n×p, B(z) ∈ F [z]n×t and C ∈ Fn×s, i.e., C is a constant 
matrix. Then:

1. {[A(z) B(z) ]} = [{A(z)} {B(z)} ];
2. {C} = C;
3. for any scalar polynomial p(z) = pdzd + · · · + p1z + p0, with pd �= 0,

(a) {p(z)A(z)} = pd {A(z)};
(b) if deg p(z) > deg B(z) and no column of A(z) is zero, then {p(z)A(z) + B(z)} =

pd {A(z)}.

Let us recall a very useful characterization of minimal bases that was first proved in 
[16].

Lemma 4.2. Let A(z) ∈ F [z]n×p, n ≥ p. Then A(z) is a minimal basis if and only if

1. rank A(z0) = p for all z0 ∈ F and
2. rank{A(z)} = p.
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The following simple lemma will be also used in this section.

Lemma 4.3. Let A, B, C be matrices of adequate sizes with entries in any field. Then 

rank
[

0 C
A B

]
= rank

[
A B
0 C

]
≥ rank A + rank C.

In the following proposition, we give a first step towards constructing a right minimal 
basis of DL(P, v). Note also that, as a corollary of Proposition 4.4, we obtain an alterna-
tive proof to that in [8] for the fact that none of the pencils in DL(P ) is a linearization 
of P (z) if P (z) is singular, since the dimensions of the right kernels of L(z) and P (z) are 
different.

Proposition 4.4. Let M(z) ∈ F [z]n×p be a right minimal basis for P (z) ∈ F [z]m×n and 
suppose the distinct roots of v(z) are μ1, . . . , μs ∈ F with multiplicities �1, . . . , �s, respec-
tively. Let L(z) = DL(P, v). Using the notation of Lemmata 3.1, 3.2 and 3.3, and taking 
into account that 

∑s
i=1 �i = k − 1, define

C = [Mμ1,k,�1,M(z) Mμ2,k,�2,M(z) · · · Mμs,k,�s,M(z) ] ∈ Fkn×(k−1)p, and

G(z) = [C D(z) ] ∈ F [z]kn×kp,

where D(z) := V (z) ⊗ M(z) ∈ F [z]kn×p. Then,

1. C has full column rank and satisfies L(z) C = 0, that is span C ⊆ ker L(z). Moreover, 
L(z) has at least (k − 1)p right minimal indices equal to 0, where p = dim ker P (z);

2. G(z) has full column rank and satisfies L(z) G(z) = 0, that is span G(z) ⊆ ker L(z).

Proof. Item 1. Taking into account Lemmata 3.2 and 3.3, we consider C parti-
tioned as C = [C1 C2 · · · Ck−1 ], where each Ci has a structure of the type 
Ci = [V (z) ⊗ M(z)](a)

∣∣
z=μj

∈ Fkn×p for some root μj of v(z) and some a such that 
0 ≤ a ≤ �j − 1. Then L(z)C = [L(z)C1 · · · L(z)Ck−1 ]. Since, according to (4), 
L(z) 
→ BP,v(x, y, z) via the bivariate matrix polynomial bijection (3), right multiplica-
tion of L(z) by the block column Ci corresponds in the functional bivariate formulation to 
right multiplication of BP,v(x, y, z) by M(x), followed by taking the a-th partial deriva-
tive with respect to x and x-evaluation at x = μj (see also [34, Table 3.1]). Explicitly, 
this means

L(z)Ci 
→ ∂a

∂xa

P (y)(x − z)v(x) − (y − z)v(y)P (x)
x − y

M(x)
∣∣∣∣
x=μj

.

Since P (x)M(x) = 0, we only need to pay attention to the derivative of the first term 
and, taking into account that μj is a root of v(x) of multiplicity �j > a (crucially, the 
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inequality is strict), we then see that L(z)Ci 
→ 0 for all i = 1, . . . k − 1, and hence 
L(z)C = 0 because (3) is a bijection.6

To prove that C has full column rank, it suffices to use Lemma 4.2-1 on M(z) and 
then to invoke (a special case of) Lemma 3.3. Finally, since the columns of C are linearly 
independent constant vectors and belong to ker L(z), they can be completed to a minimal 
basis of ker L(z) via the method described in [17, Ch. XII, §5]. Thus, the (k−1)p columns 
of the constant matrix C give (k−1)p minimal indices of L(z) equal to zero. Another way 
to get the same result is through the so-called “Strong Minimality Property of Minimal 
Indices” proved in [28, Theorem 4.2].

Item 2. Observe that the operation L(z)D(z) in the bivariate matrix polynomial 
framework amounts to multiplying BP,v(x, y, z) by M(x) on the right followed by x-
evaluation at x = z. Explicitly, this means

L(z)D(z) 
→ P (y)(z − z)v(z) − (y − z)v(y)P (z)
z − y

M(z) = 0,

where we have used again that P (z)M(z) = 0. Therefore, L(z)D(z) = 0, which combined 
with the result in item 1 implies L(z)G(z) = 0. To see that G(z) has full column rank, we 
apply Lemma 3.3 to G(α), where α is any element of F such that α �= μi, for i = 1, . . . , s. 
This proves that the constant matrix G(α) has full column rank, which implies that the 
matrix polynomial G(z) has full column rank. �

Proposition 4.4 implies that dim ker L(z) ≥ kp. In fact, we will prove later that 
dim ker L(z) = kp. This, and the fact that G(z) is not a minimal basis, motivates us to 
look for a minimal basis F (z) ∈ F [z]kn×kp such that span F (z) = span G(z). Observe that 
G(z) is not a minimal basis because it does not satisfy the first condition of Lemma 4.2: 
indeed, D(μi) is equal to the first block column of Mμi,k,�i,M(z) for i = 1, . . . , s. A min-
imal basis F (z) is described in Proposition 4.5 in terms of the Hermite interpolating 
polynomials (see, for instance, [40, p. 53]) associated with the distinct roots μ1, . . . , μs

of v(z) and their multiplicities �1, . . . , �s.

Proposition 4.5. Let M(z) ∈ F [z]n×p be a right minimal basis for P (z) ∈ F [z]m×n and 
let γ1 ≤ · · · ≤ γp be the degrees of the columns of M(z), i.e., γ1 ≤ · · · ≤ γp are the 
right minimal indices of P (z). Suppose the distinct roots of v(z) are μ1, . . . , μs ∈ F

with multiplicities �1, . . . , �s, respectively. Let L(z) = DL(P, v) and let C, D(z) and 
G(z) be the matrices defined in Proposition 4.4. Let us partition the matrix C ∈
Fkn×(k−1)p as C = [C1 C2 · · · Ck−1 ] with Ci ∈ Fkn×p for i = 1, . . . , k − 1. Let 
H1(z), H2(z), . . . , Hk−1(z) be the scalar Hermite interpolating polynomials associated 

6 We warn the reader that, as explained in [34, Section 3], the bivariate polynomial bijection (3) can 
clearly be defined more in general from k × h block matrices with blocks of size m × n to m × n bivariate 
matrix polynomials of grade k − 1 in y and of grade h − 1 in x.
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with μ1, . . . , μs and �1, . . . , �s ordered as follows: if Ci = [V (z) ⊗ M(z)](a)
∣∣
z=μj

∈ Fkn×p

for some μj and some a such that 0 ≤ a ≤ �j − 1, then

H
(b)
i (μt) =

{
1, if t = j and b = a,

0, if t �= j or b �= a,
(11)

where, for each μt, the integer b satisfies 0 ≤ b ≤ �t − 1. Define

E(z) = D(z) −
k−1∑
i=1

Hi(z) Ci ∈ F [z]kn×p and F (z) =
[

C 1
v(z) E(z)

]
.

Then,

1. F (z) has full column rank, satisfies L(z) F (z) = 0, that is span F (z) ⊆ ker L(z), and 
span F (z) = span G(z);

2. F (z) ∈ F [z]kn×kp, i.e., it is a matrix polynomial, and the degrees of its columns are 
0, . . . , 0︸ ︷︷ ︸
(k−1)p

, γ1, . . . , γp; and

3. F (z) is a minimal basis.

Proof. Item 1. Observe that F (z) = G(z) S(z), where

S(z) =

⎡⎢⎢⎢⎢⎢⎢⎣
Ip −H1(z)Ip

Ip −H2(z)Ip

. . .
...

Ip −Hk−1(z)Ip

Ip

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
Ip

Ip

. . .

Ip
1

v(z) Ip

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

is an invertible matrix over F(z). This relation and the properties of G(z) established in 
item 2 of Proposition 4.4 immediately imply the result.

Item 2. We only need to prove that 1
v(z) E(z) is a matrix polynomial and to determine 

the degrees of its columns. From the definition of D(z), it is obvious that the degrees of 
its columns are γ1 + k − 1, . . . , γp + k − 1. On the other hand, the Hermite interpolating 
polynomials H1(z), . . . , Hk−1(z) have degrees at most k−2, since each of them is defined 
through k − 1 interpolatory conditions. Thus, the columns of E(z) have degrees γ1 + k −
1, . . . , γp + k − 1. The definitions of D(z), Hi(z) and Ci imply that

E(b)(μt) = D(b)(μt) −
k−1∑
i=1

H
(b)
i (μt) Ci = 0, for t = 1, . . . s, b = 0, . . . , �t − 1,
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which in turn implies that v(z) divides each entry of E(z). Therefore, 1
v(z) E(z) is a 

matrix polynomial and the degrees of its columns are γ1, . . . , γp, since the degree of v(z)
is k − 1.

