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ABSTRACT
Modern data-driven image generation models often surpass tradi-

tional graphics techniques in quality. However, while traditional

modeling and animation tools allow precise control over the im-

age generation process in terms of interpretable quantities — e.g.,

shapes and reflectances — endowing learned models with such

controls is generally difficult.

In the context of human faces, we seek a data-driven generator

architecture that simultaneously retains the photorealistic quality

of modern generative adversarial networks (GAN) and allows ex-

plicit, disentangled controls over head shapes, expressions, identity,

background, and illumination. While our high-level goal is shared

by a large body of previous work, we approach the problem with

a different philosophy: We treat the problem as an unconditional

synthesis task, and engineer interpretable inductive biases into

the model that make it easy for the desired behavior to emerge.

Concretely, our generator is a combination of learned neural net-

works and fixed-function blocks, such as a 3D morphable head

model and texture-mapping rasterizer, and we leave it up to the

training process to figure out how they should be used together.

This greatly simplifies the training problem by removing the need

for labeled training data; we learn the distributions of the indepen-

dent variables that drive the model instead of requiring that their

values are known for each training image. Furthermore, we need

no contrastive or imitation learning for correct behavior.

We show that our design successfully encourages the generative

model to make use of the internal, interpretable representations in a

semantically meaningful manner. This allows sampling of different

aspects of the image independently, as well as precise control of the

results by manipulating the internal state of the interpretable blocks

within the generator. This enables, for instance, facial animation

using traditional animation tools.

CCS CONCEPTS
• Computing methodologies→ Shape modeling; Rendering;
Neural networks; Unsupervised learning.
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face modeling, generative adversarial networks, differentiable ren-
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Figure 1:High-level view of our image synthesis process. Four
separate latent vectors (red) influence different phases of the
synthesis pipeline. A parametric head model is rendered to
control the overall geometry based on identity, expression,
and camera latents, and a neural texture (shown mapped
onto the rendered head) encodes the spatial variation based
on identity. An environment latent controls the illumination
and background synthesis. A foreground synthesis network
converts the intermediate representation into a photoreal-
istic RGBA image, and the final image is composited using
standard alpha blending. The result is photorealistic and can
be controlled by manipulating the individual latents or the
mesh directly.
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1 INTRODUCTION
Data-driven generative models have quickly turned from curiosities

to practical tools for image generation and editing. Current models

are often able to synthesize images far more realistic than even the

best traditional computer graphics techniques, with perhaps the

only exception found in ultra-high-end film production where im-

mense effort is expended to capture and model shapes, appearances,

and movements used as inputs to physically based renderers.

Most data-driven generative image models are built on convo-

lutional neural networks (CNN). We find their performance as

surprising as it is astonishing— all these models do is hierarchically

process local pixel neighborhoods, but they nonetheless learn to

represent photorealistic three-dimensional objects in various poses,

viewpoints, and illuminations. In particular, this is achieved without

any specialized computational primitives tailored to perspective

imaging or light-surface interaction.

In practice, the uses of data-driven generative models are ham-

pered by their opaque nature. While the models often learn to

disentangle effects such as pose and illumination to some degree,

fine-grained control remains a challenging and active research

topic.

Working in the context of human faces, we seek a learned gener-

ative model that retains the photorealistic fidelity obtainable from

modern generative adversarial networks (GAN) while allowing con-

trol of the results by standard graphics approaches, such as rotating

the view or changing the pose. Our focus is strictly limited to face

synthesis—not editing. Our approach differs in two crucial ways

from the many previous methods that aim at the same overall goal.

First, we seek an architecture with inductive biases that encourage

interpretable behavior to emerge as a byproduct of solving an un-

conditional modeling task. Second, instead of forcing interpretable

controls over things such as camera poses, head shape parameters,

etc., onto the generator by conditioning, we only learn their sta-

tistical distribution from data. Our approach has the significant

benefit that we do not need to estimate conditioning parameters

using inference models.

