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ABSTRACT

Various robot systems have been proposed in the past to
automate the tedious and time-consuming room acoustic
measurement process. While small-scale measurements
within a limited area can be realized with robotic arms,
room-scale measurements require robots that can travel
larger distances and ideally navigate through their envi-
ronment autonomously. In this paper, we propose a new
measurement strategy for large-scale, autonomous, room-
acoustic measurement robots. The measurement strategy
uses rapidly-exploring random trees to determine multi-
ple candidate paths, from which it chooses the best path
for exploring the unvisited parts of the environment and
reconstructing a target acoustic metric. Gaussian process
regression is used to incrementally merge new acoustic
data into a global estimate. We evaluate the measurement
strategy in a multi-room scenario, utilizing a late reverbera-
tion metric and a robot system consisting of a source and a
receiver robot. We demonstrate that the measurement strat-
egy can be used to map and reconstruct late reverberation
characteristics over a large area.
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robot, path planning, late reverberation
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1. INTRODUCTION

The time-domain acoustical response between a sound
source and receiver is called the room impulse response
(RIR). Knowledge about this transfer function is crucial
for many acoustic disciplines, but RIR measurements can
be time-consuming and cumbersome.

Various RIR measurement robots have been developed
in the past, ranging from robotic arms that measure within a
limited spatial region [1] to larger-scale setups that can cap-
ture RIRs over extended environments [2,3]. More recently,
a highly-portable autonomous robot system was proposed
that captures large quantities of RIRs, without requiring
prior geometric information about the measured environ-
ment, such as floor plans or 3D models [3]. Grid-based
robots for large-scale RIR measurements also exist [4].

The present study proposes a new measurement strat-
egy for room acoustic measurements with autonomous
robots. It builds upon the system described in [3], extend-
ing it in two aspects. First, the proposed strategy leverages
the potential of rapidly-exploring random trees [5] for ex-
ploring more general multi-room environments. Second, it
uses Gaussian process regression to reconstruct sound field
quantities, thus allowing it to deal with inaccuracies and
uncertainties of the robot system (e.g., position tracking
or measurement noise). We demonstrate the strategy by
measuring a late reverberation quantity, the common-slope
amplitude [6], for a multi-room environment.

The remainder of this paper is organized as follows.
Sec. 2 provides background information on rapidly-
exploring random trees, informative path planning, Gaus-
sian process regression, and the common-slope model of
late reverberation. Sec. 3 describes the proposed measure-
ment strategy. Sec. 4 evaluates the strategy in a multi-room
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environment using a new robot system. Sec. 5 briefly dis-
cusses the results and Sec. 6 concludes the paper.

2. BACKGROUND

2.1 Rapidly-exploring random trees

The proposed measurement strategy is based on rapidly-
exploring random trees (RRTs). RRTs were introduced
by LaValle [5] and have been used extensively in robotic
motion planning and information gathering [7, 8]. RRTs
are constructed in three steps. First, a random unobstructed
position is sampled from the search space. Second, the
tree node with the smallest Euclidean distance to the drawn
position is determined. Last, the tree is expanded from the
closest node toward the random position with a specified
step size. In large environments, a deep expansion of the
RRT using long branches can become computationally
intractable. Therefore, the expansion is typically restricted
to a finite horizon with limited branch length [9]. An
overview of path planning algorithms, comparison of RRTs
with other approaches, and analysis of their optimality can
be found in [7].

2.2 Informative path planning

Autonomous robots are often tasked with exploring and
mapping scalar fields within unknown environments. This
endeavor is usually limited by resource constraints, such
as finite fuel or battery life of the robots. The informative
path planning (IPP) problem [8] can be stated as

P∗ = argmax
P∈Ψ

I(P) such that c(P) ≤ B , (1)

where the best path P∗ regarding the information quality
metric (IQM) I is found from the collection of all paths Ψ
under the constraint that its cost c does not exceed the
resource budget B. Different strategies for choosing the
IQM exist [8, 10], and two of them are described in the fol-
lowing. In the first strategy, I(P) quantifies the uncertainty
about yet unobserved measurement positions after measur-
ing along path P , i.e., the robots aim to gain information
about all of the environment and avoid visiting the same
position repeatedly. In the second strategy, I(P) is based
on the measured field itself, e.g., the robots aim to measure
in locations where the analyzed field quantity is high.

