
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Teixeira, Wallace S.; Vadimov, Vasilii; Mörstedt, Timm; Kundu, Suman; Möttönen, Mikko
Exceptional-point-assisted entanglement, squeezing, and reset in a chain of three
superconducting resonators

Published in:
Physical Review Research

DOI:
10.1103/PhysRevResearch.5.033119

Published: 01/07/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Teixeira, W. S., Vadimov, V., Mörstedt, T., Kundu, S., & Möttönen, M. (2023). Exceptional-point-assisted
entanglement, squeezing, and reset in a chain of three superconducting resonators. Physical Review Research,
5(3), 1-13. Article 033119. https://doi.org/10.1103/PhysRevResearch.5.033119

https://doi.org/10.1103/PhysRevResearch.5.033119
https://doi.org/10.1103/PhysRevResearch.5.033119


PHYSICAL REVIEW RESEARCH 5, 033119 (2023)

Exceptional-point-assisted entanglement, squeezing, and reset in a chain
of three superconducting resonators

Wallace S. Teixeira ,1 Vasilii Vadimov,1 Timm Mörstedt ,1 Suman Kundu,1 and Mikko Möttönen 1,2

1Department of Applied Physiscs, QCD Laboratories, QTF Centre of Excellence,
Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland

2VTT Technical Research Centre of Finland Ltd., QTF Center of Excellence,
P.O. Box 1000, FI-02044 VTT, Finland

(Received 30 January 2023; accepted 12 July 2023; published 22 August 2023)

The interplay between coherent and dissipative dynamics required in various control protocols of quantum
technology has motivated studies of open-system degeneracies, referred to as exceptional points (EPs). Here, we
introduce a scheme for fast quantum-state synthesis using exceptional-point engineering in a lossy chain of three
superconducting resonators. We theoretically find that the rich physics of EPs can be used to identify regions in
the parameter space that favor a fast and quasistable transfer of squeezing and entanglement or a fast reset of the
system. For weakly interacting resonators with the coupling strength g, the obtained quasistabilization timescales
are identified as 1/(2

√
2g), and reset infidelities below 10−5 are obtained with a waiting time of roughly 6/g in

the case of weakly squeezed resonators. Our results shed light on the role of EPs in multimode Gaussian systems
and pave the way for optimized distribution of squeezing and entanglement between different nodes of a photonic
network using dissipation as a resource.

DOI: 10.1103/PhysRevResearch.5.033119

I. INTRODUCTION

Quantum mechanics has provided profoundly novel ways
of information processing, communication, and metrology
[1]. Although noninearity expressed by the anharmonicity
of energy levels is a key metric for physical realizations of
qubits, quantum harmonic systems have also a broad range of
quantum-technological applications employing, e.g., squeez-
ing and entanglement as resources [2,3]. The efficient use
of such properties in experiments typically requires quick
transitions from coherent to incoherent dynamics for different
stages of the protocols, and, hence, dissipation engineering us-
ing in situ tunable components plays an important role towards
fast control and scalability of practical quantum systems [4].

In circuit quantum electrodynamics (cQED), for example,
efforts have been made to integrate devices with in situ-
tunable dissipation to prepare specific quantum states [5–12],
produce fast reset [13–24], and to exploit the potential benefits
of open-system degeneracies, referred to as exceptional points
(EPs) [17,21,25–29]. In contrast to Hermitian degeneracies,
EPs induce the coalescence of eigenvalues and eigenvectors
of the dynamical matrix governing the open-system evolu-
tion leading to critical dynamics manifested by polynomial
solutions in time [30,31]. These features are key elements for
optimized heat flow [25] and sensitive parameter estimation
[30]. When EPs are dynamically encircled in the parameter
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space, counterintuitive effects not observed in closed systems
appear, such as the breakdown of the adiabatic approximation
and topological energy transfer [32–34]. Due to their novelty
for the observation of open-system phenomena and applica-
tions, EPs have also been acknowledged in other physical
architectures [35–37]. However, the relationship between EPs
and the emergence of nonclassical and nonlocal features in
multipartite continuous-variable (CV) quantum systems has
not been fully explored [38–43].

Quantum harmonic arrays have a practical appeal in cQED
for the implementation of quantum memories [44] and for the
capability to simulate many-body physics [45]. Even though
the transport of quantum correlations has been extensively
theoretically studied in related setups [46–49], the high di-
mension of such systems and their dissipative features render
the characterization of EPs an involved procedure [50–52].

Motivated by the above-mentioned potential use cases and
issues, in this paper, we introduce exceptional-point engineer-
ing for squeezing and entanglement propagation. We consider
a minimal setup for the production of high-order EPs, con-
sisting of a chain of three linearly coupled superconducting
resonators with independent decay channels. To some extent,
our system can be described by its first and second moments,
so that it can constitute an example of a Gaussian system,
i.e., a CV system represented by a Gaussian Wigner function
[3]. To analytically describe the EP-related phenomena, we
employ the Jordan normal form of the dynamical matrix of the
second moments, allowing for investigations beyond energy
flow.

Interestingly, we observe that even for weakly coupled res-
onators, the operation in the vicinity of a specific second-order
EP may turn the central resonator into a fast squeezing splitter
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FIG. 1. (a) Schematic of the general system considered in this pa-
per consisting of N-harmonic quantum modes linearly coupled to one
another (black lines). In addition, each mode is coupled to their own
Markovian environment (rounded squares). (b) Particular realization
of the system explored in this paper, where three superconducting
resonators are capacitively coupled in a linear-chain configuration.
In addition, each resonator has their own drive lines (triangles),
using, which the system can be prepared and measured. The decay
rates of resonators R2 and R3 can be controlled by quantum-circuit
refrigerators (QCRs) placed at the resonator input ports. Each QCR
is composed of a normal-metal-insulator-superconducting junction
and can remove photons incoherently from the system mediated by
electron tunneling at specific bias-voltage pulses [22,23].

and distant-entanglement generator using only initial squeez-
ing in a single resonator. We calculate theoretical bounds
for the squeezing and entanglement of the quasistable states
and observe their rich dependence on the initial squeezing
parameter. The entanglement generation here relies on the
availability of initial squeezing since the beam-splitter-type
interactions do not entangle the resonators in coherent states.
On the other hand, operation near a different, third-order EP
branch provides substantial speed up of the decay towards the
ground state. Therefore, the detailed knowledge of its open-
system degeneracies renders the system a versatile structure
for protocols requiring fast stabilization or reset of the desired
properties.

This article is organized as follows. In Sec. II, we present
the general theory of exceptional points in noisy Gaussian
systems. In Sec. III, we provide the details of the considered
setup, including the characterization of its EPs. Sections IV
and V are dedicated to the studies of different effects arising
at or near EPs with a focus on the quasistabilization and decay
of nonclassical Gaussian states, respectively. A discussion on
the use cases and limitations of EP engineering is provided in
Sec. VI. The conclusions are drawn in Sec. VII.