Specifically, we architect our generator (Figure 2) as a combina-

tion of CNNs, multi-layer perceptrons (MLPs), and the standard

graphics operations of perspective projection, rasterization, texture

mapping, and a 3D morphable face model (3DMM). Importantly,

we do not seek a model that would directly output 3D assets that

would yield photorealistic results when rendered using a traditional

renderer. Instead, we embed interpretable computer graphics prim-

itives deeper into the model and rely on the power of CNNs for

generating the final pixels. All test-time control of the results is

performed by modifying the interpretable internal representations

inside the network, which we show to carry over to the final image.

In summary, we contribute a GAN architecture that learns to

synthesize photorealistic faces with disentangled controls for iden-

tity, pose, and expression, trained with unlabeled data. The 3D

morphable model and a perspective camera embedded deep inside

the generative model enable control of many aspects of the results

using standard graphics techniques, such as vertex animation.

2 RELATEDWORK
2.0.1 Controllable and Interpretable Face GANs. Recent years have
seen an unprecedented advancement in GAN-based [Goodfellow

et al. 2014] face synthesis thanks to the availability of data (e.g.,

[Karras et al. 2019; Liu et al. 2015]) and active research efforts

(e.g. [Brock et al. 2018; Karras et al. 2021, 2019, 2020b; Sauer et al.

2022]). The impressive output image quality afforded by GANs

led to rapidly growing interests in harnessing them for practical

image generation and editing tools. In early efforts, variants of

conditional GANs [Mirza and Osindero 2014] demonstrated their

use case in identity-preserving generation in face synthesis (e.g.,

[Bao et al. 2017, 2018; Shen et al. 2018; Tran et al. 2017; Yin et al.

2017]). However, these formulations do not offer direct controls for

camera pose, lighting, background properties, and face shape.

More recent efforts have focused on investigating the highly en-

tangled latent space of GANs. InfoGAN [Chen et al. 2016] develops

interpretable latent spaces without supervision, and various works

restructure the latent space to enable interpretable control (e.g.,

[Härkönen et al. 2020; Kim et al. 2021]).

2.0.2 Training 3D Face Generators on 2D Images. Recent approaches
have highlighted that imposing a layer structure, e.g., an alpha map,

in the generator output improves its 3D understanding, even when

the training signal is only in 2D (e.g. [Chen et al. 2019; Yang et al.

2022; Zhao et al. 2022]). To achieve control over practical variables

such as pose and lighting, many recent efforts have additionally fo-

cused on utilizing 3D representations in training generative models.

For example, HoloGAN [Nguyen-Phuoc et al. 2019] disentangles

3D pose from other content and supports view manipulation at in-

ference time by requiring that 2D projections of a randomly rotated,

abstract 3D feature grid results in realistic images. HoloGAN’s ar-

chitecture places only weak constraints on the 3D representation

and does not offer interpretable conrols apart from rotation.

More recent work incorporates explicitly three-dimensional rep-

resentations and blend analytic and neural rendering [Gecer et al.

2018; Thies et al. 2019]. They differ from our goals and methods in

key aspects. EG3D [Chan et al. 2022] uses a 3D representation that

is not tailored towards interpretability and fine-grained control;

instead of a structured mesh, it constructs a radiance field based

on a tri-plane representation. This offers the flexibility to model

diverse geometries but offers no specific constraints or controls

pertaining to face shapes, identity, pose, or lighting. GET3D [Gao

et al. 2022] is conditioned on images and outputs textured meshes

that can be rendered as-is using a traditional graphics pipeline.

This ability comes at the price of significantly lower photorealism.

StyleRig [Tewari et al. 2020] learns an additional rigging network,

enabling semantic 3D controls for a pre-trained StyleGAN network.

In our work, we strike a different balance by incorporating the

graphics primitives deeper into the generator and letting learned

components produce the final colors, effectively sidestepping the

difficult attempt to produce pixel-perfect results by a traditional

renderer.

In an attempt to represent faces more explicitly, DiscoFace-

GAN [Deng et al. 2020] makes use of morphable 3D face models

[Blanz and Vetter 1999; Paysan et al. 2009] in the training process

and achieves inference-time manipulation of identity, deformation,

lighting, and pose of the face in image. Despite the similar goals,
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Figure 2: System diagram. (a) High-level architecture of our
generator. The generator is composed of two StyleGAN2 net-
works, four simple MLP networks, and a custom foreground
synthesis network, along with various fixed-function com-
ponents. (b) Internal design of the foreground network. Sym-
bols +⃝ and ∥⃝ denote summation and concatenation, respec-
tively. See text for details.

the approach differs significantly from ours. First, the generator is a

pure CNN that is conditioned on the control parameters of interest.

