Forss, Nina; Strbian, Daniel

Effect of epileptic activity on outcome for critically ill patients

Published in:
The Lancet : Digital Health

DOI:
10.1016/S2589-7500(23)00097-3

Published: 01/08/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Continuous electroencephalography (EEG) recordings of critically ill patients commonly show epileptiform activity. Such continuous EEG recordings have shown frequency of seizures to vary between 8% and 34%, most of which are non-convulsive. Other subtypes of epileptiform activity are also common in critically ill patients, including periodic and rhythmic patterns (eg, generalised and lateralised periodic discharges, generalised and lateralised rhythmic delta activity, and bilateral independent periodic discharges). Generalised epileptic seizures should be promptly and effectively treated to prevent escalation into status epilepticus, but treatment decisions for short-lasting epileptiform bursts or milder epileptic activities are not always straightforward. Several factors affect the decision making process regarding treatment intensity, including patient’s age and previous diseases, cause of presenting disease, present general clinical condition, and duration of intensive care. The decisions are often made case-by-case on the basis of all aforementioned factors. Growing evidence suggests that the presence of epileptic activity is associated with worse outcome, but it is not clear whether this is due to severity of underlying illness, medication side-effects, or worsening of epileptiform activity per se. The role of epileptiform activity in neurological outcome is very challenging to study, mostly due to a plethora of confounding factors and the complex interaction between the underlying disease, type of epileptiform activity, and antiepileptic medication.

The study by Harsh Parikh and colleagues in The Lancet Digital Health takes an important step forward in clarifying this clinically highly relevant question. Parikh and colleagues did a retrospective cross-sectional study with 995 patients, using a novel causal inference approach to adjust the treatment effect of antiseizure medications. These results are in line with existing data showing that extensive epileptiform activity is associated with poor outcomes and provides outcome estimation based on quantification of the burden of epileptiform activity, which is clinically very useful. Patients with high levels of epileptic activity had a 22.27% (SD 0.92) increased chance of severe disability or death, and patients with moderate but long-lasting epileptic activity had a 13.52% (1.93) increased risk of a poor outcome. Subgroup analysis showed that the type of brain lesion mattered. Namely, patients with hypoxic-ischaemic encephalopathy or brain trauma were at higher risk of the worse outcome in response to a large maximum epileptiform activity burden.

Parikh and colleagues included several confounding factors in their analysis, although it is very challenging to account for all possible confounding factors in this type of study. For example, possible spread and type of epileptiform activity is likely to be associated with the outcome. Here, all subtypes of epileptiform activity were included in evaluation of epileptiform activity burden, although, for example, lateralised periodic discharges have been shown to have a high association with seizures, whereas generalised rhythmic delta activity has not. Furthermore, in critically ill patients, several antiepileptic medications and anaesthetics are often used, particularly if EEG shows extensive epileptic activity. Interaction of different antiepileptics is common, and it might profoundly affect drug elimination and efficacy.

Nevertheless, this study gives important insight to the complex association between epileptiform activity, drug effect, and neurological outcome. The results underline
the importance of continuous EEG monitoring in patients in the intensive care unit and encourages timely treatment decisions in case short-lasting extensive or longer-lasting moderate epileptiform activity is observed. These promising results hopefully make way for larger, multicentre studies that would help to develop different treatment protocols tailored for patient groups with different CNS pathologies and other covariant factors.

We declare no competing interests.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.

*Nina Forss, Daniel Strbian
nina.forss@hus.fi

Department of Neurology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland (NF, DS); Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland (NF)

9 Rubinos C, Reynolds AS, Claassen J. The ictal-interictal continuum: to treat or not to treat (and how)? Neurocrit Care 2018; 29: 3–8.