II. EXCEPTIONAL POINTS IN NOISY
GAUSSIAN SYSTEMS

Our general model shown in Fig. 1(a) consists of a system
of N harmonic modes and of an environment such that each
system mode is interacting with their local Markovian bath.
The jth mode is described by annihilation and creation oper-
ators â j and â†

j , respectively, with the canonical commutation

relations [â j, â†
k] = δ jk . We assume that the modes are linearly

coupled to one another in any desired topology yielding up to
quadratic terms in their coupling Hamiltonian. As an example
realization of such a general model, we explore in Secs. III–V
a linear chain of three lossy superconducting resonators as
shown in Fig. 1(b). Quadratic Hamiltonians can also be em-
ployed to accurately describe specific nonlinear systems, such

as an optomechanical system subjected to a strong optical
pump [53].

By defining the quadrature operators of the jth mode
as q̂ j = (â j + â†

j )/
√

2 and p̂ j = −i(â j − â†
j )/

√
2 and their

2N-dimensional vector as x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )�, the to-
tal Hermitian Hamiltonian describing the system classically
driven by amplitudes c = (c1, . . . , c2N )� can be cast into the
compact quadratic form [54]

Ĥ = 1
2 x̂�Hx̂ + c��x̂, (1)

where we dropped possible constant energy offsets, intro-
duced the 2N × 2N symmetric matrix H carrying the internal
and mode-mode coupling energies, and utilized the symplec-
tic matrix,

� =
N⊕

j=1

(
0 1

−1 0

)
. (2)

The commutation relations between the elements of x̂ read
[x̂ j, x̂k] = i� jk . Note that {q̂ j} and { p̂ j} play the role of gener-
alized dimensionless position and momentum operators such
that for superconducting LC circuits they are related to flux
and charge operators, respectively [55].

For the sake of simplicity, we assume throughout this work
that the system is only locally coupled to independent low-
temperature environments. Consequently, after tracing out the
environmental degrees of freedom, the temporal evolution of
the reduced density operator of the system, ρ̂, is given by
the Lindblad master equation d ρ̂/dt = −i[Ĥ, ρ̂]/h̄ + L↓(ρ̂ ),
where

L↓(ρ̂ ) = 1

2h̄

N∑
j=1

[2L̂↓
j ρ̂(L̂↓

j )† − {(L̂↓
j )†L̂↓

j , ρ̂}], (3)

describes the incoherent dynamics of the system associated to
the jump operators {L̂↓

j }, each of which removes a photon from

the corresponding mode. Namely, L̂↓
j =

√
h̄�

↓
j â j , where {�↓

j }
are energy decay rates. In the above equations, there are no
terms which induce thermal excitations since we assumed the
baths to be at low temperatures. Note that L̂↓

j can be written as

a linear combination of the elements of x̂, i.e., L̂↓
j = (u↓

j )��x̂,

with coefficients given by a 2N-dimensional vector u↓
j .

Under the above conditions and for an initial Gaussian state
of the N oscillators, the dynamics of the system can be fully
characterized by the so-called mean vector and covariance
matrix (CM), the components of which are 〈x̂ j〉 = Tr(x̂ j ρ̂)
and V jk = 1

2 (〈x̂ j x̂k〉 + 〈x̂k x̂ j〉) − 〈x̂ j〉〈x̂k〉, respectively. Here,
we aim to solve the dynamics of the CM since it captures all
squeezing and nonlocal properties of the system. By differ-
entiating V with respect to time and using Eq. (3), we verify
that the CM evolves according to the differential Lyapunov
equation [56],

dV
dt

= �V + V�� + D, (4)

where we defined the 2N × 2N matrices � = �(H −
Im ϒ)/h̄, D = Re ϒ/h̄, and ϒ = ∑

j[u
↓
j (u↓

j )†]. The CM is a
real, symmetric, and positive-definite matrix. As a compact
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statement of the uncertainty principle, the CM must also fulfill
the condition V + i�/2 � 0 [57].

Below, we focus on the scenario where � and D are inde-
pendent of time. Given an initial CM V(0) ≡ V0, the solution
of Eq. (4) in this case is given by [58]

V(t ) = e�t (V0 − Vss)e��t + Vss, (5)

where Vss is the steady-state CM obtained as the solution
of the algebraic Lyapunov equation �Vss + Vss�

� + D = 0.
We observe from Eqs. (4) and (5) that � has the role of a
dynamical matrix so that all possible EPs are determined by
its structure. Since the entries of � are real numbers with
units of angular frequency, its eigenvalues are the complex-
conjugate pairs λ±

sm
. Here, we define the index sm = (m, μm)

to refer to the mth pair of the eigenvalues of �, each eigenvalue
having a multiplicity μm. Observe that the maximum allowed
multiplicity is, thus, max(μm) = N .

The matrix � admits a Jordan normal form
� = PJP−1, where P is a noningular matrix and J =
diag[J−

s1
(λ−

s1
), . . . , J+

sk
(λ+

sk
)]. The Jordan blocks J±

sm
(λsm ) can be

decomposed as μm × μm matrices J±
sm

(λ±
sm

) = λ±
sm

Iμm + Nμm

with Iμm being the identity matrix and Nμm having the
elements above the diagonal filled with ones. Naturally, the
Jordan blocks for μm = 1 are just the scalars λ±

sm
. With these

definitions, Eq. (5) can be rewritten as

V(t ) = PeJt P−1(V0 − Vss )(P−1)�eJ�t P� + Vss, (6)

where eJt = diag(eλ−
s1

t eNμ1 t , . . . , eλ+
sk

t eNμk t ).
The emergence of EPs and the associated critical dynamics

of the CM correspond to the cases where the dynamical matrix
� becomes nondiagonalizable, i.e., for any μm > 1. In other
words, degeneracies in the spectrum of � produce nilpotent
matrices Nμmt , the exponentials of which yield polynomials in
time. Hereafter, these non-Hermitian degeneracies will be re-
ferred to as EP-μm. Considering the definition of �, we remark
that the term �H itself does not promote critical dynamics as
it gives rise to unitary evolution of the CM. The production
of EPs must be accompanied with the incoherent processes
caused by the local environments and attributed to the term
� Im ϒ.

To summarize, Eq. (6) is valid for any time-independent
matrices � and D describing the evolution of a system of cou-
pled quantum harmonic oscillators in noisy Gaussian channels
yielding the steady-state CM Vss. At an EP, Eq. (6) reveals that
the solution linked to the critical dynamics is an exponential
function multiplied by a polynomial, which will be explored
below in specific cases. Alternatively, the description of EPs
for quadratic Liouvillians, such as the one related to Eq. (3),
may be given in terms of annihilation and creation operators
as recently developed in Ref. [59].

