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Method for Using Information Models and Queries to
Connect HVAC Analytics and Data

Ville Kukkonen1

Abstract: A significant portion of the energy used in building operations is wasted due to faults and poor operation. Despite volumes of
research, the real-world use of analytics applications utilizing the data available from building systems is limited. Mapping the data points
from building systems to analytics applications outside the building systems and automation requires expert labor, and is often done in point-
to-point integrations. This study proposes a novel method for using queryable information models to connect data points of building systems
to a centralized analytics platform without requiring a particular modeling technology. The method is explained in detail through a software
architecture and is further demonstrated by walking through an implementation of an example rule from a rule-based fault detection method
for air handling units. In the demonstration, an air handling unit is modeled with two different approaches, and the example analytic is
connected to both. The method is shown to support reusing analytic implementations between building systems modeled with different
approaches, with limited assumptions of the information models. DOI: 10.1061/JCCEE5.CPENG-5341. This work is made available under
the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

In the operation of commercial buildings as much as 30% of HVAC
and lighting system energy consumption is wasted due to poor op-
eration and faults (Kim and Katipamula 2018). Buildings represent
around 40% of the total energy consumption in the US and EU
(Cao et al. 2016), making their energy waste reduction a significant
global opportunity. One approach for optimizing energy consump-
tion is the use of a monitoring-based commissioning (MBCx) pro-
cess utilizing building analytics applications (Kramer et al. 2020).
These applications analyze information gathered from the data
points available in the building to inform the operators of aspects
such as abnormal energy usage, poor control parameters, and sug-
gested replacement schedule for equipment. For example, a study
of the participants of the Smart Energy Analytics Campaign ob-
served 7% median energy savings for users of Energy Management
and Information Systems (EMIS) since installation, with the high-
est reported savings up to 28% and preliminary results suggesting
the savings to be increasing over time (Kramer et al. 2020).

One acknowledged challenge to building analytics application
setup is the lack of descriptions for building data points (Gunay
et al. 2019). Various approaches to describing the data points exist,
including the Haystack tagging framework (Project Haystack 2022)
and semantic web ontologies such as Brick (Balaji et al. 2018)
and RealEstateCore (Hammar et al. 2019). Further, American
Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE)-sponsored development of the proposed Standard 223
(NIST 2021) seeks to unify efforts for semantic data models for
buildings by leaning on earlier efforts. Although automated and
semiautomated methods of classifying and creating other metadata

for data points have been proposed (Wang et al. 2018), there are no
one-size-fits-all solutions due to differences in the information
requirements of analytics applications. Further, owners and oper-
ators of different buildings have different priorities and varying lev-
els of willingness to invest in data descriptions and analytics.

Even with data point descriptions available, setting up and main-
taining analytics applications requires mappings between data
points and applicable analytics. Creating and maintaining these
mappings is dependent on the work of building systems experts,
making it expensive and thus contributing to the barrier of adoption
(Harris et al. 2018). Applying analytics on a portfolio of buildings
presents further challenges for data integration and management
(Lin et al. 2022). Furthermore, more sophisticated analytics ap-
proaches require more investments and upkeep. For example,
although the previously cited study of the participants of Smart
Energy Analytics Campaign observed that users of more compli-
cated fault detection and diagnostics (FDD) applications had
greater energy savings compared with meter-level monitoring, it
was also found that FDD implementations had a five times greater
median base setup cost, with also greater recurring service costs
and estimated in-house labor cost (Kramer et al. 2020).

To overcome some of the challenges related to creating and
maintaining mappings between data points and applicable analytics
in a centralized analytics platform, this study proposes a method for
using information models and queries to bind time-series analytics
to data points, such as sensors. Further, to support the data integra-
tion and management for a portfolio of buildings, the method
does not require a particular information modeling technology or
vocabulary. The proposed method is described as a software archi-
tecture with a narrow focus and in-depth explanations in contrast to
more high-level architecture proposals (Pau et al. 2022; Marinakis
2020). An example prototype is built on semantic web technologies
and knowledge-based fault detection rules.

The article is structured as follows. First, contemporary research
related to connections of analytics applications and time-series
data in the architecture, engineering, construction, and operations
(AECO) field is reviewed. Next, the proposed method is described
through a software architecture. Following that, an example appli-
cation of air handling unit (AHU) fault detection is showcased.
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After that, the results and potential future research directions are
discussed, before finally summarizing and concluding the work.

Related Work

Within the research body related to building analytics and MBCx
for building systems, common subareas include the study of the
methods themselves (how to utilize the data) and the study of data
descriptions (how to annotate and classify the data). Other studies
focus on high-level architectures where data integration is ac-
counted for but not described in detail. The question of how to con-
nect the various analytics methods with data annotated in different
ways has received significantly less attention. This connection be-
tween time-series data and analysis engines is the focus of this
study, and thus the existing research is reviewed through the ques-
tion: how is the correct data provided to the analysis methods?

Existing analytics applications are commonly built around the
assumption of a particular data model. For example, the MORTAR
test bed (Fierro et al. 2019) was designed around Brick. Although
several aspects of the architecture are independent of the data
model, what MORTAR calls “portable applications” themselves
contain the queries to find relevant data points, leading to a 1:1
relationship between queries and analytics or “portable applica-
tions.” On the other hand, the commercial SkySpark (SkyFoundry
2023) uses Project Haystack and is highly involved in its
development.

Five general approaches to connecting data points to analytics
were identified in previous literature:
• point-to-point integration,
• naming conventions,
• data warehousing,
• time-series in knowledge graphs, and
• ontology-based data access (OBDA).