Second, the training data needs to be labeled with the condition-

ing variables. These variables are extracted from the dataset using

pre-trained face parsing networks [Lin et al. 2019], and their statis-

tical distributions are modeled separately using pre-trained VAEs

[Kingma and Welling 2014]. Disentanglement is then achieved by

imposing explicit constraints in the form of a contrastive learning

objective where synthetic renderings are employed. GIF [Ghosh

et al. 2020] and Exp-GAN [Lee et al. 2022] make use of the FLAME

morphable face model [Li et al. 2017] in a similar vein for building

controls into a GAN generator. VariTex [Bühler et al. 2021] uses

the Basel Face Model [Gerig et al. 2018] to train a VAE in a similar

manner. None of the above methods are unsupervised in the sense

that they require the controllable variables such as camera pose and

FLAME parameters as explicit input data. GIF and DiscoFaceGAN

additionally require labeled lighting and texture parameters. In

contrast, our generator does not require labeled data or controlled

inputs.

3 OUR GENERATOR ARCHITECTURE
Figure 2a shows the architecture of our generative pipeline. An

overview of its stages and their roles and design rationales is given

below, with the following subsections providing details of the latent

structure and the operations of these stages.

(1) Our generator first synthesizes a 3D mesh and an associ-

ated neural texture map [Thies et al. 2019] in a fixed UV

parameterization. The mesh captures the identity-related

shape of the head, as well as its deformation that represents

facial expression, in a view-independent manner. The neural

texture provides following stages with building material that

is glued to the surface.

(2) Using a synthetic camera sampled by the model itself, the

mesh and its neural texture are rasterized into a 2D im-

age using a differentiable renderer. The rendering opera-

tion is a consistent mapping between the surface and pixel

domains. This greatly simplifies the task of the following

learned stages that process pixels — they do not need to learn

to, e.g., translate in pixel space, but can instead concentrate

on synthesizing a realistic image from the layout provided

by the rasterizer.

(3) The rasterized result is used to condition the layers of a

StyleGAN2-like foreground synthesis network that produces

an RGB image and an associated alpha mask. In addition to

the pixels inside the rendered mesh, this stage synthesizes

complex structures such as eyeglasses and hair that can

stretch far beyond the mesh in the final image. This is possi-

ble thanks to the fixed layout provided by the rasterizer, in

relation to which these features can be placed.

(4) The final image is composited from the foreground and a

separately-generated background image using traditional

alpha blending [Bielski and Favaro 2019].

3.1 Latent Structure
Our generator takes four normally distributed latent vectors as

input that aim to control different attributes of the generated im-

ages. Their wiring reflects our assumptions about the statistical

dependencies observed in the data. We use the FLAME [Li et al.

2017] 3D Morphable Model (3DMM) for representing head shapes.

It features orthogonal controls of overall shape (associated with

identity) and expression (smile, frown, etc.) and applies the controls

to a fixed-topology mesh.

As facial appearance and head shape are clearly not independent,

we use an identity latent 𝒛
ident

∈ R512 to drive both the synthesis of
the neural texture and the FLAME parameters that control overall

head shape. We assume that facial expression is independent from

identity and control its generation by another latent 𝒛expr ∈ R512
that drives the expression parameters in FLAME. To complete the

geometric part of the synthesis pipeline, we assume that the pose of

the head relative to the camera, as well as other camera parameters

such as field of view, are independent from identity and expression,

and drive their synthesis with a third latent 𝒛cam ∈ R32.
The synthesis of the background image is controlled by the envi-

ronment latent 𝒛env ∈ R512. While we assume that the background

and illumination are mostly independent of identity, expression,

and camera pose, we do note that the illumination and tonal bal-

ance need to be consistent between the foreground and background.