Item 3. We will prove that F (z) is a minimal basis by using Lemma 4.2. We start 
by showing that F (z) satisfies the second condition of Lemma 4.2. For this purpose, 
denote A(z) = 1

v(z) E(z) and let vk−1 be the (nonzero) coefficient of zk−1 in v(z). Then, 
Lemma 4.1-3 implies {E(z)} = {v(z) A(z)} = vk−1{A(z)}. Using again that the polyno-
mials Hi(z) have degree at most k−2, we get that {E(z)} = {D(z)} = {V (z) ⊗M(z)} =[

{M(z)}
0

]
, due to the structure of V (z) (recall Lemma 3.1). Combining these results and 

using again Lemma 4.1, we get

{F (z)} = {
[

C 1
v(z) E(z)

]
} =

[
{C} 1

vk−1
{E(z)}

]
=
[

C̃ 1
vk−1

{M(z)}
Ĉ 0

]
, (13)

where C̃ (resp., Ĉ) contains the first n rows (resp., the rows from (n + 1)-th to last) of 
C. Note that taking into account the definition of C,

Ĉ = [Mμ1,k−1,�1,M(z) Mμ2,k−1,�2,M(z) · · · Mμs,k−1,�s,M(z) ] ∈ F (k−1)n×(k−1)p,

which has full column rank by Lemma 3.3, since 
∑s

i=1 �i = k − 1. Moreover, {M(z)} has 
full column rank because M(z) is a minimal basis. Hence, (13) implies that {F (z)} has 
full column rank.

For proving that F (z) satisfies the first condition of Lemma 4.2, we distinguish two 
cases: z0 is not a root of v(z) and z0 is a root of v(z). Suppose first that v(z0) �= 0. Then 
G(z0) = [C D(z0) ] has full column rank by Lemma 3.3 (we have already seen this in 
the proof of item 2 of Proposition 4.4). Moreover, using (12), we get F (z0) = G(z0) S(z0), 
with S(z0) invertible. This implies that F (z0) and G(z0) have the same rank and, hence, 
that F (z0) has full column rank.

Next, we assume that v(z0) = 0, i.e., z0 = μi for some i = 1, . . . , s. Without loss of 
generality, we can assume z0 = μ1, since otherwise we can simply permute the columns 
of C and place Mμi,k,�i,M(z) as the first block column. In this case, we evaluate E(z)/v(z)
at μ1 by applying De L’Hospital rule �1 times. This yields[

E(z)
v(z)

]
z=μ1

= 1
v(�1)(μ1)

(
D(�1)(μ1) −

k−1∑
i=1

H
(�1)
i (μ1) Ci

)
,

where we note that v(�1)(μ1) �= 0. Then,

F (μ1) =
[
C D(�1)(μ1)

]
⎡⎢⎢⎢⎢⎢⎣

Ip −H
(�1)
1 (μ1)Ip

Ip −H
(�1)
2 (μ1)Ip

. . .
...

Ip −H
(�1)
k−1(μ1)Ip

Ip

⎤⎥⎥⎥⎥⎥⎦
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×

⎡⎢⎢⎢⎢⎢⎢⎣
Ip

Ip

. . .

Ip
1

v(�1)(μ1) Ip

⎤⎥⎥⎥⎥⎥⎥⎦ .

The last two matrices in the equation above are invertible. Thus

rank F (μ1) = rank
[
C D(�1)(μ1)

]
= rank

[
C [V (z) ⊗ M(z)](�1)

∣∣
z=μ1

]
.

Note that, taking into account the definition of C, we can permute the columns of [
C D(�1)(μ1)

]
for moving the block column D(�1)(μ1) just after the block Mμ1,k,�1,M(z)

of C to get

[Mμ1,k,�1+1,M(z) Mμ2,k,�2,M(z) · · · Mμs,k,�s,M(z) ] ∈ Fkn×kp.

Since �1 + 1 +
∑s

i=2 �i = k, this matrix has full column rank by Lemma 3.3, which 
concludes the proof. �

Observe that if dim ker L(z) = kp, then Proposition 4.5 implies that F (z) is a right 
minimal basis for L(z), which proves item 1 in Theorem 1.1 taking into account the 
degrees of the columns of F (z). Note that this proof would work in the case v(z) has no 
infinite roots, since we are assuming this condition from the beginning of this section. 
Therefore, our next task is to prove that dim ker L(z) = kp, which will be a consequence 
of combining Theorem 4.8 with Proposition 4.5. This will lead to the main result of this 
section, that is, Theorem 4.9.

Before stating and proving Theorem 4.8, we introduce the auxiliary Definition 4.6 and 
the technical Lemma 4.7.

Definition 4.6. Let w(z) ∈ F [z] be a scalar polynomial of degree k whose distinct roots 
are μ0, μ1, . . . , μs ∈ F with multiplicities �0, �1, . . . , �s. Let V (z) ∈ F [z]k×1 be the Van-
dermonde vector of degree k − 1 introduced in Lemma 3.1. Let us define the constant 
matrices

Wμi
=
[

V (μi) V (1)(μi)
1
2!V

(2)(μi) · · · 1
(�i − 1)!V

(�i−1)(μi)
]

∈ Fk×�i

for i = 0, 1, . . . , s.

The normalized confluent Vandermonde matrix associated with the polynomial w(z) is

W = [Wμ0 Wμ1 · · · Wμs ] ∈ Fk×k.
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The normalized confluent Vandermonde matrix is obviously invertible, since it is just 
a standard confluent Vandermonde matrix associated with a set of distinct nodes with 
its columns multiplied by nonzero scalars. In fact, we might use the standard confluent 
Vandermonde matrix in our developments, but the normalization via the factorials will 
simplify the algebraic manipulations. In this context, here and below, the jth normalized 
derivative is defined as

∂̂j
xj = 1

j!
∂j

∂xj
.

Lemma 4.7. Let μ ∈ F and let hc(x, y) be the cth complete homogeneous polynomial,

hc(x, y) =
c∑

h=0

xc−hyh.

Then, ∂̂a
xa ∂̂b

yb hc(x, y) evaluated at x = y = μ only depends on a + b, and it is equal to

[
∂̂a

xa ∂̂b
ybhc(x, y)

]
x=y=μ

=

⎧⎪⎨⎪⎩
0 if a + b > c;(

c + 1
a + b + 1

)
μc−a−b if a + b ≤ c.

Proof. We may assume that a + b ≤ c, as the statement is otherwise obvious. A direct 
computation yields

∂̂a
xa ∂̂b

ybhc(x, y) =
c∑

h=0

(
c − h

a

) (
h
b

)
xc−h−a yh−b,

where 
(

�
k

)
= 0 if � < k, as usual. Thus

[
∂̂a

xa ∂̂b
ybhc(x, y)

]
x=y=μ

= μc−a−b
c∑

h=0

(
c − h

a

) (
h
b

)
=
(

c + 1
a + b + 1

)
μc−a−b,

where the last equality follows from [39, eq. (4)], which is a corollary of the famous 
Chu–Vandermonde identity. �

We are now ready to prove a result that will allow us to get a lower bound on rank L(z)
or, equivalently, due to the rank-nullity theorem, an upper bound on dim ker L(z).

Theorem 4.8. Let P (z) ∈ F [z]m×n be a matrix polynomial of degree k ≥ 2, v(z) be a 
scalar ansatz polynomial of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. Suppose 
the distinct roots of v(z) are μ1, . . . , μs with multiplicities �1, . . . , �s and let μ0 ∈ F be 
any element such that μ0 �= μi for i = 1, . . . , s. Define the scalar polynomial w(z) =
(z − μ0) v(z) of degree k and let W ∈ Fk×k be the normalized confluent Vandermonde 
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matrix associated with the polynomial w(z), with �0 = 1. Then, there exist nonzero 
constants c0, c1, . . . , cs ∈ F equal to

ci = 1
�i!

w(�i)(μi),

such that

(W T ⊗ Im)L(μ0)(W ⊗ In) =
s⊕

i=0
Qi,

Qi =

⎡⎢⎢⎢⎢⎣
0 0 . . . 0 ciP (μi)
0 0 ciP (μi) �
...

... . .
.

0 ciP (μi) � . . . �
ciP (μi) � � . . . �

⎤⎥⎥⎥⎥⎦ ∈ Fm�i×n�i ,

i.e., each Qi is block antitriangular with all its antidiagonal blocks equal to ciP (μi). The 
symbol � denotes a block whose precise form is not specified.