III. THREE COUPLED RESONATORS UNDER
INDIVIDUAL LOSSES

The system and its environment considered in this paper
is depicted in Fig. 1(b). Three superconducting resonators,
R1, R2, and R3 are capacitively coupled in a linear-chain
configuration through a fixed coupling constant g > 0. We
focus on a single electromagnetic mode for each resonator,

which, including the coherent couplings, defines our system.
Each mode may dissipate its energy into its independent lin-
ear bath. Nevertheless, quantum effects may emerge at low
temperatures and for sufficiently high quality factors and for
nonclassical initial states [55], and, consequently, we need to
employ a quantum-mechanical model.

In the single-mode and rotating-wave approximations, the
Hamiltonian of the system reads

Ĥ = h̄
3∑

j=1

ω j

(
â†

j â j + 1

2

)
+ h̄g(â1â†

2 + â2â†
3 + H.c.), (7)

where ω j is the fundamental angular frequency of the jth
resonator, {â j} are the corresponding ladder operators defined
as in Sec. II, and H.c. refers to the Hermitian conjugate. The
losses of the system are modeled here as in Eq. (3) with
jump operators L̂↓

j = √
h̄κ j â j and decay rates κ j > 0 for j =

1–3. Some of the decay rates can be adjusted experimentally
through the QCRs shown in Fig. 1(b). As we show below, to
produce EP-3 with degenerate resonators, we need asymmet-
ric decay rates, a scenario, which can be realized by the two
independent QCRs shown in Fig. 1(b).

By writing the ladder operators in terms of the quadrature
operators as â j = (q̂ j + i p̂ j )/

√
2 and using the notation of

Sec. II, the 6 × 6 dynamical matrix � becomes

� =
⎛
⎝K1 G 02

G K2 G
02 G K3

⎞
⎠, (8)

where 02 is the 2 × 2 null matrix and

K j =
(− κ j

2 ω j

−ω j − κ j

2

)
, G =

(
0 g

−g 0

)
. (9)

By denoting the single-mode CM of the vacuum state as
V( j)

vac = diag(1, 1)/2, one readily obtains

D =
3⊕

j=1

κ jV( j)
vac, Vss =

3⊕
j=1

V( j)
vac, (10)

the latter corresponding to the CM of any product of three
coherent states. Since the jump operators here do not pro-
mote incoherent displacements, the steady state is actually the
three-mode vacuum state |0〉1|0〉2|0〉3 as long as all κ j > 0.

A. Characterization of exceptional points

Finding the EPs directly from the spectrum of � may be
challenging as one needs to solve a 2N th degree polynomial
equation, or in the studied case, a sextic equation. However,
owing to the absence of counter-rotating terms in the form
of Ĥ , here, the characterization of EPs can be simplified
to the study of the dynamical equation for the 3 × 3 vec-
tor arf = (〈â1〉rf , 〈â2〉rf , 〈â3〉rf )�, where 〈â j〉rf are expectation
values calculated at a frame rotating at angular frequency ω1

about
∑3

j=1 â†
j â j , see Appendix A. In such a frame, one can

obtain ȧrf = −iHarf , with H having the role of an effective
non-Hermitian Hamiltonian. Explicitly, we have

H =
⎛
⎝−i κ1

2 g 0
g δ2 − i κ2

2 g
0 g δ3 − i κ3

2

⎞
⎠, (11)
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FIG. 2. Exceptional-point engineering for a linear chain of three
lossy resonators with degenerate angular frequencies ω1 = ω3, ex-
pressed by a purely real parameter ε = ε3, see Eqs. (12)–(14).
(a) Decay rate (top panel) and frequency (bottom panel) offsets
of resonator R2 as functions of the decay rate offset of resonator
R3, expressed by the complex-valued function f (ε) = ε2 defined
in Eq. (13). (b) Effective decay rate (top) and effective frequency
(bottom) offsets of the eigenmodes of the system as functions of the
decay rate offset of resonator R3, expressed by the complex-valued
functions hj (ε) defined in Eq. (14). All offsets are given with respect
to the parameters of resonator R1. In (b), solid (dashed) curves
represent the single (double) roots of the characteristic polynomial
of H. In all cases, the labels ++, −+, +−, and −− indicate the four
branches of f (ε) obtained from the corresponding selection of signs
in Eq. (13). The vertical dashed lines in all panels highlight the values
of ε producing EP-3. The shaded area in (a) indicates the relevant
region of the Re(ε3) − Re(ε2) parameter space for this paper.

where δ2 = ω2 − ω1 and δ3 = ω3 − ω1 are frequency
detunings.

Without loss of generality, we assume that the parameters
g, ω1, and κ1 are fixed. Thus, it is convenient to express
the parameters of R2 and R3 with respect to those of R1.
We proceed with this parametrization using complex-valued
parameters {εk} such that for k = 2, 3, we have

δk (εk ) =
√

2g Im(εk ), κk (εk ) = κ1 + 2
√

2gRe(εk ). (12)

As detailed in Appendix A, degeneracies in the spectrum of
H appear provided that the relationship between ε2 and ε3 is
expressed through the complex-valued function,

f (ε) = 1

2

⎡
⎣ε ±

√
ε4 + 10ε2 − 2 ± 2(1 + 2ε2)3/2

ε2

⎤
⎦, (13)

where we defined ε = ε3 and f (ε) = ε2 to highlight the de-
pendence of the parameters of R2 on those of R3 to produce
EPs. Note that f (ε) presents four branches indicated by the
signs “±” as shown for a purely real ε in Fig. 2(a).

At the degeneracies of H, such a matrix has, at most,
two distinct eigenvalues δeff

j (ε) − iκeff
j (ε)/2 from which the

effective detunings and decay rates of the normal modes
are extracted as δeff

j (ε) = √
2g Im[h j (ε)] and κeff

j (ε) = κ1 +

2
√

2gRe[h j (ε)] (Appendix A), where

h1(ε) = f 3 − ε f 2 − (ε2 + 4) f + ε3 + ε/2

f 2 − ε f + ε2 − 3
,

h2(ε) = h3(ε) = 1

4

[
2ε f 2 + 2(ε2 + 1) f − 7ε

f 2 − ε f + ε2 − 3

]
, (14)

and we write f = f (ε) for brevity. Consequently, the degen-
erate eigenvalues of � are given by the pairs (Appendix A),

λ±
s j

(ε) = −κeff
j (ε)

2
± i

[
ω1 + δeff

j (ε)
]
, (15)

which coincide at an EP-3. The rich structure of the decay
rates and frequencies of the normal modes is shown in
Fig. 2(b) for a purely real ε.