This necessary connection is achieved by conditioning parts of the

foreground network with 𝒛env, as detailed below.

We emphasize that at no point do we instruct the model on

how to employ the freedoms it has. There are no individual loss



SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Mensah, et al.

(a) Foreground (b) Alpha mask (c) Inset (d) Composite

Figure 3: The foreground generator produces an RGB image
(a) along with a scalar alpha mask (b). The insets (c) illustrate
how features such as hair and eyeglasses are assigned frac-
tional, high-quality coverage that allows the background to
show through. The final composite (d) is obtained from the
foreground and background images using traditional alpha
blending. Background image not shown separately.

terms or pre-trained inference models that would indicate what

effects certain degrees of freedom should have, nor do we condition

the generator on a specific identity or pose. All disentanglement

observed in the results is an emergent property of the unconditional

learning task and the model structure.

3.2 Geometry and Texture Synthesis
A learned StyleGAN2 network 𝑮tex (𝒛ident) produces a 32-channel
512×512 neural texture map that is later used when rendering the

mesh. This neural texture passes identity-specific information as

well as common positional information through the renderer to the

foreground network. The FLAME parameters that control head and

face shape are determined by 𝑮geom (𝒛
ident

), a learned three-layer

MLP. A separate latent 𝒛expr affects the FLAME parameters that

control expression, similarly via a learned MLP 𝑮expr (𝒛expr).
Camera parameters are controlled by 𝒛cam that also feeds into

FLAME parameters that control the pose of eyes and neck. This

connection is necessary, as camera position w.r.t. the subject is not

independent of eyes and neck— in our training data, the subject

commonly looks at the camera and is turned towards it. In total,

the learned MLP 𝑮cam (𝒛cam) outputs the eye and neck FLAME

parameters, 3D camera position, 3D camera rotation, and post-

perspective 2D translation and rotation parameters for the image.

The post-perspective transformations are required to reproduce

images that have been cropped from somewhere other than the

center of the image and exhibit the consequent distortions. The

2D distance between eyes is constant in our training data, and we

therefore determine the post-perspective scale so that the projected

distance between vertices at the centers of the pupils is normalized.

Finally, environment latent 𝒛env controls the background and

light direction. A learned StyleGAN2 network 𝑮
bg
(𝒛env) synthe-

sizes a 512×512 RGB background image from which a random

256×256 crop is chosen along the horizontal midline. This random-

ized crop prevents the system from learning to synthesize the face

or components such as hair into the background layer [Bielski and

Favaro 2019]. In addition, a learned MLP 𝑮
light

(𝒛env) outputs a
light direction vector for the renderer.

3.3 Rendering
The fixed-function renderer rasterizes the provided mesh to pro-

duce conditioning images for the foreground network. These consist
of texture, normal, and illumination images. For higher fidelity, all

images are rendered in 1024×1024 resolution and downsampled by

4× using an approximate Gaussian kernel. We rasterize and tex-

ture map the meshes with an efficient fixed-function differentiable

renderer [Laine et al. 2020].

The textured output is simply the 32-channel neural texture

mapped onto the mesh with fixed UV coordinates, using mipmap-

ping [Williams 1983] to avoid aliasing. Normals are computed in

world space and interpolated across the mesh to produce the nor-

mal image. Finally, two illumination images are computed; diffuse

and reflective. The diffuse component is the dot product between

the mesh normal at a pixel and the light vector provided by 𝑮
light

,

whereas the reflective component is the dot product between nor-

mal and half-vector between camera and light vectors, inspired by

the Phong reflection model [Phong 1975].

The foreground network additionally uses noise images to syn-

thesize high-frequency detail at each resolution level, as inspired

by the StyleGAN [Karras et al. 2019] architecture. With standard

image-based noise, the synthesized content tends to stick to the

image pixels [Karras et al. 2021], resulting in clearly visible mo-

tion artifacts. In our architecture, the noise images are provided

by the renderer, and they are created by mapping a 12-channel,

normally distributed random texture onto the mesh. The benefit of

this approach is that the noise follows the geometry and animates

naturally with the head, and thus no position-based motion artifacts

are introduced in the foreground network.

