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Abstract
Here, we demonstrate that the power spectral density of thermal radiation at a specificwavelength
produced by a body offinite dimensions set up in free space under a fixed temperature could bemade
theoretically arbitrary high, if one could realize double negativemetamaterials with arbitrary small
loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This
result refutes thewidespread belief that Planck’s law itself sets a hard upper limit on the spectral
density of power emitted by afinitemacroscopic bodywhose size ismuch greater than thewavelength.
Herewe propose a physical realization of ametamaterial emitter whose spectral emissivity can be
greater than that of the ideal black body under the same conditions. Due to the reciprocity between the
heat emission and absorption processes such cooled down superemitter also acts as an optimal sink
for the thermal radiation—the ‘thermal black hole’—which outperformsKirchhoff–Planck’s black
bodywhich can absorb only the rays directly incident on its surface. The resultsmay open a possibility
to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-
photovoltaic systems and other devices.

1. Introduction

The ability of a hot body to emit thermal electromagnetic radiation is related to its ability to absorb incident
electromagnetic waves at the same frequencies. Kirchhoff in 1860 introduced the theoretical concept of an ideal
black body, which ‘completely absorbs all incident rays’ [1]. This concept was later adopted by Planck [2]. It
appears that since that time there has been a general belief that nomacroscopic body can emitmore thermal
radiation than the corresponding same-shape and size ideal black body at the same temperature. For example, in
a recent paper [3] one reads, ‘any actualmacroscopic thermal body cannot emitmore thermal radiation than a
blackbody’. Equivalent statements can be found in commonly used text books, for example, in thewell-known
book by Bohren andHuffman [4] it is stated that ‘...the emissivity of a sufficiently large sphere is not greater than
1. Thus, if the radiating sphere radius ismuch larger than thewavelength, the radiation above the black body
limit is impossible’.

On the other hand, recently there has been increasing number of publications discussing so-called super-
Planckian thermal radiation, when the power emitted by a hot body per unit area per unit wavelength exceeds
the one predicted by Planckʼs black body law. In a great deal of suchworks, the thermal emission into the
electromagnetic near-field is considered, when the bodies that exchange radiative heat are separated by a distance
significantly smaller than thewavelengthλ (on the order of 10l or less). Such emission can easily overcome the
black body limit, because oscillators in bodies separated by subwavelength gaps interact through the near (i.e.,
Coulomb) electric field, and, when close enough to the emitting object, such afield ismuch stronger than the
wavefield.

Besides the near field transfer, there are also works—quite surprising for an unprepared reader—which
report super-Planckian emission in far-field in free-space. In order to avoid confusionwemustfirst agree on the

OPEN ACCESS

RECEIVED

16 June 2015

REVISED

22November 2015

ACCEPTED FOR PUBLICATION

4December 2015

PUBLISHED

14 January 2016

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/1/013034
mailto:stas@co.it.pt
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013034&domain=pdf&date_stamp=2016-01-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013034&domain=pdf&date_stamp=2016-01-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


terminology, because it appears that, currently, in the literature there is no consensus on themeaning of the
super-Planckian radiation in this case. In this paper, we use this terminology exclusively for bodies of finite
dimensions.When such an object acts as a source of thermal radiation, its spectral radiance bl, i.e., the amount of
power Pd2 radiated perwavelength interval dl, projected emitting areaA⊥, and solid angle dW:

b
P

A

d

d d
, 1

2

l
=

W
l

^
( )

is sub-Planckian or super-Planckian depending on the choice of the areaA⊥. If by definitionA⊥ is chosen to
coincidewith emitter’s geometric projected area: A Ageom=^ , then, given the reciprocal nature of the radiative
heat emission and absorption processes, one has to admit that the spectral radiance of bodies characterizedwith
the effective absorption cross section abss such that Aabs geoms > must be super-Planckian, because for the ideal
black body Aabs geoms = .

Such definition explains the known fact that an optically small body can emitmore than a black body of a
similar size. Indeed, a small particlemay absorbmuchmore power than onewould expect from its size, because
a particle with radius a l may have the absorption cross section abss much larger than its geometric cross
section A ageom

2p= . For a dielectric or plasmonic sphere, this is understood as a consequence ofMie’s (or
respective plasmonic) resonances, at which the absorption cross section abss may outnumber a2p by a large
factor. For instance, for a single-mode dipole particle the ultimate absorption cross section equals

3 8abs max
2s p l= ( ) (e.g. [5]), which ismuch larger than a2p if a l . The absorption cross section can be

further increased if the incident field couples tomany resonantmodes, e.g. [6–9]. Similarly, resonant absorption
by shape irregularities with curvature radius a l on a surface of a large body [10]makes the absorption cross
section associatedwith an irregularity larger than its geometric cross section.

However, the known literature does not provide a definite answer to themain question of this article,
namely, up towhich degree the spectral density of power emitted by an optically large body can be larger than the
one produced by the black body of the same dimensions under the same thermal conditions? In other words,
howprominent can be the super-Planckian free-space radiation effectmentioned above in bodies whose size is
much greater than the wavelength?

In fact, there is no agreement in the current literature even onwhether such super-Planckian emission into
free space is physically allowed—in particular, by thermodynamical considerations,—in a scenariowith an
optically large body emitting. For instance, in [11] it is argued that such emissionwould violate the second law of
thermodynamics, but is this indeed the case?

In this paper, unlike previous works on related subjects, we consider a theoretical possibility to obtain free-
space omnidirectional super-Planckian radiation from a finitemacroscopic bodywith characteristic radiusa l .
This implies an important question—if there can exist optically large isotropic emitters with effective spectral
emissivity greater than unity, when compared toKirchhoff–Planck’s black body of the same size. In order to
answer this question, we go over the usual assumption that an emitting body is composed of homogeneous
materials with positive permittivities and permeabilities at thewavelength of interest.We show that if these
restrictions are removed, there are no compelling reasonswhy a specially craftedmetamaterial [12] object
cannot produce a higher radiated spectral power at a givenwavelength than the respective black body, evenwhen
object’s diameter is significantly greater than thewavelength.

Moreover, here we prove that the spectral power produced by a double-negative (DNG)metamaterial
emitter can bemade theoretically arbitrary high at any given frequency, independently of the physical size of the
emitter, under the condition that arbitrarily low loss tangent values and arbitrarily high absolute values of the
permittivity and permeability are attainable.When cooled, such objects act as ‘thermal black holes’which
absorbmuchmore power than is incident directly on their surfaces. For instance, in a planewave illumination
scenario, they absorb (theoretically) thewhole infinite power carried by such awave (of infinite extent in space).

We prove that existence of such superemitters (and superabsorbers) contradicts neither the second law of
thermodynamics, nor Kirchhoff’s law of thermal radiationwhen the latter is properly amended. In particular,
we show that the super-Planckian part of the thermalflux in the vicinity of a superemitter is transferred by
resonant tunneling of photons associatedwith high-order, highly reactive spatial harmonics (essentially, dark
modes) of emitter’sfluctuating field. Due to this process, the effective spectral emissivity of such emitter when
compared toKirchhoff–Planck’s black body of the same size is greater than unity. This is physically possible
because effective absorptivity of this object is as well greater than unity,which justmeans that it receives per unit
area of its surfacemore spectral power than aKirchhoff–Planck’s black body of the same radius under the same
conditions.

Note that earlier studies establishing thewidely accepted limitations are based on an assumption that the
ideal Kirchhoff–Planck black body is the ultimately effective absorber. However, such a body perfectly absorbs
only the rays which are falling directly on its surface [1]. Furthermore, wemay recall the known result from the
electromagnetic theory which states that there is no upper limit on the effective area of an antenna, evenwhen
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the physical dimensions of the antenna are constrained [7, 13], and the equivalent results in diffraction theory
[14] and acoustics [6]. In particular, thismeans that a finite-size antenna loadedwith a conjugate-matched load
Z Zload ant*= , where Zant is the complex input impedance of the antenna, in principle, can absorb all the power
carried by a planewave incident from the direction of antenna’smain beam, and thus—for this direction of
incidence—can be infinitelymore efficient in absorption than the ideal black body.

Similarly, the resonant photon tunneling effect which enables super-Planckian radiation occurs when the
emitter is conjugate-impedancematched to a large set of the free spacemodes, including both bright
(propagating) and dark (nearly evanescent)modes. Aswill be seen from the following, this effect is inherently
narrowband due to highly reactive nature of the electromagnetic field associatedwith the darkmodes. Let us
note, however, that narrowband thermal radiation is the key prerequisite for advanced thermo-photovoltaic
systems (TPVS). For instance, reducing relative bandwidth to less than 10%practically eliminates the Shottky-
Queisser limit related to the dissipation of the excessive photon energy in semiconductors [15]. The nearly
monochromatic thermal radiation is the primary target for solar TPVS, where the narrowband thermal emitters
already allow the energy conversion efficiency to approach the thermodynamic limit [16]. Note that in all known
works on solar TPVS the spectralmaximumof this narrow-band thermal radiation is below the conventional
Planckian spectral value [17].

In contrast, when awide-band gain in thermal emission is needed, it can be achieved by covering emitters
with transparent dielectric shells [3], or with shellsmade of hyperbolicmetamaterials [18]. The radiation
enhancement in these cases can be explained by an increase in the Purcell factor associatedwith elementary
sources of thermal radiation placed inside such shells [18]. However, note that such non-resonant, broadband
enhancers which essentially operate as optical collimatorsmay not increase the effective emitter size beyond the
size of the transparent shell itself. Thismeans that the emitted power in such systems never exceeds the power
radiated by a black bodywith the radius equal to the outer radius of the shell. Thus, the thermal radiation flux
produced at the output of the shell is sub-Planckian. Furthermore, thermal radiation from an unbounded planar
interface with a generic photonic crystal has been numerically studied in [19], and the results show that the
power radiated froman infinite planar surface does not go over the black body limit.

Thus, it is important to investigate, both from the theoretical and practical points of view, the possibilities in
realizing omnidirectional thermal super-Planckian emitters and confirm that their existence does not violate
fundamental laws of physics, as well as tofind the required properties ofmetamaterials fromwhich such thermal
superemitters can bemade. These are the goals of this work.