The remainder of this section discusses further definitions and
examples of the different approaches.

Point-to-point integration requires some manual definition for
each output. For example, OpenBAN sensor analytics middleware
(Arjunan et al. 2015) uses so-called contextlets defined by users
to connect sensor data streams to feature extraction methods and ana-
lytical algorithms. Sensor data streams are provided by input data
adapters retrieving data from supported sources in a common format.

The greatest benefit of point-to-point integrations is simplicity,
but this comes at the cost of scalability: adding new inputs (systems
to analyze) and new outputs (desired analytics) leads to combina-
torial explosion in the required number of integrations. Adding
some logic or automation to define these integrations will then re-
quire the use of other integration methods, such as those described
in the rest of this section.

Naming conventions rely on the use of a naming schema for data
points and/or the things they relate to. The scope and information
contents of naming conventions vary, but examples of information
encoded in a name include the quantity observed by a data point,
and the component or space the data point relates to. In one exam-
ple, a taxonomical naming convention was developed to link data
points to building information modeling (BIM) elements in Revit
(Quinn et al. 2020). Another approach used a naming template for
AHU data points to support FDD (Bruton et al. 2014).

Benefits of naming conventions include their relative simplicity
(Quinn et al. 2020) and the fact that experts familiar with the
schema can reason about the information encoded in the names.
On the other hand, a drawback of naming conventions is that ex-
panding their application is challenging, such as expanding the
naming schema targeting AHUs (Bruton et al. 2014) to support

FDD on a larger subset of the HVAC system. Further, some infor-
mation, such as the relations of the spaces or components, is
often hidden in implicit assumptions behind the naming convention.

Data warehousing is closely related to naming conventions in
terms of expressivity. A data warehouse is a data store that is de-
signed to support analytics use cases. Whereas naming conventions
express relationships in the names of things, data warehouses en-
code similar taxonomies and relations in the data store schema, thus
enabling aggregations across different dimensions. For example,
one study developed a data warehouse supporting building perfor-
mance analytics with aggregations across the dimensions of meas-
urement categories, time, location, and organization (Ahmed et al.
2010). Another demonstrated the use of a centralized data ware-
house to support analytics based on hierarchical partitions of the
building (Ramprasad et al. 2018).

Similar to naming conventions, data warehousing is also a rel-
atively simple method that relies on standard data store tools and
processes. Well-designed data warehouses can support different use
cases with optimized query execution times. However, the design
of data warehouse schemas is tied to the expected use cases, and
later extensions and changes may become difficult to implement if
requirements evolve significantly. Moreover, the rigidity of the
schemas may make it difficult to onboard new analysis targets
for a subset of the analytics.

Time series in knowledge graphs uses knowledge graphs to
describe and store time-series data, enabling the use of logical
frameworks for analytics. For example, a data model developed
in the Future Unified System for Energy and Information Technol-
ogy (FUSE-IT) project has been used in combination with rules
expressed with Semantic Web Rule Language (SWRL) to support
analytics such as anomaly detection (Tamani et al. 2018). A similar
approach used SWRL rules to detect and diagnose energy ineffi-
ciencies (Lork et al. 2019).

Querying for ordered data such as sensor observations is a
part of what relational databases are optimized for (Kučera and
Pitner 2018), and it seems likely that storing massive amounts
of time-series data in a knowledge graph could become a bottle-
neck. Further, although storing the time-series data in knowledge
graphs enables the use of technologies such as SWRL, many use
cases of time-series analytics are better supported by widely
adopted programming languages and data analysis libraries.

OBDA is the use of an ontology to define high-level connections
between data in combination with more suitable storage for the data,
such as relational databases. Although OBDA systems exist that
automatically translate SPARQL Protocol and Resource Description
Framework (RDF) query language (SPARQL) queries on a knowl-
edge base to, for example, Structured Query Language (SQL)
queries, in this categorization any method that uses a combination
of an ontology and queries against another data store is counted
as utilizing OBDA. For instance, one approach has been to use a
representation of a relational database schema in RDF to enable gen-
erating SQL queries for time-series data (Hu et al. 2016, 2018, 2021).

On the other hand, Semantic building management system
(BMS) combined a purpose-built ontology and a middleware to
provide a queryable model of building systems and application pro-
gramming interfaces (APIs) to both query for relevant BMS data
points and to retrieve the data for those points (Kučera and Pitner
2018). In the modelling optimization of energy efficiency in build-
ings for urban sustainability (MOEEBIUS) project, an approach
using SPARQL queries (Schneider et al. 2016, 2017) returning
CassandraDB identifiers was utilized (Schneider et al. 2020).

OBDA is arguably the most flexible of the identified categories.
Combining the expressivity of knowledge graphs with purpose-
built time-series data storage and technology-independent analytics
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implementations might impose fewer limitations on the kinds of
analytics that could feasibly be implemented. However, the reviewed
studies have not considered fully decoupling the four main compo-
nents: the (time-series) data sources, the (static) building information
stores, the queries for connecting the data to analytics, and the ana-
lytics. Further, although OBDA typically relies on SPARQL queries,
similar result sets could be queried from other information stores as
well, such as relational databases with SQL queries.

In short, limitations of the previous approaches include diffi-
culty of scaling beyond a limited subdomain; limited support for
operations beyond aggregations; or being tied to a particular
technology, schema, or ontology. To overcome some of the limi-
tations of the approaches discussed, this study proposes a method
capable of utilizing information models expressed with different
technologies and vocabularies for connecting time-series data to
technology-independent analytics implementations.