Proof. We consider the constant matrix (W T ⊗Im)L(μ0)(W ⊗In) ∈ Fkm×kn partitioned 
into k × k blocks of size m × n. In order to determine these blocks recall that, according 
to (4), L(μ0) 
→ BP,v(x, y, μ0) via the bijection (3). Moreover, the (α, β) m × n block 
of (W T ⊗ Im)L(μ0)(W ⊗ In) is just the αth block row of (W T ⊗ Im) (of size m × km) 
times L(μ0) times the βth block column of (W ⊗ In) (of size kn × n). But taking into 
account the structure of the columns of W and the equation (3), left multiplication 
of L(μ0) by any block row of (W T ⊗ Im) corresponds to performing on BP,v(x, y, μ0)
a bth normalized derivative with respect to y, 0 ≤ b < �j , followed by evaluation at 
some y = μj . Similarly, right multiplication of L(μ0) by any block column of (W ⊗ In)
corresponds to performing on BP,v(x, y, μ0) an ath normalized derivative with respect 
to x, 0 ≤ a < �i, followed by evaluation at some x = μi. Hence, each m × n block of 
(W T ⊗ Im)L(μ0)(W ⊗ In) ∈ Fkm×kn has the form

[
∂̂a

xa ∂̂b
yb

P (y)w(x) − w(y)P (x)
x − y

]
x=μi,y=μj

, (14)

for 0 ≤ j, i ≤ s, 0 ≤ b ≤ �j − 1 and 0 ≤ a ≤ �i − 1. Suppose first i �= j so that μi �= μj . 
Then, for all fixed y �= μi, the function (x − y)−1P (y)w(x) has a zero in x at μi of 
multiplicity �i, and hence its ath normalized derivative with respect to x is zero when 
evaluated at x = μi. Analogously, the function (x − y)−1w(y)P (x), for all fixed x �= μj , 
has a zero in y at μj of multiplicity �j , and therefore its bth normalized derivative with 
respect to y is zero when evaluated at y = μj . We conclude that the corresponding block 
is 0. Hence
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(W T ⊗ Im)L(μ0)(W ⊗ In) =
s⊕

i=0
Qi, Qi = (W T

μi
⊗ Im)L(μ0)(Wμi

⊗ In),

where we have used the notation in Definition 4.6.
The case i = j corresponds to analyzing the blocks within Qi with (14) evaluated at 

x = y = μi. Each of these blocks corresponds to a pair (b, a) with 0 ≤ a, b ≤ �i − 1, 
where �i is the multiplicity of μi as a root of w(z). Note that we are only interested in 
the case where a + b ≤ �i − 1, since the blocks corresponding to a + b > �i − 1 are not 
specified in the statement. Recall that b corresponds to the row-block index and a to the 
column-block index.

Define

Π(x, y) = P (x) − P (y)
x − y

, Ω(x, y) = w(x) − w(y)
x − y

,

so that

P (y)w(x) − w(y)P (x)
x − y

= P (y)Ω(x, y) − w(y)Π(x, y). (15)

Since differentiation is linear, we can consider the two addends in the right-hand side of 
(15) separately. Note first that

∂̂a
xa ∂̂b

yb [w(y)Π(x, y)] = 1
a!b!

b∑
h=0

(
b
h

)
w(h)(y) ∂a

xa · ∂b−h
yb−hΠ(x, y);

since we eventually evaluate at x = y = μi, and since w(h)(μi) = 0 for all 0 ≤ h ≤ b < �i, 
the contribution of the second addend to any of the m × n blocks we are investigating is 
0. For the first addend in the right-hand side of (15), we observe that

∂̂a
xa ∂̂b

yb [P (y)Ω(x, y)] =
b∑

h=0

1
(b − h)!P

(b−h)(y) ∂̂a
xa ∂̂h

yhΩ(x, y).

On the other hand, using the relation xc+1 − yc+1 = (x − y)hc(x, y), where hc(x, y) is 
the cth complete homogeneous polynomial in Lemma 4.7, we see that

Ω(x, y) =
k−1∑
c=0

wc+1hc(x, y),

where w(z) =
∑k

t=0 wt zt. Hence, by Lemma 4.7,

[∂̂a
xa ∂̂h

yhΩ(x, y)]x=y=μi
=

k−1∑
c=a+h

(
c + 1

a + h + 1

)
wc+1μc−a−h

i = 1
(a + h + 1)!w

(a+h+1)(μi).
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It follows that the (b, a) block of Qi has the expression

[
∂̂a

xa ∂̂b
yb

P (y)w(x) − w(y)P (x)
x − y

]
x=y=μi

=
b∑

h=0

1
(b − h)!P

(b−h)(μi)
1

(a + h + 1)!w
(a+h+1)(μi). (16)

If a + b < �i − 1, then a + h + 1 ≤ a + b + 1 < �i and hence w(a+h+1)(μi) = 0. This 
shows that all the blocks above the main antidiagonal are zero. For the blocks on the 
antidiagonal, the only possibility for the addend in the outer summation to be nonzero 
is that h = b so that a + h + 1 = a + b + 1 = �i. Plugging this information into (16), and 
taking into account the definition of ci, we obtain ciP (μi) as desired. To conclude the 
proof we need to show that ci �= 0. This must be true, for if not the multiplicity of μi as 
a root of w would not be �i. �

As announced, we are now in the position to state and prove the main result of this 
section.

Theorem 4.9. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2 and v(z)
be a scalar ansatz polynomial of grade k − 1. Suppose that the sets of eigenvalues of 
P (z) and of roots of v(z) are disjoint, and that v(z) has no infinite roots. Let L(z) =
DL(P, v) ∈ F [z]km×kn, p = dim ker P (z) and F (z) ∈ F [z]kn×kp be the matrix polynomial 
in Proposition 4.5. Then F (z) is a minimal basis for ker L(z), i.e., F (z) is a right 
minimal basis of L(z).

Proof. In Proposition 4.5, we have already proved that L(z)F (z) = 0 (or, equivalently, 
that span F (z) ⊆ ker L(z)), that F (z) has full column rank and that F (z) is a minimal 
basis. Therefore, it only remains to prove that the dimension of ker L(z) is precisely kp, 
i.e., that it is equal to the rank of F (z).

From the results above, we obviously have that dim ker L(z) ≥ kp = dim span F (z). 
We now argue that rank L(z) ≥ k(n − p), which is equivalent to dim ker L(z) ≤ kp by 
the rank-nullity theorem, and therefore implies dim ker L(z) = kp. To this goal, we use 
Theorem 4.8, choosing an element μ0 which is not an eigenvalue of P (z), and recall that 
the roots μi, i = 1, . . . , s, of v(z) are not eigenvalues of P (z) by the assumption that 
the sets of eigenvalues of P (z) and of roots of v(z) are disjoint. Thus, rank P (μi) =
rank P (z) = n − p, for i = 0, 1, . . . , s. Then, by Theorem 4.8, by Lemma 4.3, and by the 
fact that the matrix W in Theorem 4.8 is nonsingular, we have, using the notation of 
Theorem 4.8,

rank L(z) ≥ rank L(μ0) =
s∑

i=0
rank Qi ≥

s∑
i=0

�i rank P (μi)
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= (n − p)
s∑

i=0
�i = (n − p)k. �

As a corollary of Theorem 4.9 and the properties of DL(P ) pencils, we prove items 1 
and 2 of Theorem 1.1.

Theorem 4.10. (Items 1 and 2 of Theorem 1.1) Let P (z) ∈ F [z]m×n be a matrix polyno-
mial of grade k ≥ 2, with dim ker P (z) = p and dim ker P (z)T = q, and let v(z) ∈ F [z]
be a scalar polynomial of grade k − 1. Suppose that the sets of eigenvalues of P (z)
and of roots of v(z), each including possibly infinite eigenvalues or roots, are disjoint. 
Denote by L(z) ∈ F [z]km×kn the pencil in DL(P ) with ansatz polynomial v(z), i.e., 
L(z) = DL(P, v). Then

1. The right minimal indices of P (z) are γ1 ≤ · · · ≤ γp if and only if the right minimal 
indices of L(z) are 0 = · · · = 0︸ ︷︷ ︸

p(k−1) times

≤ γ1 ≤ · · · ≤ γp;

2. The left minimal indices of P (z) are η1 ≤ · · · ≤ ηq if and only if the left minimal 
indices of L(z) are 0 = · · · = 0︸ ︷︷ ︸

q(k−1) times

≤ η1 ≤ · · · ≤ ηq.

Proof. Item 1. Taking into account Theorems 3.4 and 3.6, we can assume without loss 
of generality that v(z) has no infinite roots, since, otherwise, we can apply a Möbius 
transformation to P (z) and v(z) to get a matrix polynomial Q(z) and an ansatz polyno-
mial u(z) without roots at infinity, and work with Q(z) and the pencil DL(Q, u) without 
changing the minimal indices of P (z) and of DL(P, v) (recall the last paragraph in Sub-
section 3.2). Then, the result follows from Theorem 4.9 and item 2 in Proposition 4.5.