Importantly, when computingmipmaps for the randomized noise

texture, the data is scaled by a factor of two at each downsampling

step. This retains the noise variance and prevents oblique surfaces

from losing contrast due to accessing coarser mip levels.

3.4 Foreground Synthesis
The internal architecture of the foreground network is shown in

Figure 2b. The design is based on the synthesis network of the orig-

inal StyleGAN [Karras et al. 2019] architecture with the following

modifications.

First, the style modulation mechanism is removed for all but

the last three convolution layers. Instead, we use a simple image-

based conditioning setup where we concatenate the conditioning

images to the feature stack prior to every other convolution. The

conditioning images are downsampled as needed to match the

resolution of the foreground network at each step.

Second, the geometry-aware noise images are taken from the

renderer instead of generated locally. These are similarly downsam-

pled to match the feature resolution, but the variance is retained

by boosting the signal magnitude according to the downsampling

ratio. A different noise channel is used at each of the 12 summa-

tions in the foreground network, ensuring that the noise is unique

at each step. Before each summation, the used noise channel is

broadcast to the current number of feature maps and scaled by
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a learned per-channel constant, similar to the original StyleGAN

architecture.

Finally, the last two spatial convolution layers of the foreground

network use the modulated convolution operations of StyleGAN2.

The modulation input is 𝒘
bg
, i.e., the output of the mapping net-

work of the background generator 𝑮
bg
. This enables the foreground

network to adapt the overall color palette to the environment la-

tent 𝒛env. Without such connection, it would not be possible to

synthesize a wide range of believable foreground/background com-

binations.

The final layer is a 1×1 modulated convolution that narrows the

output to four channels that are interpreted as RGB and alpha. To

stabilize training, the alpha channel is forced to opaque for pixels

that are well within the silhouette of the rasterized mesh, and to

transparent far outside the silhouette. This forces at least some

pixels in the composited image to originate from the foreground

and some from the background, preventing early collapses to states

that neglect either branch completely.

4 IMPLEMENTATION
Our system is implemented in PyTorch. We use nvdiffrast [Laine

et al. 2020] as the differentiable fixed-function rasterizer, and the

original implementation of FLAME [Li et al. 2017] as the mor-

phable head model. During training, we use adaptive discriminator

augmentation [Karras et al. 2020a] and therefore base our imple-

mentation on the official StyleGAN2-ADA codebase.

4.1 Network Details
When not stated otherwise, all convolutional and fully-connected

layers use leaky ReLU with 𝛼 = 0.2 as the activation function.

Our geometry, expression, camera and light networks are all

MLPs with three fully-connected layers. The geometry and expres-

sion networks 𝑮geom and 𝑮expr have 256 hidden features at each

layer, and the final layer of both networks uses scaled tanh activa-

tion compress the output values to a fixed range. Most shape and

expression parameters are then mapped to range [−3, +3] by scal-

ing the output of the tanh activation, except for the jaw parameters

that are limited to smaller, physically plausible ranges.

The light direction network 𝑮
light

has 32 hidden features at each

layer, and the activation of the last layer is linear. The raw output is

a 2D point on a plane in front of the face, which is then converted

into a normalized 3D direction vector via stereographic projection.

This allows the 3D light vector to obtain any direction, with the

raw output (0, 0) mapping to light arriving directly at the front.

Finally, the camera network 𝑮cam has 32 hidden features at each

layer, and tanh activation in the last layer. The raw output is scaled

on a per-parameter basis to obtain values in reasonable, physically

plausible ranges for camera, eye, and neck parameters.

In the foreground synthesis network, the initial learned 4×4 con-
stant tensor has 96 feature maps, and the feature map count is kept

constant throughout the network until the final 1×1 convolution
layer with linear activation.

In total, the networks in our generator have 27.5M trainable pa-

rameters, which is 11% more than a standard StyleGAN2 generator

network in 256×256 resolution (24.8M parameters).
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Figure 4: Top: Geometric match between the final image and
the head shape and pose generated by the geometry, expres-
sion, and camera networks for three latent codes. The accu-
rate correspondence enables responsive and intuitive control
of the final image via manipulation of the 3D mesh. Bottom:
Mesh inferred by DECA [Feng et al. 2021] from our render-
ing. The weaker correspondence (see esp. eyes and mouths)
suggests that automatic geometric labeling would not be re-
liable in producing training targets or estimating whether
the rendering follows the mesh accurately.