2.3 Gaussian process regression

When the robots are placed into a new and unknown en-
vironment, no information about the measured field is

available yet. As the measurements proceed, more data is
gathered, thus requiring incremental updates of the robots’
world estimate. Gaussian process (GP) regression [11] is
commonly used in robotics to model scalar fields and their
spatial correlation in a probabilistic way and progressively
fuse data into an environment estimate that can be used
during path planning [8, 10]. GP regression also has appli-
cations in acoustics, e.g., in sound field reconstruction [12].

The following mathematical formula-
tion of two-dimensional GP regression is
based on the thorough elaboration in [11].
Let Xr =

{
x
(i)
r = (x

(i)
r , y

(i)
r | i = 1, . . . , N

}
denote

the collection of N positions, for which the receiver robot
has already conducted a measurement. The field quantity
under investigation at these positions is given by the
vector y. In GP regression, we aim to estimate the field
quantity y∗ at M previously unobserved positions X∗

r in
the environment, for instance, given by a dense uniform
grid. We assume that y and y∗ are jointly Gaussian
random vectors with zero mean [11][

y∗

y

]
∼ N

(
0,

[
K(X∗

r ,X
∗
r ) K(X∗

r ,Xr)
K(Xr,X

∗
r ) K(Xr,Xr)

])
, (2)

where N (·) denotes the normal distribution, 0 the zero
vector, and K(Xr,Xr

∗) and its permutations the covari-
ance or kernel function matrix. For example, K(Xr,Xr

∗)
is an N ×M matrix, evaluating the covariance or kernel
function for all pairs of measured and estimated positions.
The kernel function models the spatial correlations of the
investigated field, i.e., it describes how strongly a measure-
ment point influences the field estimate at an unobserved,
remote position. Various kernel functions have been de-
scribed in the literature [11, 12], and choosing a suitable
one depends heavily on the field quantity under investiga-
tion. The covariance matrix can also be adapted to deal
with noisy observations [11], thus making the GP regres-
sion conceptually similar to Kalman filtering [13].

By conditioning the joint distribution on the previous
observations, we can estimate the mean and covariance of
the conditional distribution as follows [11]:

y∗|y ∼ N
(
µX∗

r |Xr
,KX∗

r |Xr

)
(3)

µX∗
r |Xr

= K(X∗
r ,Xr)K(Xr,Xr)

−1y ,

KX∗
r |Xr

= K(X∗
r ,X

∗
r )

−K(X∗
r ,Xr)K(Xr,Xr)

−1K(Xr,X
∗
r ) .

The mean µX∗
r |Xr

is the field quantity estimate for the
unobserved positions X∗

r . This environment estimate can
finally be used for planning the next measurement paths.
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2.4 Common-slope model of late reverberation

In this paper, we intend to use the proposed robot system
and measurement strategy for studying late reverberation
phenomena. Late reverberation can be modeled as a linear
combination of multiple decaying exponentials and a noise
term [14]. In the most general scenario, late reverberation
is inhomogeneous and anisotropic. Inhomogeneity refers
to spatially varying late reverberation, i.e., variations due
to different source or receiver positions. Anisotropy refers
to directional variations, e.g., due to directional sources or
receivers. Inhomogeneous and anisotropic late reverbera-
tion has been studied extensively [15–17], highlighting the
requirement for a suitable late reverberation model.