Item 2. The left minimal indices of P (z) and of L(z) are the right ones of P (z)T and 
of L(z)T , respectively. With this in mind, the result follows immediately from the result 
in item 1 and the equality L(z)T = (DL(P, v))T = DL(P T , v). When P (z) is square, this 
is a consequence of the fact that the pencils in DL(P ) are block symmetric [22,29,34]. 
For more general rectangular matrix polynomials, it can be proved as follows. Let B be 
any k × k block matrix with blocks Bij ∈ Fm×n and F (x, y) be its associated m × n

bivariate matrix polynomial via the bijection (3). If BT is also partitioned into k × k

blocks, then its blocks are (BT )ij = (Bji)T ∈ Fn×m, which implies that its associated 
n × m bivariate matrix polynomial is F (y, x)T . Therefore, (4) implies (DL(P, v))T 
→
BP,v(y, x, z)T = BP,v(x, y, z)T . Moreover, from (4),

BP,v(x, y, z)T = P (y)T (x − z)v(x) − P (x)T (y − z)v(y)
x − y

= BP T ,v(x, y, z).

Thus, (DL(P, v))T and DL(P T , v) are mapped into the same image via the bijection (3)
and, therefore, (DL(P, v))T = DL(P T , v). �
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We conclude this section by using Theorem 4.8 to obtain for each pencil in the DL(P )
vector space another pencil strictly equivalent to it with a remarkably simple block-
sparsity pattern. This indicates that Theorem 4.8 is a relevant result that reveals some 
intrinsic structure of the pencils in DL(P ).

Remark 4.11. As a side product of Theorem 4.8, we obtain a new block-arrowhead pencil 
which is strictly equivalent to DL(P, v). Indeed, it is obvious that any pencil A(z) =
A1z + A0 can be written as A(z) = A(μ0) + (z − μ0)A1, for any arbitrary choice of 
μ0. Assume, for maximal sparsity, that v(z) in Theorem 4.8 has finite distinct roots 
μ1, μ2, . . . , μk−1 all with multiplicity one and let μ0 �= μi for i = 1, . . . , k − 1. Consider 
A(z) = A1z + A0 = (W T ⊗ Im)L(z)(W ⊗ In), where recall that W is nonsingular. Then, 
by Theorem 4.8,

A(μ0) = v(μ0)P (μ0) ⊕
k−1⊕
i=1

(μi − μ0)v′(μi)P (μi)

is block diagonal when viewed as a k × k matrix with blocks of size m × n. Next, we 
prove that all the blocks of A1 outside the main block-diagonal, the first block-column 
and the first block-row are identically zero and, moreover, we find explicit expressions 
for the possibly non-zero blocks. For this purpose, observe that according to (3) and (4), 
the (j, i)th block of A1 is prescribed by the formula

v(y)P (x) − P (y)v(x)
x − y

followed by evaluation at x = μi, y = μj , for 0 ≤ i, j ≤ k − 1. Suppose first i = j �= 0, 
then by L’Hospital rule we obtain the block −v′(μi)P (μi). If 0 �= i �= j �= 0, we obtain 
the zero block. If i = j = 0, we get v(μ0)P ′(μ0) − P (μ0)v′(μ0). If i �= 0 = j, we obtain

v(μ0)P (μi)
μi − μ0

,

and if i = 0 �= j, we obtain the same expression replacing i by j.
Applying the results above to the case k = 3, with v(z) = z2 − 1, thus μ1 = 1 and 

μ2 = −1, and taking μ0 = 0, we get that the following pencil

A(z) =
[−P (0) 0 0

0 2P (1) 0
0 0 2P (−1)

]
+ z

[−P ′(0) −P (1) P (−1)
−P (1) −2P (1) 0
P (−1) 0 2P (−1)

]

is strictly equivalent to DL(P, v) and, therefore, has the same elementary divisors and 
minimal indices as DL(P, v). Hence, A(z) is a linearization of P (z) if P (z) is regular 
and the eigenvalue exclusion theorem holds, or it is a pencil to which the analysis of 
this paper applies if P (z) is singular and the eigenvalue exclusion theorem holds. The 
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computational cost of constructing this pencil is however nonzero, since it requires to 
evaluate P (z) and P ′(z) at some points.

5. The elementary divisors of DL(P, v)

The goal of this section is to prove item 3 of Theorem 1.1, i.e., to show that λ ∈ F∪{∞}
is an eigenvalue of P (z) if and only if λ is an eigenvalue of L(z) = DL(P, v) and that 
its partial multiplicities as an eigenvalue of P (z) and as an eigenvalue of L(z) are the 
same, under the assumptions of Theorem 1.1. Thanks to Theorem 3.6, we can assume 
in the arguments of this section that P (z) has no infinite eigenvalues and that v(z) has 
no infinite roots. The main result in this section is Theorem 5.3. Its proof requires two 
preliminary results: Proposition 5.1 about the relationship between the root polynomials 
of P (z) and L(z) and Lemma 5.2 about the orders of the elements of a λ-independent 
set of root polynomials of an arbitrary matrix polynomial.

Proposition 5.1. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2 and v(z)
be a scalar ansatz polynomial of grade k − 1. Suppose that the sets of eigenvalues of 
P (z) and of roots of v(z) are disjoint, that P(z) has no infinite eigenvalues and that 
v(z) has no infinite roots. Let L(z) = DL(P, v) ∈ F [z]km×kn and V (z) ∈ F [z]k×1 be the 
Vandermonde vector of degree k − 1 defined in Lemma 3.1. Then:

1. If r(z) ∈ F [z]n×1 is a root polynomial for P (z) of order � at λ, then ρ(z) = V (z) ⊗
r(z) ∈ F [z]kn×1 is a root polynomial for L(z) of order � at λ. In particular, if λ is 
an eigenvalue of P (z), then λ is an eigenvalue of L(z).

2. If {ri(z)}t
i=1 is a maximal set of root polynomials at λ for P (z), then {ρi(z)}t

i=1, 
with ρi(z) = V (z) ⊗ ri(z), is a λ-independent set of root polynomials for L(z).

Proof. Item 1. By assumption, P (z)r(z) = (z − λ)�s(z) with s(λ) �= 0 and, moreover, 
r(λ) /∈ kerλ P (z) = span M(λ), where M(z) ∈ F [z]n×p is a right minimal basis for P (z).

Observe first that (3) and (4) imply

L(z)ρ(z) 
→ P (y)(x − z)v(x) − P (x)(y − z)v(y)
x − y

∣∣∣∣
x=z

r(z) = v(y)P (z)r(z)

= v(y)(z − λ)�s(z).

If v(y) = ωT V (y) = V (y)T ω, with ω ∈ Fk×1, the previous equation implies in turn that

L(z)ρ(z) = (z − λ)� (ω ⊗ s(z)).

Since the ansatz polynomial v(y) is not zero, we get that ω �= 0 and that ω ⊗ s(λ) �=
0. Therefore, it only remains to prove that ρ(λ) /∈ kerλ L(z). For this purpose, note 
first that from Theorem 4.9 we get kerλ L(z) = span F (λ). Moreover, the fact that 
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r(z) is a root polynomial at λ for P (z) implies that λ is a finite eigenvalue of P (z), 
since root polynomials at λ for P (z) exist if and only if λ is a finite eigenvalue of P (z)
[13, Proposition 2.12]. Thus, v(λ) �= 0 by assumption and the matrix S(λ) in (12) is 
well-defined and is nonsingular. This implies that F (λ) = G(λ) S(λ), where G(z) =
[C V (z) ⊗ M(z)] is the matrix polynomial defined in Proposition 4.4. Therefore,

kerλ L(z) = span F (λ) = span G(λ). (17)

Next, we proceed by contradiction and assume that ρ(λ) = V (λ) ⊗ r(λ) ∈ kerλ L(z) =
span G(λ). Then there exists a constant vector d ∈ Fkp×1 such that

[C V (λ) ⊗ M(λ)] d = V (λ) ⊗ r(λ). (18)

If we partition d conformably to [C V (λ) ⊗ M(λ)] as d =
[

dC

dM

]
, then (18) is equivalent 

to

C dC + V (λ) ⊗ (M(λ) dM ) = V (λ) ⊗ r(λ) ⇐⇒ [C V (λ) ⊗ In ]
[

dC

M(λ) dM − r(λ)

]
= 0.

The matrix [C V (λ) ⊗ In ] has full column rank, as a consequence of the definition of 
the matrix C in Proposition 4.4, of λ �= μi for i = 1, . . . , s, and of Lemma 3.3 (with 
Ms+1(z) = In, �s+1 = 1 and αs+1 = λ). Therefore, dC = 0 and M(λ) dM − r(λ) = 0, 
which implies r(λ) ∈ kerλ P (z) = span M(λ), contradicting the assumption.

Item 2. By item 1, it is clear that ρi(z) are root polynomials at λ for L(z). It remains 
to check the claim of λ-independence. Let

R(z) = [r1(z) · · · rt(z) ] .