Method and Architecture

This section uses a software architecture to describe the proposed
method of using queries and information models to map and provide
time-series data to analytics. Although the architecture presented
here is not the only means of implementing the method, it serves
to make the method description more concrete and easier to discuss.

First, a high-level overview of the conceptual method and de-
scriptions of key terms are given, after which the requirements and
assumptions guiding the development of the solution are described.
Following that, the services that make up the architecture are de-
scribed, starting with an overview of information flow for creating,
binding, and evaluating an analytic.

Concept and Key Terminology

The basic premise of the proposed method, illustrated in Fig. 1, is
the abstraction and decoupling of (1) analytics encapsulating the
logic for deriving some result time series from a set of input time
series, (2) queryable models describing the time series and their
contexts, and (3) time-series stores that support the retrieval of in-
put time series with some identifier. The logic of the analytic is
expressed once, and multiple queries may connect the analytic to
model stores expressed with different technologies and structures in
order to find applicable targets. Further, separate queries are asso-
ciated with the models to retrieve information on the storage of the
time series associated with the data points.

The key terminology used in the subsequent sections is now
defined. Some of the terms will be described in more detail in sub-
sequent subsections, but a general description is given at this point:
• An analytic transforms a set of input time series into a result

time series. For example, an analytic might convert the temper-
ature setpoint and observed temperature of a room into a series
of true/false values indicating whether some error threshold has
been crossed.

• A binding is the connection between an analytic and a particular
target to be analyzed. The binding contains information of what
data points to use as which named input series in order to evalu-
ate an analytic for a particular target. An analytic can thus be
bound to multiple targets, and a particular target, such as a room,
may have multiple bound analytics.

• A data link is the connection between a data point and the actual
data store for that point. The link, stored by the model store,
associates a data point identifier with a time-series store and
a series identifier therein.

• A data point is the term used for anything that can be observed
as a time series, such as sensor observations and control values.
It is the same as the Brick schema’s “Point” (Balaji et al. 2018)
and RealEstateCore’s “Capability” (Hammar et al. 2019).

• An information model or model is a description of monitored
assets (potential targets for analytics) and related data points.
The models are expected to be stored in stores that support some
form of querying.

• A target for an analytic is a physical asset or an abstract entity
that is being monitored. Example targets include the spaces in a
building, as well as different systems and components such as
air handling units and specific sensors.

Assumptions and Requirements

This subsection discusses the assumptions and requirements
around the design. The assumptions concern the operating context
of the system, i.e., the interfaces of other systems and available
information, and the requirements are the architecturally significant
requirements for the system itself.

Assumptions about the operating context are enumerated next.
For different assumptions, the architecture discussed in this article
may not be entirely appropriate, but could be used as a starting
point with modifications where applicable:
• Observation data are available in the form of time series via

some API. It should be possible to build an adapter to query
the API with an identifier and a pair of timestamps for start and
end time. Examples of possible data sources include SQL data-
bases with observations identified by a timestamp and some
identifier, Haystack HTTP API, and some BMS cloud services
providing access to history data.

• The information models can be queried for information about
the monitored assets and data points. For example, a triple store
can store the information of a building using some ontology, and
a SPARQL query might be written to, for example, retrieve all
air handling units and the data points representing their supply
air temperatures and setpoints.

• The information models contain information about data points’
observation storage. When asked for the information about a
data point, the information model should be able to answer that
to get the observations for the data point with some identifier,
one should query a particular service using some (possibly
other, indicated by the model) identifier. In practice, this is used
to form a mapping, called a data link, from a particular data
point identifier to a tuple containing the identifier for a data store
and the identifier used for the data point therein.Fig. 1. Conceptual illustration of the method.
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• The model of a building is not updated often. That is, although
updates can occur, it is assumed that they are not daily or even
weekly events. Updating the model may invalidate cached query
results in various systems. Model query results are cached as, for
example, SPARQL query times have previously been shown to
dominate the overall execution times in similar use cases
(Kučera and Pitner 2018).
Given the aforementioned assumptions, the architecturally sig-

nificant requirements for the system itself include the following:
• Representing the information of the building is not tied to

a specific technology or knowledge model. Given that the
information models fulfill the aforementioned assumptions,
it should be possible to build adapters to any such model
stores.

• Analytics are run as batches of some days. That is, the archi-
tecture is not expected to support streaming analytics nor
batches running, for example, every minute. On the other hand,
the batches are not expected to be of months or years.

• An analytic will generally involve up to five variables, instead
of tens or hundreds. That is, when evaluating an analytic for a
target, there is generally no need to fetch data for more than a
handful of variables. The number is a rough heuristic derived by
evaluating analytic methods such as Air-Handling Unit Perfor-
mance Assessment Rules (APAR) (House et al. 2001) and AHU
InFO (Bruton et al. 2015).

• The time-series information is never in a higher resolution
than 1 min. That is, when fetching data for a data point for a
period 24 h, there will be no more than 1,440 timestamped
values.
These requirements form the basis of the architecture presented

in the following subsections. The architecture decomposes the
application into services, which are described next.

Key Service Descriptions

The functionality is organized into three services that primarily
communicate asynchronously via messages on a message bus.
Each service may have its own data storage and propagates infor-
mation to other services via events describing what has happened.
Additionally, services react to commands that originate from an
user interface or other sources, such as scheduled triggers. The
three key services can be summarized as follows:
• The Analytics service stores the descriptions and definitions of

analytics. For each analytic, it also stores the discovered bind-
ings. Finally, the analytics service handles commands to evalu-
ate the analytics for given targets and time ranges, and stores the
results.