Without imposing further restrictions, the considered open
system presents six EP-3’s, two of which are obtained for
ε = 2 f (ε) = ±2 so that all modes are degenerate, κ2 =
κ1 ± 2

√
2g and κ3 = κ1 ± 4

√
2g. These cases correspond to

the square-root singularity of f (ε) and are highlighted in
Fig. 2. The remaining four EP-3’s are obtained with f (ε) =
(±3

√
3 ± i)/(2

√
2) and ε = 2i Im[ f (ε)] = ±i/

√
2, thus, re-

quiring equal decay rates for R1 and R3, κ2 = κ1 ± 3
√

3g, in
addition to the detunings δ2 = ±g/2 and δ3 = ±g. The degen-
eracy map for such cases is shown in Fig. 6 of Appendix A for
completeness.

All other cases expressed through Eqs. (13) and (14) are as-
sociated with EP-2. Our numerical tests show the coalescence
of eigenvectors of H following the branches f (ε), indeed indi-
cating open-system degeneracies. The Jordan decompositions
of � yielding polynomial-in-time features of the dynamics are
shown in Appendix B for relevant EPs in this paper.

We emphasize that the experimental feasibility of EP en-
gineering in the present model is strongly dependent on
the physical limitations of the setup. For instance, to obtain
the four instances of EP-3 with nondegenerate frequencies,
one needs frequency detunings on the order of g/(2π ),
which are typically much smaller than the frequency of
superconducting resonators themselves [55]. Hereafter, we
restrict our discussion to degenerate resonators, i.e., Im(ε) =
Im[ f (ε)] = 0. By also considering κ1 as the smallest decay
rate, another restriction for obtaining EPs is imposed such
that both Re(ε) � 0 and Re[ f (ε)] � 0. In this case, the only
allowed branches of f (ε) are “+−” and “−−” for ε � 2,
and “++” for ε � 0, see the shaded region in Fig. 2(a). In
particular, the branch ++ at ε = 0 yields weakly dissipative
normal modes, with one of them decaying according to κ1, see
Fig. 2(b) and Eq. (14). This behavior suggests that a quasista-
bilization of some properties of the system can be obtained
with the combination of a small κ1 and a proper choice of the
EP as explored in detail in Sec. IV.

B. Single-mode squeezing and bipartite entanglement

Below, we specifically investigate single-mode squeezing
and bipartite entanglement for the three-resonator system. For
Gaussian evolution, these quantities can be addressed directly
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from the specific partitions of the total CM,

V =
⎛
⎝ V(1) C(12) C(13)

C(12)� V(2) C(23)

C(13)� C(23)� V(3)

⎞
⎠, (16)

where V( j) is the reduced CM of resonator R j, and C( jk) is the
intermodal correlation matrix between resonators R j and Rk
[54].

Since all single-mode Gaussian states can be written as
squeezed thermal states apart from local displacements, the
components of the reduced CM of resonator R j can be cast
into the form [60]

V( j)
11 = (N̄j + 1/2)[cosh(2r j ) + sinh(2r j ) cos φ j],

V( j)
22 = (N̄j + 1/2)[cosh(2r j ) − sinh(2r j ) cos φ j],

V( j)
12 = (N̄j + 1/2) sinh(2r j ) sin φ j, (17)

where r j and φ j are real-valued quantities defining the squeez-
ing parameter ξ j = r jeiφ j and N̄j is the effective thermal
occupation number of resonator R j. As a consequence, one
can extract r j and N̄ j as

r j = 1

2
sinh−1

⎡
⎢⎣
√(

V( j)
11 − V( j)

22

)2 + 4V( j)2
12

2(N̄j + 1/2)

⎤
⎥⎦,

N̄j =
√

det V( j) − 1

2
, (18)

and the single-mode purity is readily given by P j = (2N̄j +
1)−1.

Although bipartite entanglement can be quantified by the
reduced von Neuman entropy given a pure state of the com-
plete system [61], an entanglement measure for the mixed
states is not uniquely defined [62]. Here, we focus on the
concept of logarithmic negativity [63], which is based on
the Peres-Horodecki separability criterion [64,65] and fulfills
the conditions for an entanglement monotone [66].

Given Eq. (16) and considering the subsystems R j and Rk
( j < k), one can write their joint CM as

V( jk) =
(

V( j) C( jk)

C( jk)� V(k)

)
. (19)

For Gaussian states, the logarithmic negativity E jk can then be
computed as [63]

E jk = max[0,− log2(2ν̃−
jk )], (20)

where ν̃−
jk = {
̃ jk − [
̃2

jk − 4 det V( jk)]
1
2 } 1

2 /
√

2 being the

smallest symplectic eigenvalue of Ṽ( jk), which corresponds
to the two-mode CM obtained after the Peres-Horodecki par-
tial transposition of the associated bipartite density matrix,
and 
̃ jk = det V( j) + det V(k) − 2 det C( jk) [65,67]. The in-
equality ν̃−

jk � 1/2 is a necessary and sufficient condition
for separability of bipartite Gaussian systems of two modes
[65,67].
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FIG. 3. (a) Dynamics of the squeezing parameter r1 and effective
thermal occupation N̄1 of resonator R1 and the logarithmic negativity
between R1 and R3, E13 for the indicated values of the damping
rate of R2, κ2/g. The shown data correspond to a crossover from
underdamped to overdamped dynamics with critical damping at
κ2/g = 5.658. The frequencies of the resonator modes are chosen
as ω1/g = ω2/g = ω3/g = 5000, the other damping rates as κ1/g =
κ3/g = 10−3, and the initial squeezing parameter of R3 as r = 1. The
corresponding values of ε2 as defined in Eq. (12) are ε2 = 0.2 (gray
curves), ε2 = 2.0 (blue curves), and ε2 = 4.0 (red curves). In the
chosen parameter regime, the results are essentially independent of
the resonator-resonator coupling strength g. (b) Maximum achieved
quantities in temporal evolutions corresponding to (a) at the critical
damping as functions of the initial squeezing parameter r for selected
values of κ1/g. In all panels, dashed lines correspond to long-time
values in the limit κ1/g → 0, see Eq. (22).

IV. QUASISTABILIZATION OF SQUEEZING
AND ENTANGLEMENT

In this section, we study the propagation of single-mode
squeezing and bipartite entanglement in the open quan-
tum system of Fig. 1(b). The initial state is chosen as
|0〉1|0〉2Ŝ3(r)|0〉3, where Ŝ3(r) = exp[r(â†2

3 − â2
3)/2] is the

single-mode squeezing operator of R3 and r � 0. Such a state
has the CM,

V0 = 1
2 diag(1, 1, 1, 1, e2r, e−2r ), (21)

which indicates that the variances of R3 are initially modified
by the factors e±2r . We employ Eq. (5) to numerically obtain
the 6 × 6 time-evolved CM V(t ) at different points of the
parameter space. Here, we set κ1 = κ3 as the smallest decay
rates of the system and test different κ2 = κ1 + 2

√
2gRe(ε2)

with Re(ε2) � 0 and Im(ε2) = 0. Within these conditions, the
only allowed EP-branch is ++ so that an EP-2 is produced at
f (ε = 0) = 2, see Eq. (13) and Fig. 2(a).