Then, taking into account (17) and G(λ) = [C V (λ) ⊗ M(λ)], the goal is to prove that 
the matrix

[C V (λ) ⊗ M(λ) V (λ) ⊗ R(λ)] = [C V (λ) ⊗ [M(λ) R(λ)] ]

has full column rank. But this follows from Lemma 3.3, with Ms+1(z) = [M(z) R(z) ], 
�s+1 = 1 and αs+1 = λ, and the fact that [M(λ) R(λ)] has full column rank, since 
{ri(z)}t

i=1 is a maximal set of root polynomials at λ for P (z). �
Lemma 5.2. Let {�i}t

i=1 be the partial multiplicities at λ ∈ F of a matrix polynomial 
Q(z) ∈ F [z]m×n, and let {ri(z)}c

i=1 be a λ-independent set of root polynomials at λ

for Q(z) of orders {κi}c
i=1. Then, c ≤ t and if both {�i}t

i=1 and {κi}c
i=1 are listed in 

non-increasing order, it holds κi ≤ �i for i = 1, . . . , c.
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Proof. The definition and properties of λ-independent and maximal sets of root poly-
nomials at λ for Q(z) imply immediately that c ≤ t. Let M(z) be a minimal ba-
sis for Q(z) and let v1, . . . , vt−c be vectors in Fn that complete the columns of 
[M(λ) r1(λ) · · · rc(λ)] to a basis for ker Q(λ) ⊆ Fn. Then, it is clear that 
{ri(z)}c

i=1 ∪{vi}t−c
i=1 is a complete set of root polynomials at λ for Q(z), since Q(λ)vi = 0

and vi /∈ span M(λ). Denote their orders, listed in a non-increasing manner, by {�̂i}t
i=1. 

By Theorem 2.2, we have �̂i ≤ �i for i = 1, . . . , t. On the other hand, since the integers 
{κi}c

i=1 are by construction a subsequence of {�̂i}t
i=1, the inequalities κi ≤ �̂i ≤ �i must 

hold for i = 1, . . . , c. �
Next, we prove item 3 of Theorem 1.1. The proof is based on Theorem 4.10, the index 

sum theorem [11, Theorem 6.5], Proposition 5.1 and Lemma 5.2.

Theorem 5.3. (Item 3 of Theorem 1.1) Let P (z) ∈ F [z]m×n be a matrix polynomial of 
grade k ≥ 2 and let v(z) ∈ F [z] be a scalar polynomial of grade k−1. Suppose that the sets 
of eigenvalues of P (z) and of roots of v(z), each including possibly infinite eigenvalues 
or roots, are disjoint. Denote by L(z) ∈ F [z]km×kn the pencil in DL(P ) with ansatz 
polynomial v(z), i.e., L(z) = DL(P, v). Then, λ ∈ F ∪ {∞} is an eigenvalue of P (z) if 
and only if λ is an eigenvalue of L(z) and, moreover, the partial multiplicities of λ as 
an eigenvalue of P (z) and as an eigenvalue of L(z) coincide.

Proof. Similarly to the proof of Theorem 4.10, taking into account Theorems 3.6 and 
3.4, we can assume without loss of generality that P (z) has no infinite eigenvalues and 
that v(z) has no infinite roots, for if not we can just apply an appropriate Möbius 
transformation to P (z) and v(z). The proof follows an argument by exhaustion. By 
Theorem 4.10, and with the notation used there, we obtain that

grade(L) rank(L) = kn − kp = k(n − p) = grade(P ) rank(P ),

since grade(L) = 1. Moreover, from Theorem 4.10, we know that the sum of the right 
and the left minimal indices of L(z) and P (z) are the same. Hence, by the index sum 
theorem [11, Theorem 6.5],

∑
λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, P ) =
∑

λ∈Λ(L)

g(λ,L)∑
i=1

�i(λ, L), (19)

where Λ(P ) denotes the set of distinct eigenvalue of P (z) (and analogously for Λ(L)), 
g(λ, P ) is the geometric multiplicity of λ as an eigenvalue of P (and similarly for g(λ, L)), 
and �i(λ, P ) is the i-th largest partial multiplicity of λ as an eigenvalue of P (and ditto for 
�i(λ, L)). Recall that the partial multiplicities have been defined to be positive integers 
and therefore g(λ, P ) is equal to the number of partial multiplicities of λ as an eigenvalue 
of P (z).

Observe that the following results hold:
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(a) Λ(P ) ⊆ Λ(L), by item 1 in Proposition 5.1,
(b) g(λ, P ) ≤ g(λ, L) for all λ ∈ Λ(P ), by item 2 in Proposition 5.1 and the properties 

of maximal sets of root polynomials, and
(c) �i(λ, P ) ≤ �i(λ, L) for all λ ∈ Λ(P ) and for i = 1, . . . , g(λ, P ), by Lemma 5.2 and 

Proposition 5.1.

As a consequence, we have that at each λ ∈ Λ(P ) it must hold

g(λ,P )∑
i=1

�i(λ, P ) ≤
g(λ,P )∑

i=1
�i(λ, L) ≤

g(λ,L)∑
i=1

�i(λ, L), (20)

where the left inequality is strict if and only if �i(λ, P ) < �i(λ, L) for at least one 
i = 1, . . . , g(λ, P ) and the right inequality is strict if and only if g(λ, P ) < g(λ, L).

We prove first that Λ(P ) = Λ(L) by contradiction. Assume that Λ(P ) ⊂ Λ(L), i.e., 
the inclusion in (a) above is strict. Then, from (19),

∑
λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, P ) =
∑

λ∈Λ(P )

g(λ,L)∑
i=1

�i(λ, L) +
∑

λ∈Λ(L)\Λ(P )

g(λ,L)∑
i=1

�i(λ, L)

>
∑

λ∈Λ(P )

g(λ,L)∑
i=1

�i(λ, L)

≥
∑

λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, P ),

where the first strict inequality follows from the strict inclusion Λ(P ) ⊂ Λ(L) and the last 
inequality follows from (20). This is a manifest contradiction. Therefore, Λ(P ) = Λ(L).

Secondly, we prove that g(λ, P ) = g(λ, L) for all λ ∈ Λ(P ) = Λ(L). We proceed again 
by contradiction. If g(λ0, P ) < g(λ0, L) for some λ0 ∈ Λ(P ) = Λ(L), then the second 
inequality in (20) is strict for λ0 and 

∑g(λ0,P )
i=1 �i(λ0, P ) <

∑g(λ0,L)
i=1 �i(λ0, L). Combining 

this with (19), (20), and Λ(P ) = Λ(L), we get

∑
λ∈Λ(P )

g(λ,L)∑
i=1

�i(λ, L) >
∑

λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, P ) =
∑

λ∈Λ(P )

g(λ,L)∑
i=1

�i(λ, L),

which is not possible. Then, g(λ, P ) = g(λ, L) for all λ ∈ Λ(P ) = Λ(L).
Finally, we prove �i(λ, P ) = �i(λ, L) for all λ ∈ Λ(P ) = Λ(L) and for all i =

1, . . . , g(λ, P ) = g(λ, L). We proceed again by contradiction. Assume that there ex-
ist at least one λ0 ∈ Λ(P ) = Λ(L) and at least one i = 1, . . . , g(λ0, P ) = g(λ0, L), 
such that �i(λ0, P ) < �i(λ0, L). Thus, the first inequality in (20) is strict for λ0, i.e., 
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∑g(λ0,P )
i=1 �i(λ0, P ) <

∑g(λ0,P )
i=1 �i(λ0, L). Combining this with (20), (19), and g(λ, P ) =

g(λ, L) for all λ ∈ Λ(P ) = Λ(L), we get

∑
λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, L) >
∑

λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, P ) =
∑

λ∈Λ(P )

g(λ,P )∑
i=1

�i(λ, L),

which is not possible. Thus, �i(λ, P ) = �i(λ, L) for all λ ∈ Λ(P ) = Λ(L) and for all 
i = 1, . . . , g(λ, P ) = g(λ, L) and the proof is complete. �

We finish this section with Theorem 5.4, which is a corollary of Proposition 5.1 and 
Theorem 5.3.

Theorem 5.4. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2 and v(z) be a 
scalar ansatz polynomial of grade k − 1. Suppose that the sets of eigenvalues of P (z) and 
of roots of v(z) are disjoint, that P (z) has no infinite eigenvalues, and that v(z) has no 
infinite roots. Let L(z) = DL(P, v) ∈ F [z]km×kn and V (z) ∈ F [z]k×1 be the Vandermonde 
vector defined in Lemma 3.1. Let λ be an eigenvalue of P (z) and {ri(z)}t

i=1 be a maximal 
set of root polynomials at λ for P (z). Then, {ρi(z)}t

i=1, ρi(z) = V (z) ⊗ri(z), is a maximal 
set of root polynomials at λ for L(z).