The common-slope model was proposed as a gen-
eral and compact representation of inhomogeneous and
anisotropic late reverberation [6]. It is a model for the
energy decay function (EDF), which is commonly de-
termined via the Schroeder backwards integration proce-
dure [18]. EDFs are typically processed in frequency bands
(e.g. octave bands), but we drop the frequency dependency
in the following to improve readability. For inhomoge-
neous and anisotropic late reverberation, the EDF d(x, t)
has to be modeled for each source-receiver-configuration
x = (xs,xr,Ωs,Ωr), where xs = (xs, ys, zs) and xr =
(xr, yr, zr) are the source and receiver positions, respec-
tively. With azimuth and elevation angle denoted by ϕ
and θ, respectively, the direction of departure from the
source and the direction of arrival at the receiver are de-
noted by Ωs = (ϕs, θs) and Ωr = (ϕr, θr), respectively.
The fundamental idea of the common-slope model is that
the decay times of the exponentials are invariant across
different source-receiver configurations, thus modeling in-
homogeneity and anisotropy purely via decay amplitudes.
The common-slope model is given by [6]

dκ(x, t) = N0,x Ψ0(t) +

κ∑
k=1

Ak,x

[
Ψk(t)−Ψk(L)

]
, (4)

with the decay kernel

Ψk(t) =

{
L− t , if k = 0

exp
(−13.8 t

fs Tk

)
, if k > 0

. (5)

The model is characterized by the model order κ, spec-
ifying the number of exponentials used to model the EDF,
where Tk and Ak,x are the decay times and amplitudes of
the kth exponential, respectively. Furthermore, the model
includes a noise term, whose amplitude is denoted by N0,x.
The constant −13.8 = ln(10−6) ensures that the sound en-
ergy has decayed by 60 dB after Tk seconds. The constant

Parameter Value
Measurement horizon H = 14
Nodes per iteration Nmax = 1200
Step size s = 0.4m

Table 1: Parameters of our proposed measurement strategy.

term Ψk(L) accounts for the finite upper limit of integra-
tion during the Schroeder backwards integration and can
be neglected for large L [19].

Various approaches exist for determining the common-
slope decay times Tk from measured data [6]. Once the
Tk values are available, the common-slope amplitudes
Ak,x can be determined via a least-squares fit to the mea-
sured EDFs [6]. The amplitude values can be visualized in
common-slope amplitude maps of the environment, illus-
trating anisotropic and inhomogeneous late reverberation
in a compact way. The resulting common-slope model can
be used in all applications relying on late reverberation
models, such as parametric spatial audio rendering, source
separation, echo cancellation, and dereverberation.

3. MEASUREMENT STRATEGY

We propose a new measurement strategy for au-
tonomous room acoustic measurements that combines
RRTs (c.f. Sec. 2.1), IPP (c.f. Sec. 2.2), and GP regres-
sion (c.f. Sec. 2.3). In this paper, we use the strategy to
measure common-slope amplitude maps (c.f. Sec. 2.4) of
multi-room environments that potentially contain obstacles,
and for which no floor plan or 3D model is available before
the measurements.

In our measurement strategy, the receiver robot ex-
plores the scene while the source robot remains static 1 .
The strategy involves three major steps. First, an RRT
is expanded using the parameters summarized in Table 1.
Second, the best path regarding a predefined information
quality metric (IQM, c.f. Sec. 2.2 and Eq. (6)) is deter-
mined. Third, the receiver robot moves along the result-
ing path, and RIR measurements are conducted for every
source-receiver configuration. After every measurement,
the obstacle and common-slope amplitude map estimates
are updated with the newly obtained data. Once all posi-

1 We use a static source to facilitate the exposition and obtain
illustrative common-slope amplitude maps, but our approach
should generalize to the scenario when both robots move. In this
more general case, which could also include directional sources
and receivers, the GPR would model 10-dimensional amplitude
maps (3 spatial axes and 2 angles for each robot) instead of the
2-dimensional maps depicted in this manuscript.
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tions of the path have been measured, or if new obstacles
are discovered on the way, a new RRT is expanded and the
procedure is repeated.