In Fig. 3(a), we observe the emergence of squeezed thermal
states for resonator R1 and bipartite quantum correlations
expressed through the logarithmic negativity E13 with a clear
passage from underdamped to overdamped dynamics with
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increasing κ2. The squeezing degree of R2 along with the
logarithmic negativities E12 and E23 (data not shown) is rapidly
suppressed for large ratios κ2/g. On the other hand, the
small values of κ j/g, j = 1, 3, help to delay the decay of
the system towards the three-mode vacuum state, and this
quasistability tends to be achieved faster near the critical-
damping regime produced by the EP-2. Such a behavior is
not present at the EP-2 if R1 is directly connected to R3,
which reduces the dimension of the system to N = 2. In such a
case, the only two normal modes of the system decay at equal
rates [25].

The maximum achieved values of r1, N̄1, and E13 as func-
tions of the initial squeezing parameter r for the system
dynamics at the EP-2 are shown in Fig. 3(b). Their values
in the limit κ j → 0, j = 1, 3, and t → ∞, can be estimated
directly from Eqs. (18) and (20) with the help of the Jordan
decomposition of � shown in Appendix B. One readily ob-
tains r�

2 = N̄�
2 = E�

12 = E�
23 = 0, whereas,

r�
1 = r�

3 = 1

2
log

[
3 + e2r

√
10 + 6 cosh(2r)

]
,

N̄�
1 = N̄�

3 = 1

8
[
√

10 + 6 cosh(2r) − 4],

E�
13 = 1

2
[1 − log2(1 + e−2r )]. (22)

The superscripts “�” in Eqs. (22) indicate that such quantities
are bounds for the quasistabilized states, shown as dashed
lines in Fig. 3. Interestingly, we can generate entanglement
between resonators R1 and R3, although the entanglement
with resonator R2 is rapidly suppressed.

From Fig. 3(b) and Eqs. (22), we observe that the squeez-
ing splitting increases linearly with r for r 
 1 where thermal
occupancy is insignificant. The squeezing-splitting capacity
r�

1/r and the degree of entanglement between R1 and R3 tend
to saturate to 1/2 in the limit r → ∞ with the expense of also
thermally populating these resonators. Using the decibel scale
defined by r = 10 log10(e2r ) dB [68], an initial amount of
squeezing r ≈ 3 dB is roughly converted into squeezed states
with r�

1 = r�
3 ≈ 0.772 dB and purities P�

1 = P�
3 ≈ 0.997 with

E�
13 ≈ 0.207. Despite producing a faster decay towards the

actual steady state of the system, an increase in two orders
of magnitude in κ1/g does not provide significant differences
in the maximum quantities for small r.

To further address the quasistabilization of entanglement
and squeezing transferred to R1 for different κ2’s, we diag-
onalize Eq. (11) to obtain the effective frequency detunings
and decay rates of the system as shown in Figs. 4(a) and 4(b),
respectively. For κ1 
 κ2, we obtain two eigenmodes with

frequency detunings δeff
± ≈ ±Im(

√
κ2

2 − 32g2)/4 and dissipa-

tion rates κeff
± ≈ κ2/2 ± Re(

√
κ2

2 − 32g2)/2, which coalesce

at κ2 ≈ 4
√

2g. The frequency detuning δeff
0 = 0 and dissipa-

tion rate κeff
0 = κ1 are preserved, thus, indicating that one

of the eigenmodes remains hidden from the dissipation of
resonator R2.

Since clearly the speed of quasistabilization for the squeez-
ing and entanglement of resonator R1 depend on κ2 [Fig. 3(a)]
and since κeff

+ � κeff
− , we conclude that the timescale for

FIG. 4. (a) Effective frequency detunings and (b) effective decay
rates of the eigenmodes of the coupled system as functions of the
decay rate of resonator R2, κ2, in units of the resonator–resonator
coupling strength g. (c) Time tα to yield quasistable squeezing (filled
circles, α = r1) and entanglement (filled squares, α = E13) within an
uncertainty σα = 10−5, see the main text. The dashed lines represent
corresponding results from the fit functions of Eq. (23). In all panels,
the parameters are chosen as in Fig. 3(a), and the colored regions sep-
arate the underdamped from the overdamped dynamics with critical
damping at κ2/g = 5.658, corresponding to an EP-2.

this quasistabilization is roughly given by 1/κeff
− ≈ 2/[κ2 −

Re(
√

κ2
2 − 32g2)]. To arrive at a more accurate expression for

the quasistabilization time, we first fit functions of the form

rfit
1 (t ) = r�

1

2
e−yr1 κ1t

{
e−κeff

− t/2[1 − 3 cos(δeff
− t )] + 2

}
,

Efit
13(t ) = E�

13e−yE13 κ1t [1 − e−κeff
− t cos2(δeff

− t )], (23)

to time traces similar to those in Fig. 3(a) and find yr1 ≈
0.75 and yE13 ≈ 1.3. Although these functions neglect the
polynomial-in-time solution at the EP-2, they capture the main
features of the over and underdamped dynamics, and, hence,
are accurate enough from our following analysis.

Next, we define the quasistabilization time tα as the earliest
time instant after which the quantity α = r1, E13 stays within
an uncertainty σα from the ideal value α�e−yακ1tα where we
take into account also the slow decay of the maximum attain-
able value owing to finite κ1. More precicely,

tα = min{t |α�e−yακ1t − α̃(t ) � σα}, (24)

where α̃(t ) is the lower envelope of the possibly oscillating
α(t ). Note that by this definition, α̃(t ) = α(t ) in the critically
and overdamped dynamics.
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In Fig. 4(c), we show the behavior of the quasistabilitation
time tα on the dissipation rates κ2 for an error σα = 10−5 as
obtained from the solutions of the temporal evolution of the
system similar to those in Fig. 3(a). The shortest quasistabi-
lization times are obtained in the vicinity of the EP-2 owing
to the peak in κeff

− illustrated in Fig. 4(b). Using the lower
envelopes of the fitting functions (23) in Eq. (24), one can
estimate the quasistabilization time as

tα ≈
log

(
α�

σα

)
yακ1 + zακeff−

, (25)

with zr1 ≈ 0.5 and zE13 ≈ 1. Therefore, tα tends to scale loga-
rithmically with the desired error.