2. The content of this paper

The paper is organized as follows. In section 3we outline the equivalent circuitmodel [20] that we use in
radiative thermal flux calculations. It has been proven [20] that this approach is fully equivalent in its predictive
power to themore common theories operatingwith distributed thermal-fluctuating currents. Using thismodel,
in section 4we consider general conditionswhichmaximize the radiative heat flux between a hot body and its
environment.

In section 5we study the thermal radiation produced by finite-size bodies in free space and introduce the
concept of the ideal conjugate-matched emitter. Such a truly super-Planckian emitter is able to radiate efficiently
to the entire infinite set of free-space photonic states, infinitely outperforming a black body emitter of the same
dimensions.

In section 6we consider planewave scattering on afinite-size body and prove that its scattering, absorption,
and extinction cross sections tend to infinity under the perfect conjugatematching condition of section 5,
independently of the size of the body.

In section 7we show that the second law of thermodynamics is not violated by finite-size emitters with
effective spectral emissivity greater than unity.We also propose an amendment toKirchhoff’s law of thermal
radiation in order to incorporate such emitters into the existing theory.

In section 8we search for a physical realization for the conjugate-matched emitter. A possible realization—
whichwe callmetamaterial thermal black hole—is obtained in the formof a core-shell DNGmetamaterial
structure.

In section 9we consider a couple of such structures with realisticmaterial parameters and estimate their
super-Planckian performance. Finally, in section 10we draw some conclusions.

3. Electromagnetic theory of thermal radiation: circuitmodel approach

The approach of [20] allows one to reduce a full-wave thermal emission problem to a set of circuit theory
problems operatingwith effective fluctuating voltages and currents instead of the electromagnetic fields. This
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approach is based on expanding the emittedfield at a given frequency into a suitable series of linearly
independent, orthogonal spatial harmonics, and characterizing each of these harmonics with the equivalent
circuitmodel parameters, such as complexwave impedance, voltage and current. The electromagnetic
interaction of a hot emitter with the surrounding space can be expressed in this language at each of the
mentioned harmonics with an equivalent circuit shown infigure 1(a). In this circuit, Z1 n( ) represents the
equivalent complex impedance of emitter’s body for a given spatial harmonic of the radiated field, at the
frequency cn l= . Respectively, Z2 n( ) is the equivalent complex impedance of the surrounding space for the
samemode, which, in case of the free space, is simply thewave impedance of the correspondingmode: Z Z2 wº .
The effect of thermalfluctuations in this circuit is taken into account by a pair offluctuating electromotive forces
(EMF) e1 n( ) and e2 n( ).

For example, in a geometry where a body occupying halfspace z 0< emits into empty halfspace z 0>
(figure 1(b)) onemay conveniently expand the radiated field over the set of free-space planewaves (both
propagating and evanescent)with arbitrary transverse wave vectors k kk ,x yt = ( ). Suchmodes split into
transverse electric (TE) (or s-polarized)waves and transversemagnetic (TM) (or p-polarized)waves. Thewave
impedances of thesemodes Z q,w

TE,TM n( ) (where q kt= ∣ ∣) satisfy

Z
q k

Z q k
1

, 1 , 2w
TE 0

2
0
2

w
TM

0
2

0
2h

h=
-

= - ( )

where k 20 0 0pn e m= is the free-spacewavenumber, and 0 0 0h m e= is the free-space impedance.

Respectively, in the equivalent circuit offigure 1(b), Z Z2 w
TE,TM= .

The impedanceZ1 in this case coincides with the input impedance of the halfspace z 0< for a given plane
wave incident from the halfspace z 0> . This impedance can be expressed through the corresponding complex
reflection coefficients TE,TMG as

Z Z
1

1
. 31 w

TE,TM TE,TM

TE,TM

=
+ G
- G

( )

By applying thefluctuation–dissipation theorem (FDT) [21] to the circuit offigure 1(a) onefinds themean-
square spectral density of the fluctuating EMF as follows (in this article we use rms complex amplitudes xν for the
time-harmonic quantities x t( ) defined by x t x tRe 2 exp i2pn= -n( ) [ ( )], where i 1 ;= - therefore,

x x2 2= n∣ ∣ ):

e
T Z

d

d
4 , Re , 4

j
j j

2

n
n= Q( ) ( ) ( )

where T h h k T, exp 1j jB
1n n nQ = - -( ) [ ( ) ] is Planck’smean oscillator energy (here, j 1, 2= ), kB is

Boltzmann’s constant, andTj is the absolute temperature of the emitter (when j= 1) or the surrounding space
(when j= 2). Actually, equation (4) is nothingmore thanNyquist’s formula for the thermal noise in electric
circuits [22]where electrical engineers usually approximate T k T, j jBnQ »( ) . Let us note that relation(4)
implies that the bodies that exchange radiative heat are kept in thermodynamically equilibrium states, which,
strictly speaking, is possible only either when T T T1 2 1,2- ∣ ∣ or under the assumption that the internal thermal
energy stored in the bodies is infinite.

The thermal radiation powerwithin a narrow range of frequencies d 2n n delivered from the side of the
emitter,Z1, to the side of the environment,Z2, is expressed in our formulation (per each spatial harmonic)
simply as

Figure 1. (a)Equivalent circuit of radiative heat transfer between an emitter (represented by the complex impedanceZ1) and its
environment (represented by the complex impedanceZ2). (b)Equivalent circuit for the particular case of an infinitely large hot body
occupying the halfspace z 0< and radiating into the cold free space domain z 0> . In this geometry, under planewave expansion,
the impedance Z Z2 w= is either purely real (for propagating planewaves) or purely imaginary (for evanescent waves).
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In [20] it is proven that such a circuitmodel approach based onmodal decomposition of the thermalfluctuating
field is fully equivalent to themore complicated theories operatingwith distributed fluctuating currents.
However, in contrast to these classicalmethods, our approach allows us to reduce a heat transfermaximization
problem to thewell-known circuit theory problemofmatching a generator with its load.

4.Maximization of emitted power: complex-conjugatematching versus usual impedance
matching

Having at hand an equivalent circuit representation described above, wemay now ask ourselves underwhich
conditions the spectral density of power radiated by a hot body ismaximized?Due to the orthogonality property
of the spatial harmonics used in the field expansion, in order tomaximize the total emissionwe need to
maximize the power delivered by each harmonic separately. As is clearly seen from equation (5), for themodes
with a non-vanishing real part of thewave impedance: ZRe 02 >( ) , the delivered power ismaximized under the
complex-conjugatematching condition: Z Z1 2* = . Under this condition, themaximal possible emitted power
per a spatial harmonic per unit of frequency is, from equation (5),

P
T

d

d
, . 6max

1
n

n= Q( ) ( )

Note that for the spatial harmonics characterizedwith complexwave impedance, the conjugatematching
condition is, in general, different from the zero reflection condition Z Z Z Z 01 2 1 2G = - + =( ) ( ) in the
equivalent circuit offigure 1(a), which implies the usual impedancematching Z Z1 2= . Thus, byminimizing
reflections for thewaves crossing the boundary between the emitter and the surrounding space, one does not
necessarilymaximize the emission! Indeed, the power spectral density under the usual impedancematching
condition Z Z1 2= (inwhat followswe call it simply ‘impedancematching’) attains (equation (5))

P Z

Z
T

Pd

d

Re
,

d

d
. 712 2

2

2
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 

n
n

n
= Q

( ) ( ) ( )

Recall thatZ2 is related to thewave impedance of the surrounding space. Therefore, as soon as this environment
is characterizedwith complex impedance (for example, when the surrounding space isfilled by a dielectric with
loss), an impedance-matched, non-reflecting body—that is the black body in its conventional and intuitive
definition—will not anymore be the one that attains themaximal spectral emissivity.

Let us alsomention one important case when the impedancematching condition is sufficient tomaximize
the power emitted froma body to free space. It is the case when the emitting body is so large that it can be
modeledwith the geometry offigure 1(b). Aswasmentioned in section 3, in this case the basis of orthogonal
spatial harmonics is composed of propagating and evanescent planewaves. Thewave impedances of these
modes are given by equation (2). The evanescent planewaves with q k0> have ZRe 0w

TE,TM =( ) and, thus, in
accordancewith equation (7), do not contribute into the far-field emission at all. The propagatingmodes with
q k0< have ZRe 0w

TE,TM >( ) and ZIm 0w
TE,TM =( ) . Because thewave impedance of thesemodes is purely real,

themaximumemission condition Z Z1 2* = for thesewaves coincideswith the condition Z Z1 2= . Therefore,
the optimal emitter in this case is the half-spacewith zero reflection: 0G = , i.e., the black half-space. This
essentially forbids any far-field super-Planckian emission in such geometries. However, it does not follow from
here that the same conclusionmust hold in geometries involving objects offinite size.

5. Free space far-field thermal emission frombodies offinite size

Let us now focus on geometries involving optically large spherical emitters in free space, or,more generally, any
finite size emitters which completely fit into a sphere of afixed radius r a l=  . An analogous treatment can
be applied to cylindrical emitters.

It is well-known that the electromagnetic field produced by the sources that are fully containedwithin afinite
volume can be expanded (in the space outside this volume) over the complete set of vectorial spherical waves,
definedwith respect to a spherical coordinate system r, ,q j( )whose origin lies within this volume. These
modes split into TEwaves (with E 0r = ) andTMwaves (with H 0r = ), with thefield vectors expressed through
a pair of scalar potentialsU V k r Y, ,lm lm l l

m
0 q jµ ( ) ( ), where Y ,l

m q j( ) are Laplace’s spherical harmonics, and
x xh xl l

1 =( ) ( )( ) , with h xl
1 ( )( ) being the sphericalHankel function of the first kind and orderl. The function
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xl ( ) is also known as the Riccati–Hankel function of the first kind. The TEfield E EEt q j= +q j
ˆ ˆ and the

transversemagnetic field H HHt q j= +q j
ˆ ˆ in thesemodes are related as ZE r Hlm lm lmt, w,

TE,TM
t,= - ´(ˆ ) (see

appendix A), where Z lmw,
TE,TM is thewave impedance of the spherical wave harmonic with the polar index l

(l 1, 2 ,...= ) and the azimuthal indexm (m l0, 1, 2,=   ¼ ), which can be expressed as

Z
k r

k r
Z

k r

k r
i , i . 8lm

l

l

lm

l

l
w,
TE

0

0

0
w,
TM

0

0

0








h h=

¢
= -

¢( )
( )

( )
( ) ( )

Note that thewave impedance of amode depends on the radial distance r and the polar index l, and it is
independent of the azimuthal indexm.We exclude the purely longitudinalmodewith l m 0= = because it
does not contribute into the radiated power.