4.2 Training
We use the StyleGAN2-ADA training setup in the ‘auto’ configura-

tion at resolution 256×256, which determines the training hyperpa-

rameters, parameter counts of the internal StyleGAN2 networks

𝑮
bg

and 𝑮tex, and the discriminator network used during training.

To speed up training, we modify 𝑮
bg

from this baseline by disabling

the residual skip connections and restricting the maximum feature

map count to 96 throughout the network, as the task of synthesizing

background is fairly trivial — this reduces the parameter count of

𝑮
bg

by a factor of ten. For optimization, we use Adam [Kingma

and Ba 2015] with parameters 𝜆 = 0.0025, 𝛽1 = 0, 𝛽2 = 0.99.

Our training dataset is FFHQ-U [Karras et al. 2021], the unaligned

but fixed-scale version of the more common FFHQ set. The lack of

alignment ensures that our learned networks are not specialized

for a specific image-space position of the face, which would be

detrimental to our goal of flexible control.

We trained on 4 NVIDIA V100 GPUs for 10M images, corre-

sponding to 2.8 days of wall-clock time. Due to our higher memory

consumption compared to standard StyleGAN2 training, we re-

duced the minibatch size to 32.

We employ standard 𝐿2 regularization to the FLAME and camera

parameters to stabilize the early stages of training. The regulariza-

tion weights start high and are lowered as the training progresses to
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Telephoto Standard Wide angle

Figure 5: Changing the 3D camera’s field of view (equiva-
lently, focal length) carries over to the rendered face but does
not affect the background.

allow sufficient variation. Specifically, the regularization weights of

FLAME and camera parameters are𝑤flame = 10 · 0.001min{𝑥/1024, 1}

and𝑤camera = 0.1min{𝑥/256, 1}
, respectively, where 𝑥 is the number

of thousands of training images shown.

5 RESULTS
We now turn to the evaluation of the images produced by our model,

as well as performing targeted tests to study its controllability

and disentanglement. The supplemental ZIP file contains videos

organized on a simple HTML page.

Overall, we find the perceptual image quality to be good. As

seen in Figure 7 (page 9), the model produces a variety of identities

in different poses and expressions. Notably, the background and

foreground appear consistent with each other in terms of illumi-

nation and color balance, thanks to the style-based conditioning

mechanism by which the background network guides the last layers

of the foreground network. As shown in Accompanying Video 1,

interpolation in the latent space produces pleasing results that have

a distinctly different feel from the latent walks of our basis, Style-

GAN2. In particular, the results are highly equivariant— i.e., the

facial features and texture move with the mesh— even though our

CNNs are not equivariant.

5.1 Geometric Control and Animation
As shown in Figure 4, the facial features in the final image line up

very well with the shape and pose of the face model controlled by

the networks 𝑮geom, 𝑮expr, and 𝑮cam. This is a highly desirable

result. As the rasterized head model and the neural texture control

the synthesis of the final pixels by the foreground network, the

accurate match means that changing the shape and position of the

head mesh will yield corresponding near-equivariant changes in

the final pixels. In other words, the features represented by the

neural texture “stick” to the surface while it moves. We are aware

of no prior data-driven model that produces photorealistic results

and allows such fine-grained control. See the interactive editing

session in Accompanying Video 4 for a demonstration.

Figure 4 also illustrates that although the geometric model only

features a deforming bald head, the model comfortably synthesizes

realistic hair that both reaches far outside the silhouette of the

rendered model, and merges consistently with the hair inside the

silhouette. We initially expected this to require helper geometry at-

tached to the head. We also note that eyeglasses are often faithfully

synthesized as transparent so that they let the background show

Figure 6: The identity latent 𝒛
ident

affects both facial geometry
and neural texture. Normally these are in agreement, but we
can artificially use a different identity latent for the two pur-
poses. This yields plausible but sometimes off-distribution
images. Here, the “geometric” identity is kept constant in
each row, and the “texture” identity in each column. The
diagonal images with green borders use matching latents,
whereas off-diagonal images show mixed latents. The geom-
etry is shown on the left.

through (Figure 3). Finally, the bottom row in Figure 4 shows that

the meshes inferred by DECA [Feng et al. 2021] do not match the

rendered images or their base meshes as well. In particular, eyes

and mouths are often misaligned; the model also incorrectly infers

a closed mouth for the leftmost sample. This calls into question

the practice of treating such inference results as ground truth in

evaluation or as training targets.