• The Models service stores and issues queries against model
stores to retrieve (1) bindings between analytics and data points;
and (2) data links between data points and time-series stores.

• The Data Gateway manages the communications with external
(time-series) data stores. It provides an endpoint to transform
point identifiers into time series for a given time range. It
achieves this by communicating with external data sources.
The Data Gateway stores the data links that are retrieved from
the models. It also stores the connection details for external
time-series stores.
Next, the general information flow between the services is de-

scribed, followed by more detailed descriptions of each key service.

Information Flow between Services
Fig. 2 illustrates the messages—and one query—passed between
the services to create, bind, and evaluate an analytic. The contents
of the messages are discussed in more detail in the subsequent sub-
sections, but an overview of the intended flow is given at this point.
The messages are divided into events and commands. Events, such

AddDataStore 
<<initialize>>

AddModelStore 
<<initialize>>

CreateAnalytic 
<<create>>

RunAnalyticForTarget 
<<evaluate>>

AddTargetQuery 
<<bind>>

DataGateway

DataLinksUpdated 
<<initialize>>

AnalyticTargetsUpdated 
<<bind>>

Models

AnalyticCreated 
<<create>>

GetDataForPoints 
<<evaluate>>

Analytics

1

2

4

3

5

6

7

8
9

MessageName 
<<phase>>

EndpointName 
<<phase>>

Synchronous
HTTP(S) request

Asynchronous
messaging

Fig. 2. Overview of the the communication between the services when creating, binding, and evaluating an analytic.
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as AnalyticCreated, are published by services to inform other serv-
ices that something has happened, and the other services may take
some action based on this. Commands, such as CreateAnalytic, are
issued to services to request a particular action to be taken. Finally,
queries are used to retrieve information from a service.

First, the command AddDataStore (1) is issued against the Data
Gateway to register a time-series store with an identifier, for exam-
ple, a particular HTTP API with an identifier CloudBMS1. This
identifier is the one that data links may use to connect a data point
to this time-series store. Next, a model store is registered with the
AddModelStore command (2), which includes the data link query
to find all data links from that model store. This model store could
be, for example, a triple store or a relational database, for which
adapters would be implemented in the application. Registering
the model store causes the data link query to be evaluated, in turn
triggering the DataLinksUpdated event (3) carrying the discovered
data links.

At some point, an analytic is created by an user with the
CreateAnalytic command (4), defining the logic to be evaluated
and the variable names that are expected, but not tying it to any
particular data. This causes the Analytics service to publish an
AnalyticCreated event (5), carrying information about the created
analytic, including the input variable names. The Models service
listens to the event and stores the variable names for use in validat-
ing that the target queries to be connected to that analytic return
variables with the same names. Afterward, a target query is added
for the analytic to connect it to a model store by issuing the Add-
TargetQuery command (6) to the Models service. This causes the
query to be stored and issued against the model store, for example,
as a SPARQL query against a triple store. The query results are
parsed and published as AnalyticTargetsUpdated event (7), and
the Analytics service stores the bindings from the event. Finally, the
analytic is requested to be evaluated for a particular target by issu-
ing the RunAnalyticForTarget (8) command to the Analytics ser-
vice, causing the service to query the Data Gateway for the data for
the bound point identifiers from the GetDataForPoints endpoint (9),
and to evaluate the logic.

The next subsections discuss each of the services in more de-
tail. Some important software aspects, such as authentication and
authorization, are omitted from the discussion in favor of concise-
ness. The focus is on the domain of creating, binding, and evalu-
ating analytics.

Analytics
The evaluation logic for an analytic is abstracted as a function that
takes in a set of named time series and outputs another time series.
Each analytic thus defines a set of variable names that it expects to
receive a time series for. The input to an analytic is a mapping of
variable names to time series. To give a more concrete example, in
the prototype described subsequently, analytics are implemented as
Boolean combinations of algebraic expressions in the following
form:

?point1 < ?point2AND ?point2 > 2.0

These expressions can be parsed to extract the variable names.
Further, they can be evaluated with the variables substituted by ac-
tual values for a given sample time.

In addition to storing the analytics, the Analytics service stores
the discovered bindings for the analytics. The bindings are discov-
ered by the Models service and propagated to the Analytics service
by events, which the Analytics service then uses to update the
stored bindings. Finally, when an analytic is evaluated for a target,
its results are stored by the Analytics service and propagated to
other services as events.

In summary, the key commands and events the Analytics service
reacts to are the following:
• CreateAnalytic command containing the details for creating a par-

ticular kind of analytic. Will trigger AnalyticCreated on success.
• RunAnalyticForTarget command containing the identities of the

analytic to be run and the target to run it for, as well as the start
and end times of the evaluation. Will trigger AnalyticRan on
success.

• AnalyticTargetsUpdated event (described with the Models ser-
vice in its own subsection) carrying information of discovered
bindings for a particular analytic.
The events produced by the Analytics service when reacting to

the preceding commands and events are as follows:
• AnalyticCreated, containing the identifier of the created analytic

and the names of the input variables it expects.
• AnalyticRan, containing the identities of the evaluated analytic

and the target, and the result time series from the evaluation.
These functionalities cover the core of the Analytics service.

Fig. 3 illustrates the flow when the command to evaluate an analytic
for a particular binding for a time frame is received. The mappings
between analytic input names and point identifiers (InputToPoin-
tIdMap) for a particular target, stored from the received Analytic-
TargetsUpdated events, are loaded based on the given target
identifier (TargetId). The data for relevant data points is requested
via the Data Gateway.

Models
The Models service stores the connection information of model
stores that can be queried for sets of data point identifiers fulfilling
given criteria and also for data links of those data points. The ex-
pected interface of the model stores is described next.