Wave impedances of spatial harmonics(8) correspond to spherical waves emitted from an object
comprising the point r 0= . For incoming spherical waves (see, e.g., [23]), thewave impedances are expressed
through the Riccati–Hankel functions of the second kind x xh xl l

2 =˜ ( ) ( )( ) , x k r0= , and are equal to the
complex conjugate of the impedances given by equation (8). Suchwaves are also called anti-causal waves,
because they cannot be created just by remote external sources: a presence of a scatterer (which is sometimes
called ‘sink’, as opposed to ‘source’ [23]) in the vicinity of point r 0= is necessary for them to appear.
Nevertheless, it is convenient to use suchwaves to describe the heat transfer from the remote environment to the
body surface (wewill use suchwaves in sections 6 and 7).

The striking difference in the properties of the spherical wave harmonics as compared to the planewave
harmonics discussed in the last paragraph of section 4, is that thewave impedance(8) has a non-vanishing real
part ZRe 0lmw,

TE,TM >( ) for the harmonics with arbitrary high indices l andm. Therefore, there are no fully

evanescent waves among the spherical wave harmonics: eachmode, whatever high index it has, contributes into
the farfield.Hence, based on the results of section 4, wemay conclude that at any givenwavelength there is a
possibility to satisfy conjugatematching condition for the entire spectrum of spherical waves that are emitted by a
bodywith afinite radius. In this case, a special emittermust be craftedwhichwill provide the input impedance

Z Z lm1 w,
TE,TM *= ( ) for all themodes with arbitrary indices l andm.We postpone the discussion of this realization

until section 8.
Under such perfect conjugatematching condition, the total power (per unit of frequency) emitted by the

body at a givenwavelength (with both TE andTMpolarizations taken into account) satisfy

P
T

d

d
2 , , 9

l m l

l
tot

1
1å ån

n= ´ Q  ¥
=

¥

=-
( ) ( )

i.e., it grows infinitely. Thus, at least from a purely theoretical point of view, there is no upper limit on the power
spectral density of the far-zone thermal radiation produced by a body of a constrained radius at a given
wavelength.Note that in this considerationwe did notmake any assumptions regarding the radius-to-
wavelength ratio or the internal structure of the body.

In order to understand this result, let us compare the perfect conjugate-matched case of equation (9)with the
case when the emitter is simply impedancematched, which is expressed in our equivalent circuitmodel by the
condition Z Z Z lm1 2 w,

TE,TM= º . Under this condition, the power spectral density per a single spherical harmonic
can be expressed from equation (7), which leads to

P Z

Z
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d

d
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p l m l

l
lm

p

lm
p

tot

TE,TM 1

w,

w,

2

1
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⎝
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⎞

⎠
⎟⎟å å ån

n= Q
= =
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where the index p TE, TM= labels the polarization. The factor F Z ZRelm lm lmw,
TE,TM 2

w,
TE,TM 2

= ( ) on the right-

hand side of equation (10) is close to unity for l N a2max p l= and decreases to zero very rapidly when
l Nmax> . This is illustrated infigure 2. The reason for this is that in the spherical waveswith l Nmax> the
electromagnetic energy in the vicinity of emitter’s surface ismostly concentrated in the near fields (reactive
fields)which decay faster than r1 with distance and, thus, do not contribute into the far field. Respectively, the

wave impedance of these waves is such that Z ZRe Imlm lmw,
TE,TM

w,
TE,TM( ) ( ) , which results in the emissivity cut-

off at about l Nmax» . The same cut-off can be explained also by the fact that on the surface r a= , a spherical
wave harmonic with an index l 1 forms awave patternwith the characteristic spatial period t a l2p» .
Therefore, when l a2p l> , this period is less than thewavelength so that thementionedmode behaves at the
surface r a= similarly to an evanescent planewave.Note that such a cut-off is not present under the conjugate
matching condition Z Z1 2*= , because in this case the reactive components inZ1 andZ2 have opposite signs and
compensate one another, i.e., the conjugatematching condition is essentially the resonant condition in the
equivalent circuit offigure 1(a).

6

New J. Phys. 18 (2016) 013034 S IMaslovski et al



Therefore, when dealingwith an impedancematched emitter, wemay approximate Flm by unity when
l Nmax , and by zerowhen l Nmax> when N a2 1max p l=  . This excludes themodeswith l Nmax> from
summation(10), andwe obtain the following closed-form expression for the power spectral density:

P
T N N

h
h

k T

d

d
2 , 2 2

exp 1
. 11

l

N

m l

l
tot

1
1 max max

B 1

max

å ån
n

n
n

= ´ Q = +
-= =-

( ) ( ) ( )

From this formula, by substituting N a2max p l= and taking into account that N 1max  , we get

P a h
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Recognizing a4 2p as the area of the spherical surface, we obtain from equation (12)

P
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h

c h

k T

d

d d

2 1

exp 1
, 13

2
tot
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2

B 1

n
p n

n
=

-
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which coincideswith the amount of power (per unit frequency and unit area) emitted by a black body sphere
kept under temperatureT T1= : P S B Td d d2 n p= n( ) ( ), where B Tn ( ) is Planck’s black body spectral radiance.

Thus, an optically large impedancematched body is equivalent in its emissive properties to Planck’s black
body. This is expected, because such a body is typically understood asmade of a black, non-reflectingmaterial
with impedancematched to the free-space impedance at arbitrary angles of incidence. Black bodies offinite size
modeled as apertures inwalls of large opaque cavities also behave similarly, due to the fullmatch between the
domains inside and outside the cavity.

It is instructive to relate the number of independent spherical harmonics intowhich a hot body can emit
with the number of photonic states in free space. Let a spherical bodywith radius a l be situated in vacuum,
and consider a free space gapwith thickness h (an empty spherical layer) adjacent to it such that h al   .
Then, the number of photonic states within this gapwhich transfer energy away from the body is

N a h Dd
1

2
4 d , 14ph

2 3p n» ´ ´ ´ n( ) ( )( )

where D c83 2 3pn=n
( ) is the photonic density of states in vacuum.

The same quantity can be also expressed by counting independent spherical waves within the same gap:

N N N h Dd
1

2
2 2 d , 15ph max max

1 n» ´ + ´ ´ n( ) ( )( )

where N 1max  is themaximal spherical harmonic index up towhich the body emits efficiently, and
D c41 =n

( ) is the one-dimensional photonic density of states.
By comparing equations (14) and(15)wefind that N a2max p l» , i.e., the same limit as for a black body.

However, note that, by definition, the photonic density of states in vacuumaccounts only for the states which
correspond to propagatingwaves, i.e., to real photons. Evanescent waves—which correspond to virtual,

Figure 2.Emissivity factor Flm as a function of the spherical harmonic polar index l for emitters with normalized radii k a 200 = (blue
linewith empty circles), k a 300 = (red linewith empty squares), and k a 400 = (green linewithfilled squares). The value of this factor
is the same for TE andTM-polarizedwaves, and does not depend on the azimuthal indexm.
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tunneling photons—are not accounted in such description. Respectively, emission above the black body limit is
possible only by such tunneling. For instance, radiating in amodewith index l Nmaxk= , where 1k > , must
involve photon tunneling from the body surface at r a= to the distant surface r ak= , where there is an
available photonic state for it. Due to this process, the radiative heat fluxwill be super-Planckian in the range of
radial distances a r ak< < . At distances greater than ak , the radiationfluxwill remain sub-Planckian in the
sense that its spectral density does not exceed the one produced byKirchhoff–Planck’s black bodywith
radius r ak= .

Thus, the conjugate-matched body can emit significantly higher power per unit of area and per unit of
frequency as compared to Planck’s black body of the same size only because the conjugatematching condition
tunes the emitter at resonancewith high-ordermodes, due towhich thesemodes are excitedwith a very high
amplitude. Although thesemodes are essentially darkmodes (because they are veryweakly coupled to free space),
the resonance greatly increases probability of photon tunneling fromone of such states at emitter’s surface to a
propagating free space state at some large enough radial distance. Obviously, such a resonant photon tunneling
effect is not possible with a bodymade of a simple absorbingmaterial.

Finally, let us note that the conjugatematching condition at an emitting spherical surfacemathematically
coincides with the zero-reflectance condition for the anti-causal spherical waves incident on the same surface
(see section 6 formore detail). In such picture, the conjugate-matched emitter stands out as a perfect sink for
thesewaves. The energy transferred by suchwaves is totally absorbed at emitter’s surface without any reflections.
Thus, forfinite size emitters, onemight try to amend the definition of the ideal black body in such amanner that
it would refer to the conjugate-matched emitter rather than to the impedancematched one.One, however,
would have to accept in this case that such a redefined ideal black body is characterized by infinite effective
absorption cross section independently of its real, physical size. This point is discussedwithmore detail in the
next section.