To demonstrate a use of accurate geometric control, and that

our results are not inextricably tied to the FLAME head model,

Accompanying Video 2 features several captured facial animations

rendered using several different identity and background latents.

The animations are represented as time sequences of vertex offsets

relative to a base pose— not time varying FLAME parameters—

meaning that the head shapes in the animations are not necessarily

within FLAME’s span. Note that this representation also forces us

to use the same fixed base geometry for all the subframes, despite

them having different identity latents. As seen on the video, the

facial poses are represented well, with effects such as appropriately

deepening wrinkles clearly visible. The only major problems are

found in teeth that do not move realistically and in extreme jaw

poses that are not present in the training data. The animations are

sourced from Ranjan et al. [2018] and processed to remove jitter by

𝐿1 smoothing.

As could be expected, the foreground synthesis network cannot

properly handle geometric setups that are not well represented

in the training data. Such failure cases are illustrated in Figure 8

(page 9). A more complete training set should mitigate such prob-

lems but might also make training more difficult.
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5.2 Disentanglement
The design rationale for our generator architecture is to enable

it to easily disentangle several key factors in the data. We find

this succeeds well for all geometry-related parameters, and mostly

succeeds for background separation.

5.2.1 Identity vs. background. Figure 10 (page 10) demonstrates

the disentanglement between identity and background. Holding

the background latent constant (columns) results in similar lighting

conditions for the foreground, while keeping the identity latent

constant (rows) results in a highly similar face structure and expres-

sion. We notice that the model does entangle features related to

ethnicity, such as skin tone and hair color, with illumination. This

behavior is similar to the original StyleGAN models— both illumi-

nation and skin and hair tones can be modeled with adjustments to

color balance. Fully disentangling these factors may require specific

constraints.

5.2.2 Expression vs. pose. Figure 9 (page 10) demonstrates, for a

single identity latent, how a constant camera latent 𝒛cam (rows)

yields a fixed camera pose and identity despite the changing expres-

sion, while a constant expression latent 𝒛expr (columns) results in a

fixed identity and expression across camera poses; in other words,

these three factors are not entangled with each other.

5.2.3 Field of view. Figure 5 demonstrates the disentangled control

over field of view. With the latents fixed, the camera is changed

from telephoto-like (small field of view) to wide angle-like (large

field of view). The results show how the telephoto’s apparent lack

of perspective turns into the familiarly exaggerated one of the wide

angle, with the identity and other properties remaining fixed.

5.2.4 Texture and head shape. Finally, we study the disentangle-

ment of the neural texture and face geometry in Figure 6, where

we intentionally break their connection at inference time. This is

of interest because their generation is controlled by the same latent

code 𝒛
ident

, and hence it would, in principle, be possible that only

valid combinations sampled by the model would result in reason-

able images. This turns out not to be the case. First, with the camera,

background and expression latents fixed, three identity latents are

sampled. When fed to 𝑮geom and 𝑮tex, this results in three separate

face geometries (leftmost column) and neural textures (not shown).

In each row of the figure, a fixed face geometry is texture mapped

with the three different neural textures inside the generator. The

images on the diagonal are thus produced frommatched and the off-

diagonal ones from mismatched geometry-texture combinations.

As can be seen, matching the head shape with the neural texture

always appears natural, whereas the other combinations can re-

sult in images with unusual proportions. Despite this, the part of

appearance and identity encoded in the texture remains constant

over the columns, indicating disentanglement between shape and

texture, and generalization outside the data manifold.