Proof. Proposition 5.1 implies that {ρi(z)}t
i=1 is a λ-independent set of root polynomials 

for L(z) with the same orders as {ri(z)}t
i=1. From Theorem 5.3 and the properties of 

maximal sets of root polynomials, we deduce that the orders of {ρi(z)}t
i=1 are precisely 

the partial multiplicites of λ as an eigenvalue of L(z). This implies, in particular, that t =
dim ker L(λ) −dim kerλ L(z). Therefore, {ρi(z)}t

i=1 is a complete set of root polynomials 
at λ for L(z). Then, we get that {ρi(z)}t

i=1 is maximal from Theorem 2.2. �
6. Recovery of vectors associated with P (z) from their analogues associated with 
DL(P, v)

In this section we describe how to recover (right) minimal bases, eigenvectors, and 
root polynomials of a possibly singular matrix polynomial P (z) from those of DL(P, v), 
under the assumptions of Theorem 1.1. We omit the treatment of left minimal bases, 
eigenvectors, and root polynomials; indeed, it is completely analogous since DL(P T , v) =
(DL(P, v))T .

6.1. Recovery of a minimal basis for P (z) from one of DL(P, v)

When studying singular matrix polynomials, often not only the minimal indices are 
sought, but also a minimal basis. Minimal bases of singular pencils can be computed 
by postprocessing the output of the staircase algorithm [37,42]. In this section, we show 
how a minimal basis for P (z) can be extracted from one of L(z) = DL(P, v), under the 
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assumption that the sets of roots of v(z) and of eigenvalues of P (z) are disjoint. It is worth 
reminding that a minimal basis F (z) of L(z) was built in Theorem 4.9 starting from any 
minimal basis M(z) of P (z), under the additional assumption that v(z) has no infinite 
roots. However, there are two obstacles for recovering M(z) from this construction: first 
M(z) is really “hidden” inside F (z) and, second and more important, there may be 
minimal bases of L(z) with a structure different from the one of F (z). This is easy to 
see if some of the minimal indices of P (z) are zero. Therefore, we follow in this section 
a fully different approach.

The vector ω ∈ Fk×1 associated to the scalar polynomial v(x) under the bijection (2)
plays a key role in this section. Recall that ω is what was called the ansatz vector in 
[29], and it maps under (2) to what we call, following [34], the ansatz polynomial in this 
paper. We often use in this section that v(x) = ωT V (x), where V (x) is the Vandermonde 
vector of degree k − 1 introduced in Lemma 3.1.

The following simple lemma will be often used in this section. It follows directly from 
the definition of DL(P ) pencils and does not require any assumption on P (z) and on 
v(z).

Lemma 6.1. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) = ωT V (z)
be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the Vandermonde 
vector of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. Then

1. (V (z)T ⊗ Im) L(z) = ωT ⊗ P (z) = P (z) (ωT ⊗ In);
2. L(z) (V (z) ⊗ In) = ω ⊗ P (z) = (ω ⊗ Im)P (z);
3. L(z) (V (z) ⊗ M(z)) = 0 for any minimal basis M(z) ∈ F [z]n×p of P (z);
4. v(z) S(z) = (ωT ⊗ In)(V (z) ⊗ S(z)) for any rational matrix (or vector) S(z) ∈

F(z)n×j .

The equalities in items 1, 2, and 3 remain valid if the variable z is replaced by any λ ∈ F , 
and the one in item 4 remains valid if z is replaced by any λ that is not a pole of the 
entries of S(z).

Proof. Item 1 follows from (4), which implies that (V (z)T ⊗ Im) L(z) 
→ BP,v(x, z, z) =
v(x)P (z) via the bijection (3), while ωT ⊗ P (z) 
→ (ωT ⊗ P (z))(V (x) ⊗ In) = v(x)P (z). 
Analogously, item 2 follows from L(z) (V (z) ⊗ In) 
→ BP,v(z, y, z) = v(y)P (z) via the 
bijection (3), while ω ⊗ P (z) 
→ (V (y)T ⊗ Im)(ω ⊗ P (z)) = v(y)P (z). Observe that items 
1 and 2 follow also from the fact that the set of DL(P ) pencils is the intersection of the 
sets of L1(P ) and L2(P ) pencils introduced in [29].

Item 3 was already proved in item 2 of Proposition 4.4. It also follows from multiplying 
on the right the equality in item 2 by M(z) and P (z)M(z) = 0. Item 4 is an immediate 
consequence of the properties of the Kronecker product. �
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Lemma 6.1 allows us to prove the next proposition which, again, does not require any 
assumption on P (z) and on v(z).

Proposition 6.2. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) =
ωT V (z) be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the 
Vandermonde vector of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. Then, the map

Ω : ker L(z) → ker P (z), n(z) ∈ F(z)kn 
→ Ω(n(z)) = (ωT ⊗ In) n(z) ∈ F(z)n

is a surjective vector space homomorphism.

Proof. Lemma 6.1-1 implies that any n(z) ∈ ker L(z) satisfies 0 = (V (z)T ⊗
Im) L(z) n(z) = P (z) ((ωT ⊗ In) n(z)). Hence, (ωT ⊗ In) n(z) ∈ ker P (z). Moreover, 
Ω is an F(z)-linear map, and thus a vector space homomorphism from ker L(z) into 
ker P (z). To prove surjectivity, write an arbitrary m(z) ∈ ker P (z) as m(z) = M(z) r(z), 
where M(z) is a minimal basis of P (z) and r(z) is a rational vector. From Lemma 6.1-4, 
we get m(z) = v(z) M(z) (r(z)/v(z)) = (ωT ⊗ In)(V (z) ⊗ M(z) (r(z)/v(z))) and, from 
Lemma 6.1-3, L(z) (V (z) ⊗M(z)(r(z)/v(z))) = 0, and the surjectivity of Ω is proved. �

From Proposition 6.2 and item 1 of Theorem 4.10, we obtain Theorem 6.3, which is 
the main result of this section.

Theorem 6.3. (Recovery of minimal bases) Let P (z) ∈ F [z]m×n be a matrix polynomial of 
grade k ≥ 2, v(z) = ωT V (z) be a scalar ansatz polynomial of grade k − 1, where V (z) ∈
F [z]k×1 is the Vandermonde vector of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. 
Suppose that the sets of eigenvalues of P (z) and of roots of v(z), each including possibly 
infinite eigenvalues or roots, are disjoint. Let N(z) be a minimal basis of L(z) and define 
the following matrices:

1. M̂(z) := (ωT ⊗ In)N(z);
2. Partition, possibly after having permuted its columns, M̂(z) = [Md(z) Mc ] where 

no column of Md(z) is constant in z while Mc is constant;
3. M̃(z) := Md(z), if Mc = 0, and M̃(z) := [Md(z) Mb ], where Mb is any basis of 

span Mc considered as a subspace over F , otherwise.

Then, M̃(z) is a minimal basis of P (z). Thus, Md(z) is a minimal basis of P (z) if and 
only if Mc = 0.

Proof. Recall that, according to Theorem 4.10, p = dim ker P (z) if and only if kp =
dim ker L(z) and that the sum of the (right) minimal indices of P (z) is equal to the 
sum of those of L(z). Proposition 6.2 implies that the polynomial matrix M̂(z) :=
(ωT ⊗In)N(z) ∈ F [z]n×kp spans ker P (z). Moreover, the degrees of the columns of M̂(z)
are at most equal to the minimal indices of L(z), i.e., to the degrees of the corresponding 
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columns of N(z), which are the minimal indices of P (z) together with p(k − 1) minimal 
indices equal to zero by Theorem 4.10. Necessarily, M̂(z) is not a basis of ker P (z)
for dimensional reasons, but since its columns are a spanning set, we can construct 
a polynomial basis (arranged as a polynomial matrix) B(z) of ker P (z) by selecting p
linearly independent columns of M̂(z). The fact that any polynomial basis of ker P (z)
must have a sum of the degrees of its vectors greater than or equal to the sum of 
the minimal indices of ker P (z) implies that all the positive degrees of the columns of 
Md(z) are equal to the positive minimal indices of P (z) and that the columns of Md(z)
must be part of the polynomial basis B(z) of ker P (z), which is in fact minimal due to 
the value of the sum of the degrees of its vectors. Now, there are two possibilities: (a) 
Md(z) has p columns and (b) Md(z) has less than p columns. In the case (a) Md(z) is 
a minimal basis of ker P (z) for dimensional reasons and each column of Mc is of the 
form Md(z)x(z) for some rational vector x(z), which must be zero, because, if not, then 
[16, Main Theorem, Item 4] would imply that the degree of Md(z)x(z) is positive. In 
the case (b) B(z) = [Md(z) S ], with S a subset of columns of Mc, and each column 
of Mc is of the form [Md(z) S ] y(z) for some rational vector y(z). The entries of y(z)
corresponding to Md(z) must be zero and the ones corresponding to S must be constant, 
because, if not, then [16, Main Theorem, Item 4] would imply again that the degree 
of [Md(z) S ] y(z) is positive. Therefore, spanF S = spanF Mc, which implies that if S
is replaced in B(z) by any other basis Mb of spanF Mc, then another minimal basis of 
ker P (z) is obtained. �

Theorem 6.3 can be directly translated into a practical algorithm, where the only 
step that is not immediate is to construct Mb when Mc is not zero. When F ⊆ C, 
which is the most important case in practice, Mb can be reliably computed through a 
singular value decomposition of Mc. (Note that the svd of a matrix over K, a subfield 
of C, always exists over the closure of K because an svd can in principle be obtained 
by solving polynomial equations and performing field operations.) For other fields, one 
can apply Gaussian reduction to Mc to identify its pivot columns, which can be taken 
as Mb.