6. Scattering, absorption, and extinction cross sections offinite size bodies under
conjugatematching condition

The scattering, absorption, and extinction cross sections at a given frequency are, by definition

P P P
, , , 16sc

sc

inc
abs

abs

inc
ext

ext

inc

s s s=
P

=
P

=
P

( )

where Einc 0
1

inc
2hP = - ∣ ∣ is the power flowdensity in an incident planewavewith the given frequency, and Psc,

Pabs, and P P Pext sc abs= + are, respectively, the amounts of power scattered by the body, absorbedwithin it, and
extracted by it from the incident field.Without any loss in generality, wemay assume that the incident wave is
propagating along the z-axis, and is linearly polarized: E k zE x exp iinc

inc 0= ˆ ( ).
As is well known, an incident planewave can be expanded into vectorial spherical waves. The notations for

suchwaves vary a lot in literature, but when reduced down toRiccati–Bessel functions and derivatives of the
Laplace spherical harmonics the expansion can bewritten as follows (only the electric field component
transverse to r r r=ˆ ∣ ∣ is of our interest):
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were x xj xl l =( ) ( ) is the Riccati–Bessel function of thefirst kindwith j xl ( ) being the spherical Bessel function
of the first kind and order l, and rrt =  - ¶ ¶ˆ( ). In the inner summation overm the index acquires just two
values: m 1= - and m 1= . Thefirst term in the square brackets of equation (17) proportional to k rl 0 ( ) is due
to the TE-polarized spherical waves and the second one proportional to the derivative of the same function is
due to the TM-polarized part of the spectrum. These two contributions aremutually orthogonal.

Note that the Riccati–Bessel functions in expansion(17) are simple superpositions of the Riccati–Hankel
functions xl ( ) and xl̃ ( ) (of course, the same refers to their derivatives):

x
x x

x
x x

2
,

2
. 18l

l l
l

l l
 


 

=
+ ¢ =

¢ + ¢
( ) ( ) ˜ ( ) ( ) ( ) ˜ ( ) ( )

Therefore, in the planewave expansion(17) there are two types of spherical waves—leavingwaves propagating
towards r = ¥ and incoming ones propagating towards r 0= , having exactly the samemagnitudes. Thus, the
incident wave expansion(17) is essentially an expansion over standing spherical waves. This is not surprising, as
the net power flow through any closed surface (with no enclosed scatterers!) vanishes for any planewave. This
explains our earlier remarks regarding the anti-causality of incoming spherical waves. So, thesewavesmay not be
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excited exclusively by remote sources alone. Even though suchwaves seem to arrive from r = ¥, they become
separated from their causal pair only due to scattering on an object located in the vicinity of the point r 0= . The
scattering destroys the perfect balance between leaving and incomingwaveswhich exists in the incident field.

Hence, the expansion(17) can be seen as composed of the counter-propagating TE- andTM-polarized
spherical waves with indices l 1, 2,= ¼andm=−1, 1, andwith complex amplitudes
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wherewe use letterA to denote waves propagating towards r 0= , and letterB for the oppositely propagating
ones. In these notations
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Anobject located in the vicinity of the point r 0= perturbs the balance of the incoming and the outgoing
spherical waves, resulting in non-vanishing Psc and Pabs, and 0sc, abss ¹ . The closed-form expressions for these
quantities are derived in appendix B. Although similar derivations can be found inmany sources on optical
scattering, in appendix Bwe use our original impedance-based formalism,which allows us to relate the
scattering theory results to the results of our equivalent circuitmodel in themost naturalmanner.

The normalized scattering cross section is obtained based on the results of appendix B and reads
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where the reflection coefficients lm
TE,TMG̃ are given by equation (B.6).

For an ideally conjugate-matched body, Z Zlm lm1,
TE,TM

w,
TE,TM *= ( ) (here, Z lm1,

TE,TM has absolutely the same

meaning asZ1 in the equivalent circuit offigure 1(a)), therefore, as it follows from equations (B.6) and(B.2),
0lm

pG =˜ . Hence, in this case
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Note that our derivation remains validwhen k a 10  , thus, wemay conclude that even for optically large
bodies, the scattering cross section is not limited by the geometric cross section and can be arbitrary high.
Moreover, because the total power associatedwith an incident planewave is infinite, the power scattered by an
object can also be arbitrary high.

Ourmodel allows us to conclude also that an optically large bodywith radius r a= made of an absorbing
material with characteristic impedance close to that of free spacewill behave similarly to the impedancematched
body considered in section 5.Namely, for such a body, 0lm

pG »˜ formodeswith l N a2max p l= , N 1max  ,

and 1lm
pG »˜ for themodeswith l Nmax> . Respectively, the normalized scattering cross section of such a body is
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i.e., its scattering cross section coincides with the geometric cross section.
The absorption cross section is derived in appendix B and satisfies
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Note the apparent similarity of the terms under summation(24)with equation (5). From equation (24) one can
see that because a perfectly conjugate-matched body is characterizedwith 0lm

TE,TMG =˜ , the absorption cross
section of it is infinite, similarly to the scattering cross sectionwe have found earlier. It is also directly seen that
the conjugatematching conditionmaximizes the summation terms in equation (24). Analogously towhat have
been done earlier, onemay verify that the absorption cross section of a large impedancematched body is

aabs sc
2s s p= = . Finally, the extinction cross section of an arbitrary body can be found from equation (21) and

(24) as ext sc abss s s= + .
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To concludewith the study of this section let us try to analyze (now from the point of view of scattering
theory)what propertymakes it possible to achieve the values of the normalized absorption cross sectionsmuch
greater than unity, which, reciprocally, increases in the same proportion the effective spectral emissivity of a
body. In order to do this, let us consider the behavior of the incident field expansion(17)within the spherical
domain r a . Although all terms in expansion(17) produce a non-vanishing contributionwithin this region,
the dominant contribution is due to themodeswith polar indices l such that l k a a20 p l= .Mathematically,
this can be seen from the asymptotic behavior of Riccati–Bessel functions xl ( ) at small values of argument:

x x l2 3 2l
l 1 p~ G ++( ) ( ) [ ( )] (here, zG( ) is theGamma-function; this asymptotic is valid up to x l2  ),

therefore, themodeswith l k a0 quickly decay in this regionwhen x k r0= approaches zero. Figure 3 shows
the radial behavior of a few spherical standingwaves in the vicinity of this region.

This demonstrates that when an object such as, for example, a ballmade of some absorbingmaterial is placed
in the region r a< it willmostly interact with themodes with the indices l k a0 . Thus, the power transport
from the remote environment to this object will bemediated by thesemodes dominantly. Reciprocally, when the
object is the source of thermal radiation, the fluctuating currents in the object will excite the same set ofmodes,
so that only themodeswith l k a0 will participate in the reversely directed heat transport. However, it is not
hard to imagine that a specially crafted body can be forced to interact alsowith the higher ordermodes with
l k a0 , because, besides beingweak, thesemodes nevertheless penetrate into the region r a< . The strongest

interaction is achieved at the resonant condition Z Zlm lm1,
TE,TM

w,
TE,TM *= ( ) , whichmaximizes the terms of

summation(24). Thus, the physical reason for the increased interaction is this resonance.

7. Implicationswith regard to second law of thermodynamics andKirchhoff’s law of
thermal radiation

Onemay think that the result of section 5—which essentially states that a body of an optically large butfinite size
may emit, theoretically, arbitrarily high power per unit of frequency and per unit of area—contradicts the
second law of thermodynamics. For instance, earlier claims of super-Planckian thermal radiation fromphotonic
crystals were rebutted in [11] on this ground (wediscuss this reference inmore detail later in this section). This
is, however, not our case. From the equivalent circuit offigure 1(a) it is immediately understood that the
conjugatematching condition thatmaximizes the radiated power, at the same timemaximizes the power
delivered from the environment back to the emitting body, i.e., the optimal heat emitter is at the same time the
optimal heat sink! The same conclusion can be drawn from the results of section 6, in whichwe have
demonstrated that the absorption cross section of a body ismaximized under the same conjugatematching
condition. Therefore, the conjugatematching condition preserves the balance of radiative heat exchange

Figure 3.Radial dependence functions xl ( ) for l 20= , 40, 60, and 80.Note that these functions decay quickly to zero for x l< ,
when x approaches zero.
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between the body and its environment whenT T1 2= . The symmetry of the equivalent circuit (a consequence of
the reciprocity principle), actually, simply forbids obtaining fromour theory any result that would violate such
thermodynamical heat exchange balance. On the other hand, from the same circuit it immediately follows that
whenT T1 2¹ the net radiative heatflow is always directed from the sidewith higher temperature to the sidewith
lower temperature.

In order to study implications of our theory with regard toKirchhoff’s law let us inspect how large is the
power Pd inc associatedwith an incoming spherical wave incident from the the side of the remote environment

(kept at temperatureT2), in a general scenariowhen the input impedance of the body Z Z lm1 w,
TE,TM *¹ ( ) . The

environment—free space in our case—is characterized by impedance Z Z lm2 w,
TE,TM= .

The expression for the power Pd 21 received by the body from the environment is readily obtained from the
equivalent circuitmodel:
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˜ is the power reflection coefficient of this wave at the body surface. Thus, by

combining equations (25) and(26), we obtain
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The above result shows that in a free space environmentfilledwith thermal-fluctuating electromagneticfield
characterizedwith temperatureT 02 > every spherical harmonic propagating towards thepoint r 0= delivers the
same amount of heat power: P Td , dinc 2n n= Q( ) . Thus, the amount of power transported by all such harmonics
with arbitrary indices l andm to an object comprising thepoint r 0= is infinite. Kirchhoff–Planck’s black bodies
and ordinary absorbers reflectmost of this incident power: only thepower deliveredby the incidentmodeswith
l Nmax (see section 6) can be efficiently receivedby such bodies. Reciprocally, they radiate back only into the
same limitednumber of outgoingmodes.On the contrary, an ideal conjugate-matchedbody is theoretically able to
receive thewhole infinite power deliveredbyall such incidentwaves, aswell as to radiate it back.

Comparing equation (27)with equation (5)whenT T T1 2= = wemaywrite

P
T

d
, d , 2812

a
n n= Q( ) ( )

where
Z Z

Z Z
1 1 2

1 2

2*
a = -

-
+

. Equation (28) is a generalization of Kirchhoff’s law of thermal radiation. Indeed,

the dimensionless parameter 1a r= - ˜ has themeaning of absorptivity of the body for a given spatial
harmonic; Pd 12 is the emitted power at the same spectral component; and the ratio of these two quantities is a
universal function of just frequency and temperature. Note that unlike the classical law of the same name,
equation (28) is written for a single component of the spatial spectrumof the radiated field. Thus, equation (28)
complements the principle of detailed balance bymaking it applicable to separate spatial harmonics of the
radiatedfield.