We expand RRTs as follows:

1. The expansion starts with i = 0 from a random
initial position x

(0)
r , which also serves as the root of

the first RRT. We save x
(0)
r to our list of measure-

ment positions Xr, yielding N = 1.

2. If N > Nmax, the expansion is finished.

3. Sample a random position x̃r from the unobstructed
area S of the scene. The exact layout of S is typi-
cally unknown before the measurement, and there-
fore we just chose a large enough square that will
certainly fit the entire scene.

4. Determine x
(c)
r , the measurement position in Xr

that is closest to x̃r.

5. Determine the path length from x
(0)
r to x

(c)
r . If it is

smaller than the measurement horizon H , continue
with step 6. Otherwise the branch should not be
expanded further and the algorithm returns to step 2.

6. Calculate a candidate for the next measurement po-
sition in the tree by making a step from x

(c)
r into the

direction of x̃r:

x̂(i+1)
r = x(c)

r + s ∗ x̃r − x
(c)
r

∥x̃r − x
(c)
r ∥

,

where ∥·∥ denotes the Euclidean distance.

7. Check whether x̂(i+1)
r ∈ Xr. If it is, the position is

already part of the tree and the algorithm returns to
step 2.

8. Check from the current obstacle map estimate
whether x̂(i+1)

r is reachable for the robot, i.e., no
obstacles block the way. If the position cannot be
reached, the algorithm returns to step 2.

9. If both checks passed, set x(i+1)
r = x̂

(i+1)
r , add

x
(i+1)
r to Xr, start the next iteration with i = i+ 1,

and go back to step 2.

Once the RRT is expanded, we determine the best path
for the next measurements. As we start the measurement
strategy in a yet unknown environment, we use an IQM that
emphasizes exploration. It is calculated by counting the
number of unvisited cells in the neighborhoods around the
path and penalizing the path if its cells have already been
visited multiple times. The cells refer to a dense 10 cm

grid of the entire environment. Throughout this paper, we
calculate the IQM as follows:

I(P ) = Nunvisited(P )−Nmulti(P ) , (6)

Nunvisited(P ) =

∥P∥∑
j=0

(
∥Xj∥ −

∑
xr∈Xj

v(xr)
)
,

Nmulti(P ) =

∥P∥∑
j=0

∑
xr∈Xj

w(xr) ,

Xj =
{
xr , such that ∥xr − x(j)

r ∥ ≤ 0.5m
}

,

v(x) =

{
1 , if x was visited before
0 , otherwise

,

w(x) = Number of visits at x ,

where ∥P∥ and ∥Xj∥ denote the number of cells in path P
or neighborhood Xj , respectively. Alternatively, the IQM
could also be based on the variance reduction in the Gaus-
sian process achieved by the path [8], inherently tying the
metric to the measured field quantity. The IQM could also
be designed to consider properties of the measured field
quantity. For example, one could preferably measure paths
where the common-slope amplitudes (c.f. Sec. 2.4) vary
considerably, maximizing the gradient magnitudes of the
common-slope values along the path.

After determining the best path, the robots conduct
measurements in the corresponding positions. The obstacle
and common-slope maps are consecutively updated with
the gathered data. We use the rational quadratic kernel in
the Gaussian process regression, given by [11]

KRQ(xr,x
′
r) =

(
1 +

∥xr − x′
r∥2

2αl2

)−α

, (7)

where ∥·∥ denotes the Euclidean distance, α is the scale
mixture parameter, and l is the kernel length scale. The
rational quadratic kernel can describe smooth spatial func-
tions that vary across many length scales. In other words,
it can represent patterns that vary with different spatial fre-
quencies. The hyperparameters α and l are learned while
fitting the kernel to the measured data by maximizing the
log-marginal likelihood [11]. During the fitting process,
we assume noisy observations, thus adding a uniform noise
term to the kernel matrices in Eqs. (2) and (3) as outlined
in [11,13]. Uncertainties regarding the position tracking or
common-slope analysis can then be included in the model,
such that the GPR does not necessarily fit the measure-
ments exactly but allows small deviations.
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Source robot Receiver robot

Loudspeaker Microphone array

Figure 1: Robot system used in the evaluation. It contains two
Boston Dynamic Spot robots, equipped with a loudspeaker and a
microphone array, respectively.