First, a model store should be able to process target queries.
Target queries are used to find the applicable targets for some
analytic, and the point identifiers to associate with variables in
the analytic. For example, Fig. 4 shows a partial SPARQL query
that could be used to find targets and valid input points for an
analytic.

The adapter is built to process the returned variable target as the
target identifier, and the rest as variable names from the analytic.
This would result in a result set such as shown in Fig. 5. The result
set can then be parsed into target bindings, which combine the tar-
get identifier and the mapping of input variable names to point
identifiers. Importantly, both the target identifiers and point iden-
tifiers are assumed unique only within the scope of a particular
model store. Thus, in order to fully qualify a target or a data point,
the model store identifier needs to also be stored and used.

Second, a model store should be able to process data link
queries. Data link queries are used to associate a time-series store
and an external identifier with data points. A time-series store is
some data store that stores the observations related to a data point,
such as a BMS API. An external identifier is what the time-series
store uses to identify a data point, which may be different than the
point identifier used by the model store. Fig. 6 shows a partial
SPARQL query that could be used to find data links from a RDF
store, resulting in a result set in the shape illustrated in Fig. 7.

Together, the aforementioned capabilities form the basis for
mapping sets of data points to analytics and fetching time-series
data for the data points. Overall, the Models service reacts to the
following commands and events:
• AddModelStore command for adding a particular kind of model

store. Carries a name and connection information that is then
stored.

• AddTargetQuery command carrying identifiers of a model store
and an analytic, and the target query to be used to find bindings
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from the given store for the given analytic. Causes the query to
be run and triggers AnalyticTargetsUpdated.

• AnalyticCreated event carrying the identifier of an analytic and
the variable names it expects. The variable names are stored and

used to validate target queries added for the analytic return the
expected variables.
The events produced by the Models service are as follows:

• AnalyticTargetsUpdated event triggered when a query is run
against a model store. Carries information of the found bind-
ings, i.e., the identifier of the analytic, the model store identifier,
and a set of target identifiers with mappings from variable
names to point identifiers.

• DataLinksUpdated event triggered when the query to find data
links is run. Carries information of the found data links.

Data Gateway
The Data Gateway fetches data from external time-series stores, for
which adapters can be built to fetch data for a set of data points for a
given time period. For that purpose, the gateway caches the data
links that have been discovered by theModels service and propagated

Fig. 4. Example SPARQL query for finding target bindings for an analytic.

Fig. 3. Steps for evaluating an analytic.

Fig. 5. Example results for the target query as shown in Fig. 4.

Fig. 6. Example SPARQL query for finding data links.
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to the gateway via the DataLinksUpdated event. The data links con-
nect each point identifier to a time-series store and an external iden-
tifier used for the point in that time-series store.

The Data Gateway requires two primary capabilities to fulfill its
role. First, there must exist a way to map time-series store identi-
fiers into concrete implementations for fetching data from those
stores. Second is the actual fetching of data for a set of data points
from possibly different sources. This is functionally equivalent to
what has been called “data adapters” in a previous study (Arjunan
et al. 2015).

The primary functionality of the Data Gateway is illustrated in
Fig. 8. The illustration does not take into account more advanced
data fetching strategies, such as grouping data points by their store
and batching the requests. Those would be implementation details
with no effect to the overall interaction between the services.

The primary requests, commands, and events the Data Gateway
reacts to are as follows:
• AddDataStore command for adding a particular kind of data

store. Carries an identifier, type, and connection information
that is then stored. Implementations could feasibly exist for add-
ing, for example, SQL databases, or time-series stores.

• GetDataForPoints request carrying a model store identifier, a
map of variable names to point identifiers, and a time frame
to fetch the data for. The model store identifier is required to
fully qualify the point identifiers, which are assumed unique
in the model store scope.

• DataLinksUpdated event triggered by the Models service. The
Data Gateway stores the found data links and uses them when
fetching the data.

This concludes the description of the method. In the next sec-
tion, an example application will be presented.

Application Example: AHU Fault Detection

In order to evaluate and further demonstrate the method, an appli-
cation prototype is described. In this section, the implementation of
a use case is illustrated, including the steps of implementing an
analytic, building a model for the target system, and creating
queries to bind the data to the analytic.

This section is structured as follows. First, the targeted system
and the available data are briefly explained. Next, the implemented
analytic is briefly described. Following that, two different models
for the same target are explained. Next, the queries connecting the
data points described in the models to the analytics are described.
Finally, the evaluation of the analytic using the artifacts produced in
the previous steps is discussed.

Target System and Data

A published data set of AHU faults (Granderson et al. 2020) was
used for the prototype application. The data set contains descrip-
tions and data for a few AHUs. Of these, the simulated data of the
second multizone variable air volume AHU data set (MZVAV-2-
2.csv) was selected to be modeled and used in testing. The
observation data from the data set were imported into a SQLite
database.

The target system represents one of three AHUs serving a
small commercial building in the US state of Iowa. The AHU has

Fig. 8. Illustration of steps to complete the primary function of the Data Gateway.

Fig. 7. Example results for the data link query as shown in Fig. 6.
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common major components: heating and cooling coils; preheat
coil; mixing chamber and dampers for exhaust, outdoor, and recir-
culated air; and supply and return fans.

The fault data for the AHU include various intensities of stuck
outdoor damper, leaking heating coil valve, and stuck cooling coil
valve. The data are distributed as short intervals of some days be-
tween 2007 and 2009, with most of the days having no data.