V. FAST RESET NEAR EXCEPTIONAL POINTS

As the final application of EPs, we discuss the reset of
the resonator chain to its ground-state |0〉1|0〉2|0〉3. Typically,
stronger dissipation leads to faster decay, but, of course, in our
system where the coupling between the different resonators
is weak compared with the excitation frequencies of the bare
resonators, the critical dynamics plays an important role. Sim-
ilar features are prone to arise in a quantum register of several
coupled qubits.

To quantitatively study the accuracy of the reset, we define
the infidelity,

Iss(ρ̂) = 1 − Fss(ρ̂), (26)

where Fss(ρ̂) = 〈0|1〈0|2〈0|3ρ̂|0〉1|0〉2|0〉3 is the overlap prob-
ability between an arbitrary three-mode state ρ̂ and the ground
state. For multimode Gaussian states with the null mean vector
〈x̂〉, Fss can be directly computed from the covariance matrix
V, which for the present case becomes [3]

Fss = 1√
det (V + Vss)

, (27)

where Vss given in Eq. (10). An optimized reset is achieved
with the set of free parameters producing the fastest decay to
the ground state, i.e., the minimal Iss in a given time.

Figure 5 shows the reset infidelity for different parameter
values and for an initial state, which is obtained by waiting
for a preparation time τs at EP-2 after squeezing the vacuum
at resonator R3 by a finite r. Note that if τs = 0, one has
the initial squeezed state with the covariance matrix given
by Eq. (21), and with τs = 8/g, one prepares an initial state
with entanglement and squeezing split between R1 and R3,
see Fig. 3(a). In Fig. 5(a), we show the dependence of Iss on
the decay rates κ2 and κ3 in the region corresponding to the
shaded area in Fig. 2(a) for the above-mentioned preparation
times and immediately following reset times τr . Although the
regions of low infidelity are relatively broad if all squeezing
is concentrated in R3 so that no entanglement is present,
we observe a narrowing of such regions if τs = 8/g. These
regions tend to cover the EP-3 and follow the real components
of the −− branch of f (ε3) as ε3 is increased. Such a feature
is even more prominent for long reset times naturally leading
to lower reset infidelities. Note from Fig. 2(b) that this branch
tends to produce highly dissipative normal modes for ε3 > 2.
In contrast, at least, one decay rate produced by the +− and
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FIG. 5. (a) Reset infidelity Iss of degenerate resonators as a
function of the dimensionless decay rate offsets Re(ε3) and Re(ε2)
for selected choices of preparation times τs (top and bottom panels)
and reset times τr (left and right panels). During the time-interval
τs, the system is set at the EP-2 with Re(ε3) = 0 and Re(ε2) = 2.
Solid curves on top of the contour plots show the components of the
EP branches ++ (blue), +− (gray), and −− (green) in the Re(ε3) −
Re(ε2) parameter space as in the shaded region of Fig. 2(a) with EP-3
indicated by dashed circles. The other parameters are ω j/g = 5000,
j = 1–3, κ1/g = 10−3, and r = 1. (b) Reset infidelity Iss at the EP-3
as a function of reset times τr (in units of g−1) for different prepa-
ration times τs and decay rate κ1/g = 10−3. Solid (dashed) curves
show data for r = 1.0 (r = 2.0). (c) Reset infidelity Iss at the EP-3
as a function of squeezing parameter r for different reset times τr and
for preparation time τs = 8/g. Solid (dashed) curves show data for
κ1/g = 10−3 (κ1/g = 10−1). The remaining parameters are chosen
as in (a).

++ branches is slow even with increasing ε3, rendering such
branches less favorable for the reset.

Figure 5(b) shows the reset infidelity Iss as a function of
the reset times τr at the EP-3 for different initial states. In
all displayed cases, low infidelities Iss are indeed achieved
beyond τr ∼ 6/g, owing to the exponential dependence on
τr . For such reset times, the distribution of squeezing and
entanglement tends to have a minor relative effect on the reset
performance. This is in stark contrast with the short-reset-time

033119-7



WALLACE S. TEIXEIRA et al. PHYSICAL REVIEW RESEARCH 5, 033119 (2023)

cases where the decay towards the ground state tends to signif-
icantly accelerate if all initial squeezing is poorly distributed,
remaining mostly in R3. We observe that the reset perfor-
mance is degraded for small ratios of κ1/g and for increasing
initial squeezing parameters as displayed in Fig. 5(c). In such
scenarios, for a finite reset time, the infidelity tends to grow
asymptotically to unity in the limit r → ∞.

VI. DISCUSSION

We observed that fast generation of entanglement and
propagation of squeezing in a linear chain of three su-
perconducting resonators may benefit from the detailed
understanding of critical damping in the system. Here, the
highly dissipative resonator R2 acts as an incoherent entan-
glement generator and squeezing splitter with the cost of
reducing the purity of the local states through the increase in
their effective temperatures. The role of critical damping to-
wards stabilization has also been acknowledged recently in an
autonomous quantum thermal machine with two qubits [69].

The stabilization of squeezed states through reservoir engi-
neering in superconducting circuits has been recently reported
in Ref. [12]. We highlight that the scheme in our paper
differs from typical two-mode squeezing operations since
it arises from the combination of dissipation and only a
single-mode squeezing source available in the beginning of
the dynamics, thus, being also distinct from conventional
reservoir-engineering protocols. On the other hand, we do
not need continuous driving terms since the structure of cou-
plings and dissipation of the system promote a separation of
timescales for the decay of the normal modes. We explicitly
show that this can be beneficial if fine-tuning κ2 near a par-
ticular EP-2 instead of only roughly assuming the conditions
κ j 
 κ2, g for j = 1, 3.

The results shown in Figs. 3 and 4 also suggest that con-
catenating similar structures can be used for fast and stable
distribution of entanglement to every other node in a photonic
network. Although, spoiling Gaussian features of the system
[70,71], entanglement distillation protocols [72] may be used
in such cases to increase the amount of entanglement shared
by the nodes. Particular low-order EPs of high-dimensional
systems may be used to speed up the generation of quasistable
states, and, hence, they may have potential use in the cases
in quantum protocols, although the open-system-degeneracy
map in such cases becomes more intricate.

Regarding the unconditional dissipative reset of the sys-
tem, the role of critical damping becomes more evident. Here,
the region near the EP-3 and following a particular EP-2
branch is a reasonable choice of parameters to produce a
substantial performance enhancement of the reset. Since the
covariance matrices of the vacuum state and a product of co-
herent states are identical, such regions in the parameter space
could also be used to promote unconditional fast stabilization
of coherent states with a proper inclusion of driving terms in
the system Hamiltonian.