Remark 6.4. Note that Proposition 6.2 and Theorem 6.3 are clearly related to the re-
covery of the left minimal bases of a singular matrix polynomial P (z) from those of 
L1(P ) linearizations and to the recovery of the right minimal bases of P (z) from those 
of L2(P ) linearizations presented in [8, Theorem 5.10], since in both cases such recoveries 
are obtained just by the product (ωT ⊗ In)N(z), where ω is the ansatz vector defining 
the linearization and N(z) is any of its corresponding minimal bases. Taking into ac-
count that the set of DL(P ) pencils is L1(P ) ∩ L2(P ), this relation may seem natural, 
despite the fact that none of the DL(P ) pencils is a linearization of P (z). However, we 
emphasize that, in contrast, the recovery of the right minimal bases of P (z) from those 
of L1(P ) linearizations and the recovery of the left minimal bases of P (z) from those of 
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L2(P ) linearizations presented in [8, Theorem 5.10] are not useful at all in the context 
of DL(P ) pencils for singular P (z).

Next, we determine in Theorem 6.5 a basis of the kernel of the map Ω defined in 
Proposition 6.2. For simplicity, we use in Theorem 6.5 the additional hypotheses that 
P (z) has no infinite eigenvalues and that v(z) has no infinite roots. These assumptions 
can be removed via a Möbius transformation, but at the cost of making the statement 
and the proof of the result more cumbersome.

Theorem 6.5. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) = ωT V (z)
be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the Vandermonde 
vector of degree k − 1, L(z) = DL(P, v) ∈ F [z]km×kn, and Ω be the vector space homo-
morphism in Proposition 6.2. Suppose that the sets of eigenvalues of P (z) and of roots 
of v(z) are disjoint, that P (z) has no infinite eigenvalues and that v(z) has no infinite 
roots. Let p = dim ker P (z) and C ∈ Fkn×(k−1)p be the matrix defined in Proposition 4.4. 
Then, ker Ω = span C and the columns of C form a basis of ker Ω.

Proof. Theorem 4.10, Proposition 6.2, and the rank-nullity theorem imply that 
dim ker Ω = p(k − 1). Moreover, C has full column rank and span C ⊆ ker L(z) by 
Proposition 4.4. Therefore, it only remains to prove that (ωT ⊗ In) C = 0. For that pur-
pose recall that, according to the definition in Lemma 3.2, each submatrix Mμi,k,�i,M(z)
of C satisfies

(ωT ⊗ In)Mμi,k,�i,M(z)

=
[
ωT V (z) ⊗ M(z) [ωT V (z) ⊗ M(z)]′ · · · [ωT V (z) ⊗ M(z)](�i−1) ]∣∣

z=μi

=
[
v(z)M(z) [v(z)M(z)]′ · · · [v(z)M(z)](�i−1) ]∣∣

z=μi

= 0,

because v(a)(μi) = 0 for a = 0, 1, . . . , �i − 1. �
Observe that, according to Theorem 6.5, the minimal indices of the rational subspace 

ker Ω are all equal to zero and that this is the reason why L(z) has p(k − 1) minimal 
indices equal to zero in addition to those of P (z), for any P (z).

We conclude this section with the following result. Again, the assumptions in item 2 
of P (z) (resp. v(z)) not having infinite eigenvalues (resp. roots) can be removed via a 
Möbius transformation.

Corollary 6.6. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) =
ωT V (z) be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the 
Vandermonde vector of degree k − 1, L(z) = DL(P, v) ∈ F [z]km×kn, and Ω be the vector 
space homomorphism in Proposition 6.2. Then,
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1. ker P (z) ∼= ker L(z)/ ker Ω;
2. if, moreover, the sets of eigenvalues of P (z) and of roots of v(z) are disjoint, P (z)

has no infinite eigenvalues, v(z) has no infinite roots and C is the matrix defined in 
Proposition 4.4, then ker P (z) ∼= ker L(z)/ span C.

Proof. Item 1 is an immediate consequence of the first isomorphism theorem [6, Theorem 
6.12] and the surjectivity of the vector space homomorphism Ω proved in Proposition 6.2. 
Item 2 follows immediately from item 1 and Theorem 6.5. �
6.2. Recovery of eigenvectors of P (z) from those of DL(P, v)

Even though it is not common in the literature to discuss eigenvectors of singular 
matrix polynomials, it was shown in [13, §2.3] and in [38, §3] that these can be defined as 
nonzero elements of the quotient space ker P (λ)/ kerλ P (z) where λ ∈ F is an eigenvalue 
of P (z). In other words, given a vector u such that P (λ)u = 0, we say that the equivalence 
class [u] = {u +u′ : u′ ∈ kerλ P (z)} is an eigenvector of P (z) associated with λ if [u] �= [0]. 
This clearly generalizes the notion of an eigenvector of a regular matrix polynomial as 
a nonzero vector in the null space of the matrix polynomial evaluated at the eigenvalue 
(indeed, observe that if P (z) is regular then kerλ P (z) = {0}). Albeit somewhat abstract, 
this concept of eigenvectors of singular matrix polynomials has useful applications [24,27]. 
In [24,27], it is also argued that in the (mostly relevant in practice) case F ⊆ C then 
one can make the concept of eigenvectors of a singular matrix polynomial much more 
concrete. Suppose for example that λ is a simple eigenvalue; then this is done by picking, 
as a representative of the equivalence class of eigenvectors [u], the unique (up to phase) 
vector u0 ∈ Cn such that (1) ‖u0‖2 = 1, (2) u0 ∈ (kerλ P (z))⊥ and (3) [u0] = [u].

In this sense, a recovery of eigenvectors is possible with a similar approach as for 
minimal bases. This recovery is based on Proposition 6.8 and Corollary 6.9, which are 
related to Proposition 6.2 and Corollary 6.6.

Remark 6.7. We warn the reader that we are about to commit an abuse of notation, using 
the same symbol Ω to denote the map defined in Proposition 6.2, the two maps defined 
in Proposition 6.8 below, and the map defined by (21) below. Indeed, the first is an F(z)-
linear map defined on F(z)kn and restricted on ker L(z); the second and the third are the 
restrictions of an F -linear map, defined on Fkn, on kerλ L(z) and ker L(λ), respectively; 
and the fourth is an F -linear map defined on ker L(λ)/ kerλ L(z) (which formally is a 
quotient F -vector space of equivalence classes). In practice and when represented in the 
canonical bases, though, all these maps are realized by left-multiplication times ωT ⊗ In; 
moreover, the context always makes clear which one we are referring to. For these reasons, 
we opt out of an overwhelmingly baroque notation that uses four different symbols.

Proposition 6.8. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) =
ωT V (z) be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the 
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Vandermonde vector of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. Fix any λ ∈ F

such that v(λ) �= 0. Then,

1. the map

Ω : kerλ L(z) → kerλ P (z), u 
→ (ωT ⊗ In)u

is a surjective vector space homomorphism;
2. the map

Ω : ker L(λ) → ker P (λ), u 
→ (ωT ⊗ In)u

is a surjective vector space homomorphism;
3. if, moreover, the sets of eigenvalues of P (z) and of roots of v(z) are disjoint, then 

the kernel of the map in item 1 is equal to the kernel of the map in item 2, which 
is denoted by ker Ω. As a consequence, kerλ P (z) ∼= kerλ L(z)/ ker Ω and ker P (λ) ∼=
ker L(λ)/ ker Ω.

Proof. Item 1. Let us prove first that Ω indeed maps vectors of kerλ L(z) to vec-
tors of kerλ P (z). For this purpose, let N(z) be a minimal basis of L(z) and M(z)
be a minimal basis of P (z). Then, Proposition 6.2 implies that (ωT ⊗ In)N(z) =
M(z)R(z), where R(z) is a polynomial matrix by [16, Main Theorem, Item 4]. 
Then, (ωT ⊗ In)N(λ) = M(λ)R(λ). By definition, u ∈ kerλ L(z) if u = N(λ)s for 
some constant vector s. Thus, (ωT ⊗ In)u = (ωT ⊗ In)N(λ)s = M(λ)(R(λ)s) ∈
kerλ P (z). Since Ω is clearly linear, it only remains to prove its surjectivity. Any 
h ∈ kerλ P (z) can be written as h = M(λ)f for some constant vector f . Thus, 
h = v(λ)M(λ) (f/v(λ)) = (ωT ⊗ In)(V (λ) ⊗ M(λ)) (f/v(λ)), which proves the surjectiv-
ity because (V (λ) ⊗M(λ)) (f/v(λ)) ∈ kerλ L(z). This last step follows from Lemma 6.1-3, 
which implies V (z) ⊗ M(z) = N(z)T (z), for some polynomial matrix T (z). Therefore, 
(V (λ) ⊗ M(λ)) (f/v(λ)) = N(λ)(T (λ) (f/v(λ))) ∈ kerλ L(z).