Implemented Fault Detection Method: APAR

The APAR (House et al. 2001; Schein et al. 2006) expert rule–
based AHU fault detection system was used to illustrate the pro-
posed method. Although subsequent developments have been
shown to be more comprehensive and effective (Bruton et al. 2015),
the relative simplicity of APAR makes it well-suited for demonstra-
tion purposes. APAR describes a set of rules based on energy bal-
ances, grouped by the operating mode of the AHU (House et al.
2001; Schein et al. 2006). The rules are expressed as inequalities
with user-adjustable parameters.

In the example application, a simple parser for Boolean combi-
nations of inequalities is implemented, and the APAR rules are ex-
pressed with that. An example of the expression syntax is

?a < ?bAND ð?c − 1.0Þ � 2.0 < ?b

where variables are prefixed with a question mark. The expressions
support basic combinations (AND, OR) of algebraic (addition, sub-
traction, multiplication, division, and absolute values) inequalities
(less than, less than or equal to, greater than, and greater than or
equal to).

In the original implementation of APAR, exponentially weighted
smoothed averages of the inputs are calculated and stored separately
for each state (House et al. 2001). In the prototype implementation,
the original input data (Granderson et al. 2020) were resampled to
15-min means.

Because the APAR rules are already expressed as inequalities,
their translation to the format at hand is mostly straightforward. For
the prototype, the heating mode Rule 1 is implemented. The origi-
nal rule is defined as

Tsa < Tma þΔTsf − εt

where Tsa = temperature of the air supplied by the AHU, i.e., supply
air temperature; Tma = mixed air temperature;ΔTsf = user-defined
parameter for air temperature increase over the supply fan; and εt =
user-defined threshold parameter accounting for errors related to
temperatures (House et al. 2001).

The rule is used in heating mode to detect inconsistencies in
supply air temperature and mixed air temperature, because heating
should cause the supply air temperature to be warmer (House et al.
2001). In the implemented expression syntax, the rule can be
expressed

?T sa < ?T maþ ?dT sf − ?e T

The user-defined parameters ?dT_sf and ?e_Tare also expressed
as variables and not encoded as constants in the expression to en-
able altering them between targets when reusing the analytic.

APAR groups the rules by the operating mode of the AHU,
evaluating only the rules for the current operating mode. Thus,
the mode of the system needs to be detected to evaluate the correct
rules. Although the simplest way to precondition each rule with a
mode check would be to include the mode check in each rule with
AND, this has the downside that it complicates changing the mode
detection logic due to it being repeated in multiple places. A more
scalable approach would be to implement AHU mode checks as

separate analytics and have the other analytics depend on those.
This potential addition of dependencies between analytics is dis-
cussed with other future research directions in the “Discussion”
section. However, in favor of simplicity, in the prototype the mode
detection and rules are implemented as separate analytics and are
expected to be combined when processing the results.

Detecting the mode of operation is implemented with the same
kind of inequalities. APAR defines the heating mode such that the
supply air temperature is controlled by modulating the heating coil
valve, while the cooling coil valve is closed, and the mixing box
dampers let in the minimum outdoor air (House et al. 2001). In the
implementation, the mixing box damper positions are ignored, and
instead the focus is on the occupancy status and the positions of the
heating and cooling coil valves. The inequality for detecting heat-
ing mode is then implemented as follows:

?occ > 0.01

AND ?u hc > 0.01

AND ?u cc < 0.01

where ?occ = occupancy status (0 = unoccupied and 1 = occupied);
?u_hc = control signal of the heating coil; and ?u_cc = control sig-
nal of the cooling coil. The binary occupancy status is converted
into a floating point number in the analytic implementation, which
is why the inequality compares against 0.01 to avoid problems with
imprecision. The assumption here is that the control signals vary
from 0.0 (fully closed) to 1.0 (fully open) and that occupancy is
indicated with a zero or one. Normalization of numeric values and
units is another potential future research direction, also discussed
subsequently.

Implementing the Models

Web Ontology Language (OWL) ontologies and RDF triple store
were chosen as the technology stack for expressing and storing the
models. For the purposes of the application example, the AHUs are
described as RDF triples with two different modeling approaches
and stored in a GraphDB triple store. This subsection explains two
approaches to modeling the terminological (TBox) and assertional
(ABox) knowledge required to support the analytics example. The
methods of developing ontologies are discussed elsewhere (for ex-
ample, Suárez-Figueroa et al. 2012), and are not the focus of this
study. Thus, this section will only briefly introduce the example
TBox and ABox models.

The TBox and ABox are both added to a GraphDB repository to
form the knowledge base. It is worth reiterating that using OWL
ontologies and triple stores is not required by the method, but is
one possible choice among others. For example, the information
could similarly be stored in a relational database and queried with
SQL. However, as discussed in the “Related Work” section, using
ontologies and OBDA offers flexibility and richer semantics over
encoding models in relational database schemas.