Let us present typical experimental parameters of the cir-
cuit 1(b) that could reproduce the findings of this paper. For
a resonance frequency of ω/(2π ) = 5.0 GHz, the simulated
values of coupling strength and lowest decay frequencies

are g/(2π ) = 1.0 MHz and κ1/(2π ) = 1.0 kHz, respectively.
Such resonance frequency and coupling strength have been
conveniently experimentally achievable for longer than a
decade, and the quality factor of 5 × 106 implied by the lowest
decay rate can be achieved with state-of-the-art fabrication
techniques. The EP-2 used for stabilization is, thus, achieved
with κ2/(2π ) ≈ 5.66 MHz and κ3/(2π ) = 1.0 kHz, whereas,
the EP-3 with κ2/(2π ) ≈ 2.83 and κ3/(2π ) ≈ 5.66 MHz.
Even though the almost four-orders-of-magnitude tunability
required to interchange between this particular EP-2 and the
EP-3 may be technically challenging, the maximum achiev-
able decay rates with the QCR are beyond the ones considered
here and their demonstrated on/off ratios are close to these
requirements [23].

VII. CONCLUSIONS

We demonstrated the theory of exceptional-point-related
phenomena for continuous-variable systems described en-
tirely by their second moments, consequently, capturing
different nonclassical features and nonlocality largely ne-
glected in previous work. For a linear chain of three
lossy superconducting resonators, we analytically obtained
its open-system-degeneracy map and observed that dif-
ferent parameter sets yielding different exceptional points
can be used to identify sweet spots for the optimiza-
tion of squeezing propagation, entanglement generation, and
reset.

More precisely, we assessed the role of critical dynamics
for dissipative state synthesis by numerically simulating the
temporal evolution of the covariance matrix of the system.
The region of the parameter space considered in the simula-
tions is physically motivated by recent experimental advances
in dissipation-tunable devices embedded to superconducting
circuits.

We found that the quasistabilization into mixed bipar-
tite entangled states generated from an initially squeezed
resonator R3 is optimized in the vicinities of a particular
low-dissipative EP-2 produced with symmetric decay rates
of resonators R1 and R3 [see the ++ branch of f (ε) in
Eq. (13)]. In such scenarios, one observed that the timescale
for this quasistabilization is minimum for κ2 ≈ 4

√
2g and

κ1, κ3 
 κ2. Using the Jordan decomposition of the dynam-
ical matrix, we obtained analytical bounds for the maximum
achievable quasistable squeezing-splitting capacity and log-
arithmic negativity. Remarkably, all residual squeezing of
the central resonator is removed within the quasistabiliti-
zation timescales, and, consequently, the choice of EP-2
also quickly removes the entanglement of R2 with the other
resonators.

Furthermore, we investigated the dissipative reset of such
nonclassical states to the ground state. The region in the pa-
rameter space producing the lowest reset infidelities at given
reset times τr requires asymmetric resonator decay rates and
tend to follow a particular high-dissipative EP branch, which
includes the physically attainable EP-3 [see the −− branch
of f (ε) in Eq. (13)]. In this EP-3 case, the distribution of the
initial squeezing into the different resonators tends to become
irrelevant for the reset performance beyond τr ∼ 6/g.
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In conclusion, this paper paves the way for a deep un-
derstanding of the role of exceptional points in multimode
continuous-variable systems with potential applications in
quantum technology, such as in using dissipation as an in-
gredient for fast transfer of desired quantum properties. For
example, heat engines [73] operating with nonequilibrium
reservoirs [74] and presenting quantum resources [75] arise
as systems with promising near-term opportunities. Moreover,
the investigation of exceptional points in such superconduct-
ing systems through involved models, see, e.g., Ref. [76] is
also a potential future line of research. As a final remark, we
note that the role of the counter-rotating terms in the system
Hamiltonian on the exceptional points may also be addressed
with the tools presented in Sec. II.

ACKNOWLEDGMENTS

We acknowledge the Academy of Finland Centre of Ex-
cellence Program (Project No. 336810), European Research
Council under Consolidator Grant No. 681311 (QUESS), and
Advanced Grant No. 101053801 (ConceptQ).

APPENDIX A: EXPLICIT DETERMINATION OF EPs

Here, we show the characterization of EPs for the open
system presented in Sec. III, namely, a linear chain of three
resonators. Given fixed coupling constants g and parameters
of resonator R1, we aim at finding the parameters of resonators
R2 and R3 that produce EPs.

We begin by examining the three-mode dynamics in a
frame rotating with the angular frequency ω1 such that ρ̂rf =
Û ρ̂Û †, where Û = exp[iω1t

∑3
j=1 â†

j â j]. In this frame, the
Lindblad master equation (3) describing the studied system
becomes d ρ̂rf/dt = −i[Ĥrf , ρ̂rf ]/h̄ + L↓(ρ̂rf ), where

Ĥrf/h̄ = δ2â†
2â2 + δ3â†

3â3 + g(â1â†
2 + â2â†

3 + H.c.), (A1)

δ2 = ω2 − ω1, δ3 = ω3 − ω1, and

L↓(ρ̂rf ) = 1

2

3∑
j=1

κ j[2â j ρ̂rf â
†
j − {â†

j â j, ρ̂rf}]. (A2)

Consequently, one can write the dynamical equations for the
expectation values 〈â j〉rf = Tr[ρ̂rf â j] in a vector notation as
ȧrf = −iHarf , where arf = (〈â1〉rf , 〈â2〉rf , 〈â3〉rf )� and

H =
⎛
⎝−i κ1

2 g 0
g δ2 − i κ2

2 g
0 g δ3 − i κ3

2

⎞
⎠, (A3)

as defined in Eq. (11) of the main text.
To identify the EPs of the three-mode open system, we

choose the parametrizations,

δ2 =
√

2g Im(ε2), δ3 =
√

2g Im(ε3),

κ2 = κ1 + 2
√

2gRe(ε2), κ3 = κ1 + 2
√

2gRe(ε3), (A4)

so that the effective offsets from ω1 and κ1 are given according
to the imaginary and real parts of the complex parameters ε2

and ε3. This allows one to write the characteristic polyno-
mial associated with H, P(x) = ax3 + bx2 + cx + d with the

coefficients,

a =1, b = i

2
[3κ1 + 2

√
2g(ε2 + ε3)],

c = − 3κ2
1

4
−

√
2gκ1(ε2 + ε3) − 2g2(1 + ε2ε3),

d = − i

8

[
κ3

1 + 8
√

2g3ε3 + 2
√

2gκ2
1 (ε2 + ε3)

+ 8g2κ1(1 + ε2ε3)
]
. (A5)

Given the cubic discriminant,


 = −(4v3 + 27w2), (A6)

where

v = 3ac − b2

3a2
, w = 2b3 − 9abc + 27a2d

27a3
, (A7)

we search for degeneracies in the spectrum of H, which occur
when 
 = 0. Interestingly, the appearance of EPs depends
only on the relationship between ε2 and ε3 given by the
condition,