Thus the classical Kirchhoff law of thermal radiation, which states that: ‘for a body of any arbitrarymaterial,
emitting and absorbing thermal electromagnetic radiation at everywavelength in thermodynamic equilibrium,
the ratio of its emissive power to its dimensionless coefficient of absorption is equal to a universal function only
of radiationwavelength and temperature, which describes the perfect black body emissive power,’will hold for
any emitter—being optically small or large, including the ones characterizedwith abss much greater than their
geometric cross section,—if we disregard the intuitive definition of the perfect black body as an ‘ultimate
absorber’which attains the absolutemaximum in absorbed spectral power (as compared to all other bodies with
the same dimension), in favor of defining the ideal black body just as an abstract objectwhose emissive poweris
determined solely by Planck’s law. Indeed, a conjugate-matched body receives from the environment and
absorbs amuch greater spectral power than the conventional black body of the same size, so that its effective
spectral absorptivity relative to the black body ismuch greater than unity: a 1abs

2s p ( ) (see section 6).
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Finally, let us consider a thought experiment described in [11], where a presumably super-Planckian thermal
radiator exchanges thermal energy with an ideal black body located in far zone. If both objects are infinite in
spatial extent (two parallel infinite slabs), super-Planckian far-field radiation is impossible, as we have proven in
section 4, and there is no need for thermodynamic considerations to prove that again. On the other hand, when a
pair offinite-size bodies are separated by a distance significantly greater than d max ,abs,1 abs,2s s p= ( ) the
heat exchangeflux is also sub-Planckian.

Next, by considering the case of twofinite-size bodies separated by a distance smaller than d but stillmuch
greater than thewavelength, we note that consideration from [11]would assume in this case that the black body
perfectly absorbs all incident power, while its radiation is, naturally, restricted by the Planck law of black body
radiation. This assumption, obviously, implies a violation of the second law of thermodynamics, because it
violates the reciprocity of the heat exchange.

However, as we have shown above, Kirchhoff–Planck’s black body perfectly absorbs only the fully
propagating part (ray part) of the incident spatial spectrum. The higher-order spherical harmonics incident on
the black body surface which are responsible for the super-Planckian part of the radiative heat, are reflected from
its surface, and only the ray part is ideally absorbed and re-emitted by the receiver. Under thermal equilibrium
this prevents the black body from receivingmore thermal power from the neighborhood than it emits to the
same neighborhood.

Therefore, when the two bodies have the same temperature, there is no net heatflowbetween them, and
the second law of thermodynamics is not violated. One can say that theNature avoids such violation by totally
reflecting the photonswhich cannot be re-emitted by the receiving body.On the other hand, there is no
limitation for emission of those photons into free space froma conjugate-matched emitter which interacts
resonantly with the entire infinite spectrumof outgoing spherical waves. Such emission is possible because for
such ideal emitters all photonic states in the surrounding empty space are available, by the process of resonant
photon tunneling discussed in section 5.

It is instructive to note here that in the above scenario it is still possible to realize a super-Planckian heat
exchange between an ordinary body (i.e., a real bodywith loss, as opposed to the ideal Kirchhoff–Planck’s black
body discussed above) and a specially crafted bodywhich is conjugatematched to themodified environment
which takes into account the presence of the first body, i.e., in this case the conjugate-matched emittermust be
designed so that itmaximizes the probability of photon tunneling between the two bodies. Because the tunneling
process is reciprocal, the second law of thermodynamics is not violated although the ordinary bodywill emit
above Planck’s limit in this scenario.

8. Conjugate-matchedDNGsphere:metamaterial ‘thermal black hole’

Let us nowdiscuss the practical implications of our theoretical findings. It is clear that realizing conjugate
matching condition forwaves with polar index l a2p l> in a practical thermal emitter is impossible in
emitters formed by homogeneous dielectrics ormagnetics with positive constitutive parameters. For such
materials, the standard arguments of [4] apply.

Hence, herewe shall investigate if amagneto-dielectric sphere filled by amaterial with less restricted
parameters e and m (e.g., ametamaterial) can be used in realization of the conjugate-matched emitter. It is
known that the complex permittivity and permeability of a passivematerial at a given frequency can have either
positive or negative real parts, while the sign of the imaginary part is fixed: Im , 0e m( ) . Because our goal is to
realize an omnidirectional emitter, thematerial parameters e and mmay depend on r, but should not depend on
the anglesj and θ. Thus, we are ought tofind such re ( ) and rm ( ) that willmake the input impedance of a sphere
made of thismaterial to become equal to the complex conjugate of impedance(8) for spherical harmonics with
arbitrary indices.

In order to do that wefirst solve an auxiliary problem:withwhich uniformmaterial shouldwefill the domain
r a> , so that the input impedance of this domain becomes the complex conjugate of(8)? The answer to such a
question can be obtained from equation (8) generalized for the case when , ,0 0e m e m¹ , which reads
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Consider the properties of the radial function xl ( ) and its derivative:

x x x x1 , 1 , 31l
l

l l
l

l
1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦* *   - = - ¢ - = - ¢+( ) ( ) ( ) ( ) ( ) ( ) ( )

which holdwhen xIm 0( ) .When e and m are such that 1 i tan0e e d= - -( ∣ ∣), 1 i tan0m m d= - -( ∣ ∣)
with loss tangent tan 0d ∣ ∣ , the refractive index becomes n 10 0em e m=  -( ) , andwe obtain
from(29)–(31) for the input impedance of the domain r a> filledwith suchmaterial:
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which is exactly the complex conjugate of thewave impedance(8).
However, we need to obtain such result not for the input impedance of the domain r a> , but for the input

impedance of the domain r a< occupied by the emitter. Hence, we need to amend the above consideration
somehow so that it applies to the domain r a< . This can be achieved by applying a proper coordinate
transformation to theMaxwell equations. Such transformation shouldmap the domain r a> into the domain
r a< while preserving the field equations in their usual form. The latter ensures that after such transformation
the input impedance of the transformed domain coincides with the one for the original domain: Z Zr a r a=< > .

The transformationwith the required properties is r a r2 derived in appendix C. Indeed, under this
transformation, r r a r2 2¶ ¶ - ¶ ¶ ( )( ) and r r-ˆ ˆ . Because rrt =  + ¶ ¶ˆ( ), where

r1 sint
⎡⎣ ⎤⎦q jq q j = ¶ ¶ + ¶ ¶( ) ˆ ( ) ( ˆ )( ) , the nabla operator transforms as r a2 2  ( ) . This effectively

transforms thematerial parameters of a uniformmagnetodielectric to a r2 2e e ( ) and a r2 2m m ( ) , while
preserving the usual formof theMaxwell equations (see appendix C formore detail).

Therefore, a spherical emitter with radius r a= made of aDNGmetamaterial with parameters

r
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r
1 i tan , 330
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2
e

e
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1 i tan 340

2

2
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m
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will have the input impedance Z Zr a1 º < coincident with equation (32)when tan 0d ∣ ∣ . Note that this

impedance approaches Z lmw,
TE,TM *( ) arbitrarily closely when tan 0d ∣ ∣ , formodes with arbitrary indices. Thus,

an emitter filled by amaterial with parameters(33) and(34) constitutes a physical realization of the conjugate-
matched emitter introduced in section 5.

A similar profile of r r1 2e µ∣ ( )∣ was used in the theoretical [24] and experimental [25, 26] papers where all
thematerials have positive real parts of the permittivity and permeability. This leads to a spherical object which
theoretically fully absorbs all rays incident on its surface, that is, behaves as a Kirchhoff black body. In contrast to
our proposed bodywhose absorption cross section is theoretically infinite, the absorption cross section of the
‘optical black holes’ described in [24–26] equals to the geometric cross section of the body. A quasistatic case in
which a cylindrical body appears having a larger radius than its physical radius was considered in [27].

Following the same terminology, wemay designate a body characterizedwith the parameters (33) and (34) as
ametamaterial ‘black hole’.With this, we emphasize the property of this object to intercept rays of light which
are not incident directly on its surface. Due to this feature, such an object has an effective radius of ray capture
(kind of ‘Schwartzschild radius’)which can bemuch greater than the geometrical radius of the body. Indeed, as it
has been found in section 6 an ideal conjugate-matched object has infinite absorption cross section,
independently of its geometric size. In this idealistic scenario any incident raywould end up being absorbed by
such an object and thus its effective ‘Schwartzschild radius’would be infinite. In addition, because our black hole
emits light when heated up, and also because it behaves as an ideal radiative heat sinkwemay aswell attach a label
‘thermal’ to its name.

Note however that due to the inevitable dispersion of theDNGmedium, our thermal black hole is not ‘black’
in the usual optical sense, as its absorption is frequency dependent. A practical realization of theDNG
superabsorber that uses only passivemedia is bound to operate only within a narrow band close to the resonant
frequency of the equivalent circuit offigure 1(a), at which the conjugatematching condition is satisfied. In
appendixDwe estimate the relative bandwidth of operation in such a regime, which happens to be determined
by the value of tan d∣ ∣.

Although, theoretically, tan d∣ ∣can be arbitrary small while still allowing for a non-vanishing loss within the
emitter (which is the necessary condition for thermal emission to occur), in practice, tan d∣ ∣ is alwaysfinite.
Moreover, close to the core of the emitter the parameters(33) and(34) are divergent: ,e m  ¥∣ ∣ ∣ ∣ , when
r 0 . These factors limit the number of spherical harmonics of the radiated field forwhich the conjugate
matching condition can be fulfilled in practice. Additionally, it is easy to show that in the vicinity of the core
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region r a0» the spatial granularityΔ of theDNGmetamaterial should not exceed, roughly, a N0 maxp , where
Nmax is the highestmodal index lup towhich the conjugatematching condition has to be fulfilled. Namely, in
order to achieve the emissivity gain value a Gabs

2s p º( ) , the spatial granularity of theDNG sphere in this
regionmust be less than a a G2 0lD » ( )[ ( )].