Two models with different ontologies forming the TBoxes are
created as examples. First, a model using Brick schema (Balaji et al.
2018) is explained. Following that, another modeling approach
based on flow systems ontology (FSO) (Kukkonen et al. 2022)
is explained. The prefixes used are listed in Fig. 9. The full models
are available online (Kukkonen 2022). As the purpose of the mod-
els is to only demonstrate that models with different modeling ap-
proaches can be connected to the analytic, their specific contents
and preparation steps are not discussed in detail.
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Brick Schema
Brick is an ontology for describing the assets and their relationships
in buildings, including logical and virtual assets such as data points.
Full documentation of Brick is available online (Brick Consortium
2021) and thus not repeated here. For the context at hand, the rel-
evant subset of the ontology consists of
• brick:hasPart/brick:isPartOf for (de)composition of objects;
• brick:hasPoint/brick:isPointOf for assigning points to assets;
• subclasses of brick:Point, such as brick:Valve_Command, for

classifying data points;
• subclasses of brick:Equipment, such as brick:AHU, for classi-

fying assets; and
• brick:timeseries, as well as brick:hasTimeseriesId and brick:

storedAt for defining data links for points.
A subset of the assertional model is shown in Fig. 10. In brief,

the data points are assigned either directly to the AHU or to one of
its subcomponents. The data points are classified with the available
classes and connected to their storage with brick:timeseries proper-
ties. Resources connected with brick:storedAt are nonnormative,
and in this example, a simple string property is used to identify
the time-series store as demofile with a particular name. Data Gate-
way has an adapter for accessing the data in SQLite database based
on the file name and the column name.

FSO-Based Approach
As an alternative to the tagging approach of Brick, another model is
implemented with a different paradigm. For example, whereas Rule
1 uses the term mixed air temperature, what it actually requires
is the temperature before the heating and cooling coils. In AHUs
with no mixing chamber and thus no mixed air, this rule is still
applicable. The alternative modeling approach stems from using
relationships of components and simplified assertions stating that
points are before, within, or after components.

The alternative model combines the FSO (Kukkonen et al. 2022)
and an unnamed data point ontology that connects data points to
components (Kukkonen 2021). Because complete descriptions are
available elsewhere, only a brief overview of the terminology is pro-
vided here. Although ontology engineering best practices would call
for reusing or aligning existing ontologies, such as Brick, the purpose
here of using different ontologies is to demonstrate the method’s abil-
ity to bind analytics to data points through different kinds of models.
As such, the used ontology is not necessarily something that should
be used in further applications, but it serves to demonstrate a suffi-
ciently different model. Developing a proper ontology combining
FSO with data points and potentially reusing or aligning parts of
Brick is outside of the scope of this study.

FSO contains the vocabulary to assert mass and flow relation-
ships between components and systems, as well as a component
classification derived from IFC. The fso:System can also be decom-
posed into subsystems, and even more particularly to supply and
return systems.

The data point ontology has classes for sensors, setpoints, and
such, as well as the relationships to assert their position relative to
components. The relationships include data:hasSupplySensor, data:
hasDischargeSensor, and data:hasControl.

Although brick:timeseries could again be used for data links,
another approach is implemented for the sake of demonstration.
A simple hasDataLink property is used, where the resource then
hasSource and hasExternalIdentifier.

Fig. 9. Prefixes used.

Fig. 10. Fragment of the AHU model expressed with Brick.
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Fig. 11 shows a fragment of the alternative assertional model. To
summarize, the AHU is modeled as a fso:System consisting of the
various components, which have their air and heat flow relation-
ships asserted. The data points are connected to the components.

APAR Parameters
APAR rules have user-defined parameters that are intended to be
adjusted to fit a particular system. In the case of the example rule,
there are two: ΔTsf (or ?dT_sf), which is intended to account for
the estimated air temperature increase over the supply fan, and εt
(or ?e_t), which is intended to account for errors related to temper-
ature measurements.

Implementing these parameters could be done in multiple ways.
For the purpose of the example, the parameters are implemented as
follows. Each target may have parameters bound with properties in
an example apar namespace. The object of the property is a data
point like any other. The data links are defined against a store that
returns constant values parsed from the external identifier of the
data link. An example is shown as a Turtle excerpt in Fig. 12.

The external identifier in this case has special handling by the
data store handler registered for time-series stores matching the
regular expression constants:(.*), where anything after the string
constants: is interpreted as the value type. For example, linking
a data point to a time-series store constants:float will cause the
identifier to be interpreted as a float. Thus, when the example data
link in Fig. 12 is used to retrieve data through the Data Gateway, the
handler will parse the identifier (“3.0”) as a float in this case, and
return the constant value with 1-min sample rate for the requested
time frame.

Finally, to account for targets that do not have a particular
parameter defined, the target queries for the rules can use default
values, as will be shown in the next subsection. These are prede-
fined data links that are shared between all the targets.

Connecting Analytics to Data with Queries

SPARQL queries to connect the data to the analytics are shown
here, and the full set is available online along with the models
(Kukkonen 2022). The used prefixes are shown in Fig. 9.

Two kinds of queries are defined. First, the query to retrieve data
links from a store is defined. It is not particular to any analytic, but
is related to the model store. Second, an example target query for
finding applicable targets and their variable bindings is illustrated.

Brick Schema
The data link query for Brick schema is shown in Fig. 13. It tra-
verses the properties brick:timeseries, brick:hasTimeseriesId, and

Fig. 11. Fragment of the AHU model expressed with FSO and data.

Fig. 12. Example of APAR parameter definition using the FSO-based
approach.
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brick:storedAt to get a result set connecting the internationalized
resource identifier (IRI) of the point as the point identifier, store
identifier, and the external identifier for the point.

The query used to find the bindings for APAR rule 1 from the
Brick model is shown in Fig. 14. Because Brick relies heavily on
the classification of points, the query is primarily about the classes
of points. The used pattern finds points of certain classes that are
the points of an air handling unit. Additionally, the APAR user
parameters are optionally retrieved if defined, with a default fall-
back if a parameter is not defined for a particular target. The param-
eter binding is the same as in the FSO-based approach because it is
not dependent on either Brick or FSO but is an APAR-specific ad-
dition. Here, the aparDefaults are expected to be stored in the same
triple store as the queried information models, but they could alter-
natively be queried from other sources with, for example, federated
queries.