5.3 Illumination
We do not fully reach our goal of interpretable control over the

dominant lighting direction, but see partial success in a limited

effect from the lighting controls (see Accompanying Video 3). Two

factors make us believe a solution is not far. First, the model does

reliably make use of the shading map in an interpretable, albeit

modest, manner; second, during the research we have seen several

models where the effect is much more pronounced. An example

is shown in Accompanying Video 3. Though we have thus far not

been able to make this behavior emerge consistently, we believe

the issue is that of subtle balancing.

5.4 Quantitative Evaluation and Image Quality
Numerically, our model yields a Fréchet Inception Distance (FID)

of 12.4. This is significantly higher (worse) than the FID of 5.14 ob-

tained by a vanilla StyleGAN2 model trained on the same 256×256
FFHQ-U dataset. To shed light on the apparent inconsistency be-

tween poor FID and the observed high quality of the images, we

measure precision (𝑃 ) and recall (𝑅) as proposed by Kynkäänniemi

et al. [2019]. Precision is an estimate of the fraction of generated

images that match training data, i.e., are of high quality, whereas

recall measures the degree to which the model covers the variation

in the training data. We measure a significantly higher precision of

𝑃 = 0.82 compared to StyleGAN2’s 𝑃 = 0.63, indicating that a large

fraction of the results are indeed good. Conversely, we observe a

large drop in recall (𝑅 = 0.25 vs. StyleGAN2’s 𝑅 = 0.38), indicating

that our model leaves a larger fraction of the variation in the dataset

unmodeled. This explains the increase in FID.

This tendency to drop modes is not surprising. While we have

purposefully engineered strong inductive biases towards generat-

ing a single person against a background, a large fraction of the

images in FFHQ-U have auxiliary foreground features, such as other

persons, microphones, and the like; our model does not have good

tools for modeling them, and the GAN objective allows the model

to ignore them. In addition, we observe a lack of ethnic diversity in

the generated images. While we have not conducted a quantitative

evaluation, we suspect this can be traced back to imbalances in the

dataset.

While our results are more equivariant than those of vanilla

StyleGAN2, we do observe some features sticking to the pixel grid

instead of moving with the head. Teeth are problematic in this

sense, and locks of hair synthesized outside the rasterized mesh

tend to stay fixed to the pixel coordinates more than those inside

the silhouette. This limitation could likely be eliminated by moving

to the alias-free architecture of StyleGAN3 [Karras et al. 2021].

Our choice of 256×256 output resolution and the non-equivariant

StyleGAN2 is mostly motivated by limited computational resources.

We provide additional qualitative comparisons between our

work, DiscoFaceGAN [Deng et al. 2020], GIF [Ghosh et al. 2020] and

Exp-GAN [Lee et al. 2022] in Accompanying Video 5. As shown in

the video, DiscoFaceGAN entangles background with identity and

pose, and shows sticking artifacts inside the silhouette. GIF exhibits

background flicker and identity variation in animation and pose

changes, and ExpGAN flickers due to an intermediate resolution of

64×64 pixels.

6 CONCLUSIONS
We have shown that a carefully architected combination of fixed-

function graphics primitives, convolutional neural networks, and

MLPs can learn an accurately controllable facial synthesis model in

an unsupervised manner, i.e., purely through inductive bias instead
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of labeled data and variety of forcing mechanisms. In the context

of face synthesis, we are interested in exploring the design space of

combinations of learned and fixed-function components to enable

further interpretable controls (e.g., illumination, reflectance) with-

out sacrificing quality. Of course, the controllability of our model

comes together with specialization; although we have not tried,

our model is unlikely to be directly suitable for images other than

faces. The design principles themselves should be applicable to

other domains, though.

There is potential for futurework in exploring similar approaches

for other specific domains, as well as in engineering similar control

mechanisms for more general scenes. This requires careful con-

sideration of the fixed-function components and, in particular, the

latent structure.
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Figure 7: A curated collection of output images with random latents. Curation ratio approx. 10%.

Extreme jaw pose Far distance Side view

Figure 8: Failure cases. In extreme geometric setups that are not well represented in the training data, the foreground network
fails to synthesize a believable image based on the mesh.
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Figure 9: Consistency of identity and expression across different poses.
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Figure 10: Consistency of identity across different environments.