Therefore, the situation represented by equation (9) can never be achieved in an experiment. One, however,
can still expect a significant increase in the emitted power for emitters with parameters resembling those of
equations (33) and(34), especially, for emitters characterizedwithmoderate values of the ratio a l. For such
emitters we can have aabs

2s p , while still abss < ¥.Wemay still designate thesemore realistic objects as
‘black holes’ in our fancyway of giving names, however, the effective ‘Schwarzschild radius’ reff abss p= of
these holes will befinite.

Let us study the case a2
absp s < ¥ inmore detail and obtain an expression for the effective absorption

cross section of a core-shellmetamaterial emitter with parameters re ( ) and rm ( ) that follow equations (33)
and(34)within a spherical shell a r a0 < < , andwith uniformparameters ac 0e e= ( ), ac 0m m= ( )within the
core r a0< (see figure 4). The loss tangent of theDNGmetamaterial is assumed to befinite, but small:
0 tan 1d< ∣ ∣ . Note that there is also another possibility of realizing the necessary level of absorption in the
metamaterial black hole: wemay choose tan 0d ∣ ∣ within the region a r a0 < < , and concentrate all the loss
in the core region r a0< with a high value of tan d∣ ∣.

Let us denote the input impedance of emitter’s core for a given spherical harmonic by Z lmc,
TE, TM. This

impedance can be calculated as
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These relations are analogous to the expressions for the impedance of the incoming spherical waves, with the
radial dependence function xl̃ ( ) replaced by xl ( ). Next, the input impedance of thewhole emitter can be
expressed as

Z Z
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where Z lm
p

11, , Z Zlm
p

lm
p

12, 21,= , and Z lm
p

22, , p TE, TM= , are the equivalentZ-matrix parameters of the spherical
shell a r a0 < < for the same spherical harmonic. By using the equivalence between the shell region and the
domain a r a a2

0< < under the transformation r a r2 , these parameters can be calculated fromknown
formulas forZ-parameters of uniformly filled spherical shells (see appendix A).

The absorption cross section can nowbe calculatedwith the help of equation (24). It can be easily checked
that for a bodywith r r0 0e e m m=( ) ( ) (which is our case), lm lm lm

TE TMG = G = G˜ ˜ ˜ . Also, due to emitter’s symmetry
these reflection coefficients are independent of the azimuthal indexm. Therefore, from equation (24)we obtain
the following expression for the absorption cross section:

Figure 4.Geometry of the spherical core-shell emitter composed of a core with radius r a1 0= filledwith a uniformmaterial with
permittivity ce and permeability cm and the shell with radius r a2 = filledwith aDNGmediumwith radially dependent parameters

re ( ) and rm ( ) given by equations (33) and(34). The core parameters arematchedwith the shell parameters at r a0= : ac 0e e= ( ),
ac 0m m= ( ).
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inwhich the impedances need to be calculated just for a single polarization (it does notmatter for which). The
numerical results obtainedwith the help of equation (38) are presented in the next section.

9.Numerical results

Weconsider the core-shell emitter depicted infigure 4. The shell has the inner radius r a1 0= and the outer
radius r a2 = and is formed by aDNGmetamaterial with parameters given by equations (33) and(34). The core
material has the parameters rc 1e e= ( ) and rc 1m m= ( ). As shown in section 8, the normalized absorption cross
section aabs

2s p( ) of such a bodymust growwithout limit when tan d and the ratio r r1 2 both tend to zero. In
this sectionwe study numerically how fast is this growth and also identify how large the absorption cross section
can become under typical practical limitations.

For the following it is crucial to note that the limiting behavior of abss when tan 0d  and r r 01 2  is
governed by both these parameters together. Thus different limits can be achieved depending on the relation
between these parameters. For instance, it is trivial to see that for anyfixed ratio r r1 2, lim 0

tan 0
abss =

d
, which is

very far from the desired result! However, when tan d isfixed and the ratio r r1 2 varies, our numerical analysis
shows that the limiting behavior of abss changes drastically. For the core-shell emitter characterizedwith
k a k r 300 0 2º = (which is optically a relatively large object with circumference of 30wavelength) this situation
is depicted infigure 5(left).

From thisfigure one can see that when the core radius r1 decreases and the ratio r r2 1 increases, the body
absorption cross section grows atfirst (with some oscillations related to the thickness resonances within the
core-shell) and later stabilizes at a level determined by the fixedmagnitude of the loss tangent. The tendency is
such that at a smaller tan d∣ ∣ the achievable abss is higher, but the core radius value required for this becomes
smaller and smaller when the loss tangent decreases.

In this way, arbitrary high values of the normalized absorption cross section can be achieved provided tan d
and the core radius are decreased together. For instance, infigure 5(right)weplot the dependence of abss on the
inversemagnitude of tan d under the condition that the product r r tan2 1 d( )∣ ∣ is kept constant. In this
numerical case, when the parameter tan 1d -∣ ∣ grows, the parameter r r2 1 increases in the same proportion,
which results in amonotonic growth of the normalized absorption cross section.

However, results depicted infigure 5 show that growth of aabs
2s p( ) is very slow. Although the normalized

absorption cross section can theoretically growwithout limit provided suitably small values of the parameters
r r1 2 and tan d∣ ∣are chosen, in practice the range of varying these parameters is limited. For instance, considering
operating at wavelengths on the order of 100 μm, the parameter r r2 1 can probably atmost reach 106, because
higher values of this parameter would correspond to unrealistically small radii of the inner core (on the order of
1 nm). As is seen from figure 5 (left) in order tomaximize absorption in this case the loss tangent in theDNG
shellmust be decreased down to10 8- , which is impractical. On the other hand, attainable loss tangents values
tan 10 4d > -∣ ∣ , keep the normalized absorption cross section below 2 (when k a 300 = ).

Figure 5. Left: normalized absorption cross section aabs
2s p( ) of theDNG core-shell emitter shown infigure 4 as a function of the

ratio r r2 1, for a set offixed values of tan d∣ ∣ indicated in the plot. Right: normalized absorption cross section as a function of the
inversemagnitude of tan d∣ ∣, under the condition that the product r r tan2 1 d( )∣ ∣ isfixed to the value indicated in the plot. In all these
numerical examples, k a k r 300 0 2º = .
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To study these limitations further, we consider the following two numerical examples. In the first example,
we set r r 102 1 = , and, respectively, re ( ) and rm ( ) varywithin the shell such that

r r r r 101 2 1 2
2e e m m= =( ) ( ) ( ) ( ) .We calculate the normalized absorption cross section(38) for a set of k a0

values ranging from k a 100 = up to k a 1000 = with a step k a 100D = . In this range, emitter’s circumference
varies in the range from 10l up to 100l, which indicates that we deal with an optically large body. The values of
the loss tangent are optimized at each k a0 value (using a numerical optimization procedure) in order to
maximize the normalized absorption cross section at each point. The result of this calculation is presented in
figure 6.

In the second numerical example we set r r 1002 1 = (i.e., in this case the core is ten times smaller) and repeat
the same procedure (seefigure 6).We observe that for k a 100 = in thefirst example with r r 102 1 = , the
normalized absorption cross section a 2abs

2s p >( ) , whichmeans that at this point theDNGcore-shell emitter
is performing at least twice better than a black body emitter. Note that such a result is achieved at a loss level
tan 10 2d » -∣ ∣ which is significantly less than in typical optical absorbingmaterials.

In the literature we could notfind any examplewhere the absorption cross sectionwould be claimed
exceeding the geometric one for such a large object. Inwork [9] targeted tomaximization of the ratio of the
absorption cross section to the scattering cross section it is stressed that the goal is achievable for optically small
particles. Though the authors of [9]utilize a similar concept, they combine it with the plasmon resonance of a
core-shell particle. Therefore, their particle with a 2 ... 4abs

2s p ~( ) ought to bemuch smaller (k a 10 < ) than
ourDNG sphere. Figure 7 shows the power flux density (the Poynting vector) inside and outside theDNGcore-
shell object under planewave incidence as defined in section 6.Note that the power flux density in regions inside
this object ismuch higher than in the outside region, which confirms that ametamaterial thermal black hole is
able to greatly concentrate the incident power flux.

The behavior of the Poynting vector at the left and right sides of the body [i.e., close to the points
y z a, , 0= ( ) ( )] is especially peculiar: theflux inside the object is directed oppositely to the incident flux, as if
some powerwere received from the region of geometric shadowbehind the object. Similar behavior was
observed inDNGmetamaterial waveguides and resonators [12]. One can also see fromfigure 7 that the shadow
region has a larger diameter as compared to the diameter of the bodywhich results in aabs

2s p> . The situation
improves evenmorewhen the radius of the core ismade smaller. The samefigure also demonstrates the case
with a very small value of the loss tangent inDNG shell region, when all the loss is concentratedwithin the core.
In this case, amuchmore pronounced effect is obtained: the shadow size is about twice the size of the body.

In the second example offigure 6with r r 1002 1 = , the normalized absorption cross section attains
a 2.4abs

2s p »( ) when k a 100 = . Note, however, that in this case the range of parameter variation is already too
large to remain practical: r r r r 101 2 1 2

4e e m m= =( ) ( ) ( ) ( ) .
For reference, infigure 6we also provide the result for the case of a uniformlyfilled sphere, which occurs

when r r1 2= , which can be seen as theworst case scenario of approximating the profiles of equations (33)
and(34). For example, for k a 1000 = , the uniformDNG sphere with loss tangent tan 5 10 2d » ´ -∣ ∣
provides a 1.08abs

2s p »( ) , i.e., even a uniformly filled spheremay outperform the black body of the same size
by about 8% in this case.