4. EVALUATION

We evaluate the proposed measurement strategy using a
new robot system in a multi-room environment with obsta-
cles, for which no geometric information (floor plan, 3D
model) is available before the measurements. The evalua-
tion has two parts. In the first part (c.f. Sec. 4.4), the RRT-
based strategy is compared against other path planning
approaches while the interpolation method is fixed. In the
second part (c.f. Sec. 4.5), the reconstruction of common-
slope maps via GP regression is compared against other
interpolation methods while the path planning method is
fixed. In both cases, we measure success by the ability of
the system to approximate the ground truth data, which is a
common-slope amplitude map obtained via GP regression
on a dense measurement grid.

4.1 Robot system

We evaluate the proposed measurement strategy using the
robot system shown in Fig. 1, which is similar to the one
outlined in [3]. It contains two Boston Dynamics Spot
robots, one acting as a source and one as a receiver. The
source robot is equipped with an MSE Audio Soundsphere
loudspeaker, and the receiver robot uses an open SDM
array with Earthworks M30 as the omnidirectional channel
and six DPA 4060s as the orthogonal pairs. Both robots are
equipped with the Spot Core processor, and the audio sig-
nals are played back and recorded with a Focusrite Scarlett
Solo and Zoom F8 audio interface, respectively.

The robots, their processors, and the measurement
laptop communicate via a wireless TCP network socket.
The measurement script for moving the robots, planning
paths, and conducting measurements is implemented in
Python. The Boston Dynamics robots provide position
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Figure 2: Flat-like environment consisting of a kitchen, bed-
room, and bathroom. A robot system was used to measure RIRs
from 420 different source-receiver configurations. The source
remained static for all measurements. The walls are depicted as
thick white lines. Some obstacles and their limits are indicated
with dashed white lines. Black areas are obstructed for the robots.

tracking and obstacle detection capabilities via cameras at
each side. The obstacle detection returns occupancy maps
of approximately 1.5m× 1.5m around the robots. We use
exponential sine sweeps to measure RIRs [20] and turn off
the robot fans during the measurements.

4.2 Dataset under investigation

We used the above robot system to measure RIRs in
a flat-like environment consisting of three connected
rooms (bedroom, kitchen, and bathroom). The measured
dataset contains RIRs from 420 different source-receiver-
configurations, for which the source remained static and
the receiver robot measured the positions as illustrated in
Fig. 2. All rooms feature various obstacles, such as a bed,
a table with chairs, a kitchen island, a shower, or a toilet.

4.3 RRT expansion in the investigated environment

Fig. 3 shows an example of the RRT expansion in the above
multi-room environment. In Fig. 3a, the receiver robot only
sees its immediate environment (approx. 1.5m × 1.5m)
and plans its path accordingly. After a few steps, it dis-
covers new obstacles and determines that the path can-
not be measured until the end. A new RRT expansion
brings the robot into the bathroom (c.f. Fig. 3b). Once
the robot has explored the bathroom and made its way
back to the bedroom, the RRT directs the robot into the
kitchen (c.f. Fig. 3c). After 120 steps, the robot has ex-
plored all three rooms (c.f. Fig. 3d).