FSO-Based Approach
The data link query for the FSO-based approach is shown in Fig. 15.
It is very similar to the one used for Brick schema in the previous
subsection.

The target query for the FSO-based approach is shown in
Fig. 16. Using component connections and not relying on the de-
tailed point taxonomy of Brick yields a slightly more complicated
query for this use case. The supply air temperature is defined as the
temperature point of a component downstream of the supply fan,

and the supply fan itself is defined as a fan inside the AHU that
supplies fluid (air) to some other component. The mixed air temper-
ature is defined as the temperature point before the heating coil,
where the heating coil is an energy conversion device that has heat
transferred from some other component.

Evaluating the Rule

The overall flow of evaluating an analytic was described in the “In-
formation Flow between Services” section, but is repeated here
with a more concrete example. When the Analytics service receives
the command to evaluate an analytic, the command carries the ID of
the analytic, identifiers for the model store and target that together
uniquely identify the target, and the start and end timestamps to run
the analytic for. With this information, the Analytics service can
retrieve the analytic logic from the database and deserialize it into
executable form, and also read the variable bindings for the given
analytic and target. These variable bindings are passed on to Data
Gateway, which in turn has stored the data links for the points. The
data links identify the time-series store and the ID to use when
querying that store to retrieve data for a given point. In this case,
most of the data is retrieved from a local SQLite database, and the
constants are generated as requested. After the Data Gateway re-
sponds to the Analytics service, the service has all it needs to evalu-
ate the analytic: the analytic logic, and a set of named time series to

Fig. 13. Data link query for Brick schema–based model.

Fig. 14. Target query for Rule 1 for Brick schema–based model.

Fig. 15. Data link query for FSO-based approach.
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pass in as inputs for the logic. The analytic is then evaluated against
the inputs, and the result is stored.

Discussion

The limited example prototype showcased in this paper illustrates a
simplified process of using the proposed method to implement an
expert rule–based fault detection application. For a more structured
approach of designing applications and capturing their knowledge
requirements, methods such as presented by Schneider et al. (2020)
exist. The focus of this study is a more detailed and structured def-
inition of the key services and their interactions for utilizing queries
and information models. The goal is to enable the analytics logic
and possible downstream processing to be implemented centrally,
while enabling queries on various models in different query lan-
guages to connect data points to the analytics.

Although the asynchronous message-based communication be-
tween the services makes some of the communication patterns
more complex and causes the need to cache some information, it
also greatly simplifies the horizontal scaling of the services. For
example, multiple instances of Data Gateway could handle requests
for time-series data, and each would use cached information about
data links instead of issuing queries against the information models.
On the other hand, the cached information needs to be updated
somehow, which was not explored in this study. Cache manage-
ment has strong ties to overall model management and provenance,
which itself is an important future research direction: how and
when are information models updated, and how is that information
propagated to relevant services.

Limitations of the proposed method and architecture include a
lack of data point aggregations, such as the average of all temper-
ature sensors matching a pattern. Instead, the analytics are expected
to operate on a set of specific, named inputs of one time series each.

Further, the current approach does not consider reusing queries: if
two model stores using, for example, Brick are connected, both
would require new queries to be instantiated to connect analytics,
leading to duplication.

Potential future work identified includes the study of enabling
dependencies between analytics, where the output of one analytic
could be used as the input for another analytic. This could prove
useful for avoiding repetitions of shared logic, such as state iden-
tification as used in APAR. Other major area of future development
is approaches into describing and normalizing values and units of
inputs. For example, control signals may be expressed with a deci-
mal between zero and one or as integers ranging from 0 to 100.
Further, the example used in this study is limited to a data set from
one building, and exploring the scalability to further buildings is an
important future research direction. Finally, supporting the training
and use of machine learning models for analytics is another poten-
tial future research direction.

As discussed by Kučera and Pitner (2018), applying analytics
does not need to be all or nothing, but a monitoring solution
can be built use case by use case. In a similar manner, information
models for plugging time-series stores into centralized analytics
suites can be developed depending on the available existing digital
information and budget. However, care should be taken and lessons
learned from previous knowledge modeling experiences in order to
build simple models that can be grown into more complex ones,
instead of needing to be replaced entirely when more complex use
cases are desired.

Conclusion

Given that significant amounts of energy are wasted in the opera-
tion of buildings, the application of analytics supporting MBCx
is limited. This study reviewed the varying approaches used to

Fig. 16. Target query for FSO-based approach.
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connect building data observations to analytics and showed that a
structured method using technology-independent information mod-
els has not been discussed. To address this, a method was described
for using structured descriptions of building systems in queryable
stores to bind inputs to time-series analytics. The method was
described through a software architecture and evaluated with an
example prototype of two air handling unit models and a fault
detection expert rule. The process of modeling the target systems
and defining queries to connect the analytic to the data stores was
walked through.

The method was shown to support connecting a time-series
transformer to two very different models of the air handling unit.
The method enables the analytic logic to be expressed once and
bound to different data points, supporting scalability in a central-
ized monitoring solution. Further research topics were identified,
including dependencies between analytics, considering units of
measurement, and integrating machine learning model training and
utilization.

Although no widely used industry standard exists for describing
the data points of building systems in the kind of context required
by many analytics applications, the described method is a potential
approach to building centralized monitoring applications that can
support different information models.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies. The AHU data were from Grander-
son et al. (2020), available at https://doi.org/10.1038/s41597-020
-0398-6. The example ontologies, triples, and queries are available
at https://doi.org/10.5281/zenodo.7361351 (Kukkonen 2022).
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