Item 2. Lemma 6.1-1 with z replaced by λ immediately implies that Ω maps any 
vector u ∈ ker L(λ) into a vector in ker P (λ), because 0 = (V (λ)T ⊗ Im) L(λ) u =
P (λ) (ωT ⊗ In) u. To prove surjectivity, write any h ∈ ker P (λ) as h = v(λ)(h/v(λ)) =
(ωT ⊗ In)(V (λ) ⊗ In) (h/v(λ)). Note that Lemma 6.1-2 with z replaced by λ implies 
that L(λ)(V (λ) ⊗ In) (h/v(λ)) = (ω ⊗ Im)P (λ) (h/v(λ)) = 0, i.e., (V (λ) ⊗ In) (h/v(λ)) ∈
ker L(λ).

Item 3. Theorem 1.1 implies that λ is an eigenvalue of P (z) if and only if λ is an 
eigenvalue of L(z). If λ is not an eigenvalue, then kerλ P (z) = ker P (λ) and kerλ L(z) =
ker L(λ) and there is nothing to prove concerning the equality of the kernels. Thus, we 
assume that λ is an eigenvalue of P (z) and of L(z) and denote the maps in items 1 and 
2 by Ω1 and Ω2, respectively. Theorem 1.1 implies that dim kerλ P (z) = p if and only if 
dim kerλ L(z) = pk and that dim ker P (λ) = p + t if and only if dim ker L(λ) = pk + t. 
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The rank-nullity theorem and the surjectivity of Ω1 and Ω2 imply that dim ker Ω1 =
dim ker Ω2 = p(k − 1). Moreover, kerλ L(z) ⊂ ker L(λ) implies ker Ω1 ⊆ ker Ω2 with 
strict equality by dimensional reasons. The stated isomorphisms follow from the first 
isomorphism theorem. �

The third isomorphism theorem [6, Theorem 6.18] and item 3 of Proposition 6.8
immediately imply the following corollary.

Corollary 6.9. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) be a 
scalar ansatz polynomial of grade k −1, and L(z) = DL(P, v) ∈ F [z]km×kn. Suppose that 
the sets of eigenvalues of P (z) and of roots of v(z) are disjoint and fix any λ ∈ F such 
that v(λ) �= 0. Then, ker P (λ)/ kerλ P (z) ∼= ker L(λ)/ kerλ L(z).

Our proof of the isomorphism in Corollary 6.9 is abstract in the sense that it reduces 
to observing that the statement is a special case of deep and basic algebraic results; still, 
it can be also constructive in the sense of explicitly exhibiting the relevant vector space 
isomorphism due to items 1 and 2 of Proposition 6.8. Namely, the latter is given by the 
map

Ω : ker L(λ)/ kerλ L(z) → ker P (λ)/ kerλ P (z), [u] 
→ [(ωT ⊗ In)u]. (21)

Finally, observe that, similarly to Theorem 6.5, one can prove that the kernels of 
the vector space homomorphisms in items 1 and 2 of Proposition 6.8 are both equal to 
span C.

6.3. Recovery of root polynomials of P (z) from those of DL(P, v)

Finally, in this section we prove that the same approach used in the previous sub-
sections for right minimal bases and right eigenvectors (that we can informally describe 
as “left multiply times ωT ⊗ In”) allows us also to recover right root polynomials. For 
a pencil, maximal sets of root polynomials can be computed starting from the staircase 
form of the pencil [37]. Therefore, the result in this subsection can be used in practice 
to compute maximal sets of root polynomials for P (z). For brevity, we focus on root 
polynomials at finite eigenvalues.

Theorem 6.10. Let P (z) ∈ F [z]m×n be a matrix polynomial of grade k ≥ 2, v(z) =
ωT V (z) be a scalar ansatz polynomial of grade k − 1, where V (z) ∈ F [z]k×1 is the 
Vandermonde vector of degree k − 1, and L(z) = DL(P, v) ∈ F [z]km×kn. Suppose that 
the sets of eigenvalues of P (z) and of roots of v(z), each including possibly infinite 
eigenvalues or roots, are disjoint. Let {ρi(z)}t

i=1 be a maximal set of root polynomials at 
λ ∈ F for L(z) and define ri(z) = (ωT ⊗ In)ρi(z) for i = 1, . . . , t. Then, {ri(z)}t

i=1 is a 
maximal set of root polynomials at λ for P (z).
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Proof. Let p = dim ker P (z). Then, pk = dim ker L(z) by Theorem 1.1. Let N(z) ∈
F [λ]nk×pk be a minimal basis of L(z) and let M(z) ∈ F [λ]n×p be a minimal basis of 
P (z) obtained by applying Theorem 6.3 to N(z) with Mb a maximal set of linearly 
independent columns of Mc (in case Mc �= 0). Thus, M(λ) is formed by a subset of the 
columns of M̂(z) = (ωT ⊗ In)N(z). By definition, the columns of N(λ) form a basis of 
kerλ L(z) and the columns of

Next(λ) = [N(λ) ρ1(λ) · · · ρt(λ)] ∈ Fnk×(pk+t)

form a basis of ker L(λ). From Proposition 6.8, the columns of M̂(λ) = (ωT ⊗ In)N(λ)
span kerλ P (z) and the ones of (ωT ⊗ In)Next(λ) span ker P (λ). But those columns of 
M̂(λ) corresponding to M(λ) also span kerλ P (z), which implies that the columns of

[M(λ) r1(λ) · · · rt(λ) ] ∈ Fn×(p+t)

span ker P (λ). Theorem 1.1 guarantees that dim ker P (λ) = p +t. Therefore, the columns 
of [M(λ) r1(λ) · · · rt(λ) ] form a basis of ker P (λ), which immediately implies that 
ri(λ) /∈ kerλ P (z) for i = 1, . . . , t. Therefore, it only remains to prove that r1(z), . . . , rt(z)
are root polynomials at λ for P (z) with the same orders as ρ1(z), . . . , ρt(z), since by 
Theorem 1.1 these orders are the partial multiplicities of λ as an eigenvalue of P (z) and 
Theorem 2.2 would imply the maximality of {ri(z)}t

i=1. For this purpose, note that from 
the equations L(z)ρi(z) = (z − λ)�isi(z) with si(λ) �= 0, corresponding to the fact that 
{ρi(z)}t

i=1 are root polynomials at λ for L(z) of orders {�i}t
i=1, and from Lemma 6.1-1, 

we obtain

(z − λ)�i(V (z)T ⊗ Im)si(z) = (V (z)T ⊗ Im)L(z)ρi(z) = P (z)(ωT ⊗ In)ρi(z)

and (V (λ)T ⊗ Im)si(λ) �= 0. Thus, ri(z) = (ωT ⊗ In)ρi(z) is a root polynomial at λ for 
P (z) of order �i, for i = 1, . . . , t. �
Remark 6.11. The recovery procedure for root polynomials described in Theorem 6.10
is, of course, still valid when P (z) is regular. In that case, root polynomials can be seen 
as generating functions of Jordan chains [13]. Thus, this subsection also describes, as 
a special case, how to recover Jordan chains for a regular P (z) from those of DL(P, v)
under the eigenvalue exclusion assumption. Note that in the regular case, the pencils 
in DL(P ) satisfying the eigenvalue exclusion condition are linearizations for P (z), then 
they are also L1(P ) and L2(P ) linearizations [29] and one can also recover maximal sets 
of root polynomials through a simple block extraction, as it was described in item 1 of 
[13, Theorem 8.10]. In fact, for P (z) regular, Theorem 6.10 follows from item 2 of [13, 
Theorem 8.10].
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7. Conclusions

We have extended the eigenvalue exclusion theorem for DL(P ) pencils to the case of 
a singular matrix polynomial P (z). Even if none of the pencils in DL(P ) is a lineariza-
tion for a singular P (z), we have proved that, under the eigenvalue exclusion theorem 
assumptions, it is possible from any pencil DL(P, v) to fully recover all of the relevant 
magnitudes of P (z), including eigenvalues and their partial multiplicities, (left and right) 
eigenvectors, (left and right) root polynomials, (left and right) minimal indices, and (left 
and right) minimal bases. With the exception of the recovery of the minimal indices and 
bases, this was already known when P (z) is regular, but the arguments for a singular 
P (z) are much more involved since they cannot be based on the (no longer true) fact 
that DL(P, v) is a strong linearization.

Our analysis also raises a question that goes beyond the study of the space of pencils 
DL(P ). Does one really need strong linearizations to compute the eigenstructure of a 
matrix polynomial? Or, is any linear pencil that allows us to recover all the relevant 
quantities possibly as good as a tool? The case study of DL(P ) definitely suggests that 
strictly restricting to strong linearizations may be an unnecessarily rigid approach. This 
is also supported by the new concept of “strongly minimal linearizations” introduced in 
[14].

An open problem in this context is to study what happens when the hypotheses of the 
generalized eigenvalue exclusion theorem are not satisfied. Based on preliminary analyses 
and also on the results in [14], we conjecture that a large part of Theorem 1.1 will remain 
valid, but that those eigenvalues of P (z) that are roots of the ansatz polynomial will 
require of a different analysis and will satisfy different recovery rules for their partial 
multiplicities.
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