In all examples, the optimum loss tangent value decreases with the increase of k a0 . The values of the
normalized absorption cross section also decreasewith k a0 . Nevertheless, evenwhen k a 1000 = , i.e., when
emitter’s circumference is 100wavelength long, we obtainmore then 20%gain in emitter’s performance as

Figure 6. Left: normalized absorption cross section aabs
2s p( ) as a function of the normalized radius k a0 of theDNG core-shell

emitter shown infigure 4. Right: the optimal values of loss tangent tan d∣ ∣ (obtained by a numerical optimization procedure) as a
function of k a0 . In both panels: red linewith ‘+’ symbols represents the case when r r 1002 1 = . Orange linewith squares: the case
r r 102 1 = . Blue linewith circles: the case r r 12 1 = (the case of uniformly filledDNG sphere).
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compared toKirchhoff–Planck’s black body of the same size (when r r 102 1 = ), and close to 30%gainwhen
r r 1002 1 = . The required loss tangent values in these two cases staywithin reasonable limits, for instance,
tan 10 3d > -∣ ∣ for the emitter with r r 102 1 = , which can be realized in an experiment. In our opinion, this is a
remarkable result which shows that even for optically large bodies with k a 100

2~ there exist emitters which
noticeably outperformKirchhoff–Planck’s black body.

In general, with further decrease in the core radius and tan d∣ ∣, the achievable values of aabs
2s p( ) become

larger, however, they grow very slowly. Thus, wemay conclude that approaching theoretical result
aabs

2s p  ¥( ) in a practical DNG emitter willmeet with unavoidable obstacles such as unrealistically high
material parameters in the core region , 1c ce m ∣ ∣ ∣ ∣ combinedwith very low levels of loss: tan 1d ∣ ∣ .

10. Conclusion

In this paper we have proven, from the point of view offluctuational electrodynamics which deals with bodies
kept in thermodynamically equilibrium states and characterizedwith infinite internal thermal capacity, that
there is no theoretical upper limit on the spectral power of thermal radiation of finite-size bodies. Thus, the
fluctuational electrodynamics alone does not set up any bounds on the level of spectral power emitted by a hot

Figure 7.Top:magnitude and direction of the Poynting vector S E HRe *= ´( ) inside and outside themetamaterial thermal black
hole with normalized radius k a 100 = (the other parameters are as in figure 6 for r r 102 1 = ). The colored surface represents the
magnitude of the Poynting vector in the yz-plane relative to the incident planewave Poynting vectormagnitude. The arrows indicate
the direction of the Poynting vector. The thick black circle corresponds to the geometric circumference of the object. The dashed cyan
line represents the shadow region boundary in the half-power criterion. Bottom: the samePoynting vector plot as the one shown at the
top, butwith tan 10 10d = -∣ ∣ in the region r r r1 2< < andwhole loss concentrated in the core region r r1< , inwhich case core’s
input impedance is approximately 0h for all spherical harmonics. In this case, the shadowdiameter is about twice as large as the
diameter of the body.
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body: for instance, a conjugate-matched emitter with radius a l can radiate amuch larger (theoretically,
infinitely larger) power at thewavelengthλ than can be predicted for the same-size body by using Planck’s black
body emission formula. This holds at any givenwavelength, and even in a scenariowhen such a body radiates
into unbounded free space.

This result was obtained by two independentmethods: firstly, by identifying the conditionswhichmaximize
the power emitted by a bodywhen it performs as a source of thermal radiation, and, secondly, bymaximizing the
absorption cross section of a body. As expected, both derivations lead to the same conclusion stated in the
previous paragraph.Moreover, we have proven that neither the second law of thermodynamics, nor Kirchhoff’s
law of thermal radiation (when properly amended) are violated by theoretical existence of such strongly super-
Planckian emitters.

We have proposed a physical realization of such conjugate-matched emitters, which employs low-lossmedia
with simultaneously negative permittivity and permeability—DNGmedia. It is known that suchmedia support
strongly resonant surface excitations—surface plasmon-polaritons. InflatDNG slabs of infinite extent, these
modes are bound to the surface and the energy associatedwith them cannot be emitted into free space. In other
words, suchmodesmay not participate in the far-zone thermal transfer in these geometries (on the other hand,
thesemodes play themain role in the near-field super-Planckian thermal transfer). However, the samemodes
on a curved closed surface—like a spherical surface—always leak some energy to the free spacemodes. In our
metamaterial superemitter such leakage is greatly enhanced by tuning thewhole structure at resonancewhich
maximizes the probability of free-space photon emission from such dark states. Thus, we show that a properly
designedmetamaterial structuremay dramatically amplify the diffraction effects not considered in original
Planck’s theory, and that these effects at a given frequency can bemade evenmore significant than the standard,
classical effects limited by the geometric optics approximation.

It is quite remarkable that, from a theoretical standpoint, afinite-size emitter with theDNGmaterial
parameters derived in section 8 performs as a thermal black holewhose absorption cross section growswithout
limit when thematerial parameters approach the ideal profiles given by equations (33) and(34)with the loss
parameter tan d 0. Reciprocally, such idealized body has infinite effective spectral emissivity when compared
to Planck’s black body of a similar size. However, realizing such a truly super-Planckian emitter in practicemeets
with unavoidable obstacles rooted in our inability to obtainDNGmetamaterials with extremely low values of
loss and extremely high absolute values of the permittivity and permeability concentrated in a tiny region of
space. At infrared and terahertz frequencies themetamaterials with parameters resembling equations (33)
and(34) are perhaps out of reach for the present-day technologies. Although, we think that a possible realization
strategy at infraredmay be devised based on the results of [28].

Atmicrowaves, we believe that the conjugate-matched superemitters and superabsorbers can be realized by
using transmission-line networks loadedwith lumped inductances and capacitors [29, 30].Microwave
conjugate-matched superabsorbersmay find application in areaswhere narrowband omnidirectional reception
of electromagnetic power is required, for instance, in tuned electromagnetic field sensors, or in other tuned
energy harvesting devices. Due to high concentration of the electromagnetic energy at themiddle of the
conjugate-matchedDNG sphere (see figure 7), such harvesters can bemademore efficient than alternatives.
Other interesting applications ofDNG superabsorbers atmicrowaves can emerge from their ability tomimic a
bodywith amuch greater apparent size as compared to their actual physical size.

Conjugate-matchedmicrowave superemitters can find applications in telecommunications as compact and
efficient omnidirectional antennas. Typical compact antennas used atmicrowaves are at resonancewith just one
(e.g., the short dipole antenna) or a couple (e.g., the crossed dipole, dipole-and-loop, etc) outgoing spherical
modes towhich they radiate efficiently. On the contrary, in a superemitter-based designwe, in principle, can
achieve efficient coupling to a very high number ofmodes, including the strongly reactivemodes towhich
normal antennas cannot not emit. In regard to thermal radiation, in environments such as cosmic space
microwaveDNG superemitter spheres could serve as passive probes which encode local temperature
information into nearlymonochromatic radio signal with high spectral density.

For thermal emitters with seemingly attainable parameters studied in section 9, the gain in radiated spectral
power decreases when radius-to-wavelength ratio increases. Our numerical examples show that a practical
spherical DNG core-shell emitter can outperformPlanck’s black body (at a givenwavelength) bymore than
100% for emitters with circumference on the order of 10wavelengths, and by about 20%–30% for emitters with
circumference on the order of 100wavelengths. However, considering wide-spread beliefs that optically large
bodies can never outperform a black body of the same size when radiating into free space, in our opinion, this
stillmakes a remarkable achievement even in practical terms.

Finally, let us note that the integral power emitted at all wavelengths remains sub-Planckian for any body
formed by passive and causal components. This limitation can be readily demonstratedwith the known sum
rules for optical scatterers, although this is out of the scope of this paper. Note that atmicrowaves, these
restrictions can be overcomewith the use of active non-Foster circuits (e.g. [31]).
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AppendixA. Impedances of spherical waves

The transverse components of the electric andmagnetic fields in a spherical wave harmonic are given by the
following expressions:
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0 q jµ ˜ ( ) ( ), for the incomingwaves propagating towards r 0= . Next, considering, for example,

the outgoing TMwaves and forming the ratios of E H0hq j( ) and E H0hj q( )we find:
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fromherewe get that the transverse fields in the outgoingwaves are related as

E E Z H Hrnm
TM TM

w,
TM TM TMq j q j+ = - ´ +q j q j( )ˆ ˆ ˆ ˆ ˆ , where Z k r k rilm l lw,

TM
0 0 0 h= - ¢( ) ( ). Considering in the

samemanner the outgoingwaves of TE polarization, we obtain Z k r k rilm l lw,
TE

0 0 0 h= ¢( ) ( ).
By performing a similar derivation it is straightforward tofind that in the TM-polarized incoming spherical

waves the transverse fields are related as E E Z H Hrnm
TM TM

w,
TM TM TMq j q j+ = ´ +q j q j( )ˆ ˆ ˜ ˆ ˆ ˆ , where

Z k r k rilm l lw,
TM

0 0 0 h= ¢˜ ˜ ( ) ˜ ( ). Respectively, for the incomingwaves of TE polarizationwe obtain

Z k r k rilm l lw,
TE

0 0 0 h= - ¢˜ ˜ ( ) ˜ ( ). Note that because k r k rl l0 0 * =˜ ( ) [ ( )] , thewave impedances of the

incoming and outgoingwaves are related as Z Zlm lmw,
TE, TM

w,
TE, TM *= ( )˜ .

Let us nowderive the expressions for the reflection coefficients lm
TE,TMG . In the followingwe suppress the

polarization andmodal indices for brevity.
Let us consider a spherical body characterizedwith the input admittance Y Z11 1= , which is under

incidence of an incoming spherical wavewith thewave admittance Y Z1w w=˜ ˜ . The body reflects this wavewith
the complex electric field reflection coefficientΓ. The reflected outgoingwave has thewave
admittance Y Z1w w= .