4ε4
2ε

2
3 − 8ε3

2ε
3
3 + 4ε2

2

(
ε4

3 − 5ε2
3 + 1

)
+ 4ε2

(
5ε3

3 − ε3
)− 8ε4

3 + 13ε2
3 − 16 = 0. (A8)

Solving Eq. (A8) for ε2 yields the four branches,

ε2 = 1

2

⎡
⎢⎣ε3 ±

√√√√ε4
3 + 10ε2

3 − 2 ± 2
(
1 + 2ε2

3

)3/2

ε2
3

⎤
⎥⎦, (A9)

where the signs ± can be chosen independently.
To identify the order of the EPs, we inspect Eqs. (A7) and

(A9) more carefully. All EP-3’s correspond to the triple root
of P(x) = 0, which is obtained when v = w = 0. First setting
v = 0 reduces ε2 in Eq. (A9) to

ε2 = 1
2

(
ε3 ±

√
12 − 3ε2

3

)
, (A10)

and imposing w = 0 yields ε3 ∈ {±2,±i/
√

2}. Hence, the
studied open system presents six distinct EP-3, two of which
are produced when all resonators are degenerate such that
ε3 = 2ε2 = ±2. The remaining four EP-3 are obtained with
ε2 = (±3

√
3 ± i)/(2

√
2) and ε3 = 2i Im(ε2) = ±i/

√
2, thus,

requiring frequency shifts from the resonance and equal decay
rates for R1 and R3.

By defining ε = ε3, the parameters of R2 produce EPs
provided that they are chosen as ε2 ≡ f (ε) with f (ε) defined
in Eq. (13) of the main text. When degeneracies of H are
present, we express the complex roots of P(x) = 0 as

x1 = 4abc − 9a2d − b3

a(b2 − 3ac)
, x2 = x3 = 9ad − bc

2(b2 − 3ac)
, (A11)

to extract the effective detunings and decay rates of the normal
modes as given in Eq. (14). In Fig. 6, we show the rich struc-
ture of the branches yielding the EPs for a purely imaginary
ε. Let us comment on the relationship between the spectrum
of the non-Hermitian Hamiltonian H defined in Eq. (11) and
the dynamical matrix � defined in Eq. (8). First, we note that
� also determines the temporal evolution of the mean vector
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FIG. 6. Open-system-degeneracy map for a linear chain of three
coupled resonators with degenerate decay rates κ1 = κ3, which are
expressed by a pure imaginary parameter ε. Dependence of (a) f (ε)
and (b) hj (ε) on ε. In (b), solid (dashed) curves represent the single
(double) root of the characteristic polynomial of H. In all cases, the
labels ++, −+, +−, and −− indicate the four branches of f (ε)
obtained from the corresponding selection of signs in Eq. (13). The
vertical dashed lines in all plots highlight the values of ε yielding
EP-3.

x = 〈x̂〉 introduced in Sec. II. We define the 6 × 6 vector
of ladder operators Â = [â, (â†)�]�, where â = (â1, â2, â3)�,
â† = (â†

1, â†
2, â†

3). In the Schrödinger picture, the vector of
expectation values A = 〈Â〉 is obtained from the dynam-
ical equation Ȧ = diag[−i(H + H1), i(H∗ + H∗

1 )]A, where
H1 = ω1I3. By introducing the vector x′ = (q, p)�, where
q = (〈â〉 + 〈â〉∗)/

√
2 and p = −i(〈â〉 − 〈â〉∗)/

√
2, one veri-

fies that x′ is related to A through a unitary transformation so
that x′ = �A, where

� = 1√
2

(
I3 I3

−iI3 iI3

)
. (A12)

Consequently, the dynamical equation for x′ becomes ẋ′ =
�′x′, where

�′ = �

[
−i(H + H1) 03

03 i(H∗ + H∗
1 )

]
�†. (A13)

Since the vectors x′ and x are equivalent except for the dif-
ferent orderings, the spectrum of �′ coincides with that of �,
which in the case of open-system degeneracies is given by the
eigenvalues defined in Eq. (15) of the main text.

APPENDIX B: JORDAN NORMAL FORM

In this Appendix, we present the explicit Jordan normal
form of � defined in Eq. (8) at some relevant EPs considered
in this paper.

EP-3. We start with the EP-3 used for the reset of the
system, i.e., the one produced with degenerate resonators

(ω1 = ω2 = ω3 = ω), κ2 = κ1 + 2
√

2g, and κ3 = κ1 + 4
√

2g.
Using the notation introduced in Sec. II, the Jordan blocks
in the matrix J = diag[J−

s1
(λ−

s1
), J+

s1
(λ+

s1
)], and the nonsingular

matrix P read

J±
s1

(
λ±

s1

) =
⎛
⎝λ±

s1
1 0

0 λ±
s1

1
0 0 λ±

s1

⎞
⎠, s1 = (1, 3), (B1)

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i − i
√

2
g − i

g2 i i
√

2
g

i
g2

−1 −
√

2
g − 1

g2 −1 −
√

2
g − 1

g2

−√
2 − 1

g 0 −√
2 − 1

g 0

i
√

2 i
g 0 −i

√
2 − i

g 0
i 0 0 −i 0 0
1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

where λ±
s1

are given as in Eq. (15) of the main text with ε = 2
and f (ε) = 1. Consequently, one obtains

eJt =
⊕
m=∓

eλm
s1

t

⎛
⎝1 t t2/2

0 1 t
0 0 1

⎞
⎠. (B3)

EP-2. Let us consider the EP-2 used for the quasista-
bilization of squeezing and entanglement, i.e., the one
obtained with degenerate resonators, κ2 = κ1 + 4

√
2g, and

κ3 = κ1. The Jordan blocks here defining the matrix J =
diag[J−

s1
(λ−

s1
), J−

s2
(λ−

s2
), J+

s1
(λ+

s1
), J+

s2
(λ+

s2
)] are

J±
s1

(
λ±

s1

) = λ±
s1
, s1 = (1, 1),

J±
s2

(
λ±

s2

) =
(

λ±
s2

1
0 λ±

s2

)
, s2 = (2, 2), (B4)

and the singular matrix P reads

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i i 0 i −i 0

−1 1 0 −1 1 0

0
√

2 − 1
g 0

√
2 − 1

g

0 −i
√

2 i
g 0 i

√
2 − i

g

i i 0 −i −i 0

1 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

where λ±
s j

are given as in Eq. (15) of the main text with ε =
0 and f (ε) = 2. In this case, the Jordan decomposition of �

gives rise to

eJt =
⊕
m=∓

⎛
⎜⎜⎝

eλm
s1

t 0 0

0 eλm
s2

t eλm
s2

t t

0 0 eλm
s2

t

⎞
⎟⎟⎠. (B6)

This decomposition is employed in Eq. (6) to analytically ob-
tain the time-evolved covariance matrix V and, consequently,
the theoretical bounds presented in Sec. IV.
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