In order tofindΓweuse the boundary condition on body’s surface: Yr H Et 1 t´ =ˆ , where
E EEt q j= +q j

ˆ ˆ and H HHt q j= +q j
ˆ ˆ are the total (i.e., incident plus reflected) transverse fields:

E E1t t
inc= + G( ) , Y Yr H Et w w t

inc´ = - Gˆ ( ˜ ) . From this conditionwe obtain

Y Y YE E1 , A.7w w t
inc

1 t
inc- G = + G( )˜ ( ) ( )

Taking into account that Y Yw w*=˜ , we find from equation (A.7) that Y Y Y Y1 w 1 w*G = - - +( ) ( ).
TheZ-parameters for a uniformly filled spherical shell with an arbitrary inner radius r1 and and arbitrary

outer radius r r2 1> can be found in a similarmanner by considering partial spherical waves propagatingwithin
the shell in the two opposite directions, and expressing through thesewaves the total transverse fields at the
surfaces r r1= and r r2= . From these expressions one obtains the followingZ-matrix relation between the
electric andmagnetic fields at the two sides of the shell:
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where the fourZ-parameters:Z11,Z12,Z21, andZ22, are functions of the polar index l only (they do not depend
on the azimuthal indexm). Because in calculation of the normalized absorption cross section(38) it is enough to
consider just a single polarization, belowweprovide thefinal formulas for theZ-parameters forTMpolarization:
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In these formulas, e and m are the absolute permittivity and the permeability of shell’smaterial, respectively,
k k0 0 0em e m= ( ) . In order to use these formulas in equation (37), one has to set r a1 = and r a a2

2
0= , and

1 i tan0e e d= - -( ∣ ∣), 1 i tan0m m d= - -( ∣ ∣).

Appendix B.Derivation of scs and abss

Due to the presence of a body in the vicinity of the point r 0= , thewaves(20)will scatter on it, producing in this
way the scatteredfield:

k r
C k r C k r r YE r

1
, . B.1

l m
l m l l m l l

m
t
sc

0 1 1,1
,
TE

0 t ,
TM

0 t
⎡⎣ ⎤⎦ å å q j= ´  + ¢ 

=

¥

=-
( ) ( ) ( ) ( )

The amplitudes of the scatteredwaves Cl m,
TE,TM can be found through the complex reflection coefficient for the

corresponding incident spherical harmonic (see appendix A):

Y Y

Y Y

Y Y

Y Y
, , B.2lm

lm lm

lm lm
lm

lm lm

lm lm

TE 1,
TE

w,
TE

1,
TE

w,
TE

TM 1,
TM

w,
TM

1,
TM

w,
TM

* *
G = -

-

+
G = -

-

+
( )

wherewe have introduced body’s input admittance for a given spherical harmonic Y Z1lm lm1,
TE,TM

1,
TE,TMº and the

wave admittance Y Z1lm lmw,
TE

w,
TEº . Note a subtle difference from themore usual reflection formula—the

presence of the complex conjugate operation,—which arises from the fact that impedances of the counter-
propagating spherical waves are different and equal the complex conjugate of each other (see appendix A).

Using equation (B.2), wemaywrite for TEwave reflections happening at surface r a= :

C B k a A k a . B.3l m l m l lm l m l,
TE

,
TE

0
TE

,
TE

0 + = G( ) ( ) ( )˜ ( )

Respectively, for the TMwaves reflecting at the same surface

C B k a A k a . B.4l m l m l lm l m l,
TM

,
TM

0
TM

,
TM

0 + ¢ = G ¢( ) ( ) ( )˜ ( )

Because in the incident planewave expansion (equation (20)) A Bl m l m,
TE,TM

,
TE, TM= , wefind from equations (B.3)

and(B.4) that

C A1 , B.5l m lm l m,
TE,TM TE,TM

,
TE,TM= G -( )˜ ( )

where

k a
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k a
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, , B.6lm
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TE TM 0
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




G = G G =

¢

¢
G

( )
( )

( )
( )

˜
˜

˜
˜

( )

are the reflection coefficients with redefined phase such as if the reflection happened at the point r 0= (note
that k a k a k a k a 1l l l l0 0 0 0   = ¢ ¢ =˜ ( ) ( ) ˜ ( ) ( ) ).
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The total scattered power is found by integrating the expression for E0
1

t
sc 2h- ∣ ∣ over the closed spherical

surfacewith infinite radius. In doing so, we use the orthogonality of the Laplace spherical harmonics, and the
fact that

r Y Y l lr, d , d 1 , B.7l
m

l
m

t
2

t
2

q j q j W = ´  W = +∮ ∮( ) ( ) ( ) ( )

where d sin d dq q jW = .We also take into account that k r k r 1l l0 0 = ∣ ( )∣ ∣ ˜ ( )∣ when r  ¥. Thus, we
obtain for the total scattered power
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Fromhere, the normalized scattering cross section asc
2s p( ) is found as given by equation (21).

The absorption cross section abss can be found by considering the balance of powers delivered to the body by
the incomingwaves and taken away by the outgoingwaves. The power associatedwith each incoming spherical

wave is proportional to Al m,
TE,TM 2

and the power associatedwith the outgoingwaves of the same index and

polarization is proportional to B C Al m l m lm l m,
TE,TM

,
TE,TM 2 TE,TM 2

,
TE,TM 2

+ = G̃ . The difference of these two amounts

represents the absorbed power. Therefore, the total power absorbed in the body at a givenwavelength can be
expressed as (comparewith equation (B.8))
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Fromherewe obtain the resulting equation (24).

AppendixC. Coordinate transformation r a r2

Let us considerMaxwell’s equationswith isotropic and uniformmaterial parameters e and m:

E H H Ei , i . C.1wm we ´ =  ´ = - ( )

In spherical coordinates

r r
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Under amapping r g r= ¢( ), where g r ¢( ) is amonotonic function of r ¢, the nabla operator transforms as
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The unit vector r̂ can be expressed as
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where r¢ˆ is the unit vector in the direction of growth of r ¢. Fromhere and equation (C.3),
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The expression in the square brackets reduces to the nabla operator ¢ in the primed frame rr , ,q j¢ = ¢( )
when the function g is such that x g x g x¢ =∣ ( )∣ ( ), which has two solutions formonotonic g x( ): g x Cx=( ) ,
and g x C x=( ) , whereC is an arbitrary constant.

Only the second possibility is of interest for us. Equating C a2= we get r a r2= ¢ and, respectively,
r a2 2 = ¢ ¢( ) . Note also that for this transformation r r¢ = -ˆ ˆ , butj j¢ =ˆ ˆ , and q q¢ =ˆ ˆ . Thus, this

transformation changes a right-handed coordinate system to a left-handed one. Therefore, the same physical

21

New J. Phys. 18 (2016) 013034 S IMaslovski et al



field vectors when referred from the two coordinate frames are related as EE r E Er t= - ¢ - ¢ + ¢ = ¢
¢( ˆ )( ) and

HH r H Hr t= - - ¢ - ¢ + ¢ = - ¢
¢[( ˆ )( ) ] . The extra flip in the sign of themagnetic field is due to the fact that H is a

pseudovector (axial vector)whichmust change sign under an improper coordinate transformation. Note that
this sign change is required in order tomaintain the formof the input impedance expression after the
transformation:

Z Z
E

u H

E

u H
, C.6r a r a

TE,TM t

t

t

t

TE,TM= -
´

= -
¢

¢ ´ ¢
=> ¢<ˆ ˆ

( )

where u r=ˆ ˆ and u r¢ = - ¢ˆ ˆ are unit vectors coincident with the propagation direction of the incident wave.
By substituting the above relations intoMaxwell’s equations (C.1) (note that the curls alsoflip signs under an

improper transformation)we obtain

a

r
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r
E H H Ei , i . C.7
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2

2
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m
w

e
¢ ´ ¢ =

¢
¢ ¢ ´ ¢ = -

¢
¢ ( )

The transformation of thematerial parameters is apparent from these equations.

AppendixD.Operation bandwidth estimation

The bandwidth of operation of theDNG superemitter (the same for superabsorber) can be estimated by
determining the effective quality factorQ (thefigure ofmerit) of the involved resonances. Since these resonances
become narrowerwhen themodal index increases, for the estimationwemay consider only themodes with large
polar index l a2p l> .

Considering the TE sphericalmodes in free space, we note that in highly reactivemodes with large polar
indexmost of the electromagnetic energy is stored in the nearmagnetic field. Respectively, the equivalent circuit
for the impedance Z lmw,

TE of suchmodes can be approximated as is shown in the right half offigureD1 , inwhich

the resistorRL accounts for the radiation loss, and L a leff 0m~ . On the other hand, the input impedance Z lm1,
TE

of theDNG superemitter for the correspondingmode can be approximated as is shown in the left half of the
samefigure, where C L1eff 0

2
effw= ( ), c20w p l= , is due to the reactance of the opposite sign in Z lm1,

TE which is

conjugatematched to Z lmw,
TE at the resonant frequency 0w . The resistorRC accounts for the loss in theDNG

metamaterial.
Like Leff , the capacitance Ceff reflects the energy storage inside themetamaterial inclusions (‘metaatoms’)

which realize effective negative m w( ) (e.g., split-ring resonators). Note that depending on particular realization,
Ceff can be dispersive: C Ceff eff w= ( ). In the calculations below, we neglect this dispersion, which effectively
leads us to the estimation for thewidest bandwidth physically possible in a passive structure.Note that this does
not imply that the effectiveμ is non-dispersive, because in this case l a C2

effm w~ - ( ) (dispersion of this type is
found inDNG transmission-linemetamaterials [29]).

The equivalent circuit for the TMmodes is dual with respect to the one shown infigureD1, with the inductor
replaced by the capacitor and vice versa. Therefore, from the circuit offigureD1, the quality factor associated
with the resonance (for both TE andTMmodes) can be estimated as

Q Q Q

1 1 1
,

int ext

= +

where Qint is the quality factor corresponding to the electromagnetic energy stored inside theDNG sphere, and
Qext is the same for sphere’s exterior.

It is easy to see that under our assumptions Q tanint
1d= -∣ ∣ . For a given spherical harmonic, the same

quantity can be also expressed through the input impedance of theDNG sphere as

FigureD1.Equivalent circuit of theDNG superemitter in free space for the case of TEmodeswith large polar index l a2p l> . The
fluctuating EMF sources are excluded from this circuit for clarity.
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On the other hand
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Because the input impedance of ourDNG sphere is such that Z Zlm lm1,
TM,TE

w,
TM,TE *» ( ) , wefind that Q Qlm lm

int ext» for
all the high-ordermodes towhich our emitter couples efficiently. Fromherewe conclude that

Q
1

2 tan
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d
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Therefore, the relative operation bandwidth of theDNG superabsorber (the same holds for the superemitter) is
on the order of

2 tan .
l
l

d
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» ∣ ∣
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