4.4 Comparison against other path planning methods

We compare the RRT-based path planning against two other
approaches. Each approach yields a sequence of steps, and
we use the closest receiver position from the above dataset
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Figure 3: Example of the RRT-based measurement strategy in the investigated multi-room environment. The figure illustrates the
measurement strategy at various time instances. For all of the snapshots, the source and receiver robot positions are indicated by the
green and red dot, respectively. The source robot is modeled as a static obstacle, around which the receiver robot plans its paths. The RRT
is shown in black and the best path in each iteration is depicted in yellow. The path measured by the receiver robot is indicated in red.

for calculating the evaluation metrics and plots. The first
baseline approach, “Random Neighbor” (RandN), extends
the pure random walk approach by allowing the robots to
plan ahead until a specified measurement horizon. The
paths are determined by making a random step within a
0.8m× 0.8m neighborhood centered around the previous
step. During each planning iteration, 86 paths with H = 14
steps are planned, resulting in 86 × 14 = 1204 planned
steps in total. RandN uses the same IQM as the proposed
RRT-based approach, c.f. Eq. (6).

The second baseline approach, “Random Walk”
(RandW), implements the random walk proposed in [3]
without a measurement horizon. The receiver robot
chooses a random position within a 3.2m× 3.2m neigh-
borhood around the previous step and tries to reach it. If
an obstacle is detected along the way, the robot stops in
front of it and continues with the next step.

The goal of the proposed measurement strategy is to
reconstruct late reverberation characteristics from common-
slope amplitude maps. Therefore, the ground truth for our
evaluation is the GP regression using all 420 measurements
from the environment (c.f. Fig. 2). We obtain the ground
truth via GP regression [c.f. Eqs. (2) and (3)] by setting

Xr,true := 420 receiver positions from Fig. 2 ,
Ak,true := Ak,x values at Xr,true ,

X∗
r := uniform grid with 10 cm resolution .

Fig. 4 shows the ground truth common-slope maps.
Our analyses use the common-slope model [c.f. Eqs. (4)
and (5)], thus inherently modeling background noise as a
separate term. The two decay processes are localized in the
bedroom/kitchen and bathroom, respectively, exhibiting a
cross-fade between the bedroom and bathroom.

In the comparison, the Xr and Ak values are set ac-
cording to the receiver positions and common-slope ampli-
tude values from the RRT, RandN, and RandW approach.
The GP regression is then recalculated on the correspond-
ing subsets to determine the common-slope maps for the
different approaches. The dB-MSE ε between the ground
truth and the common-slope amplitude maps obtained from
a certain approach is calculated by

ε =
1

κ∥X∗
r∥

κ∑
k=1

∑
xr∈X∗

r

[
A

(dB)
k,xr,true

−A
(dB)
k,xr,appr

]2
, (8)

where both amplitude values are represented on a logarith-
mic scale in dB, and ∥X∗

r∥ denotes the number of positions
in X∗

r . A dB-MSE value of 0 dB corresponds to a perfect
reconstruction of the ground truth.

Fig. 5a illustrates how many steps the path planning ap-
proaches require to achieve a small dB-MSE. The proposed
RRT-based approach achieves a dB-MSE below 1 dB al-
ready after approximately 100 steps. At this time, each
room was visited at least once. In contrast, the RandN and
RandW approaches require more than 200 or 1050 steps,
respectively, to achieve a comparably low reconstruction er-
ror. Both approaches spend considerably more time in each
room, repeatedly measuring configurations that are similar
or identical. Especially the RandW approach seems to get
easily stuck in the individual rooms, having difficulties to
explore the entire environment.

4.5 Comparison against other interpolation methods

We compare the GP regression (c.f. Sec. 2.3) against near-
est neighbor, linear, and cubic interpolation regarding their
reconstruction performance of common-slope amplitude
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Figure 4: Ground truth common-slope amplitude maps of the
investigated multi-room environment, obtained via GP regression
on all 420 receiver positions with static source. The second-
order common-slope model [c.f. Eq. (4)] is used to describe
the inhomogeneous late reverberation of the environment. (a)
The decay process with the smaller decay time is strongest in
the bedroom and kitchen. (b) The decay process with the larger
decay time is strongest in the bathroom. The two decay processes
cross-fade during the transition from bedroom to bathroom.

maps. We use the receiver positions obtained from the
RRT-based path planning approach and reconstruct the
A∗

k values for the uniform grid X∗
r . For linear and cubic

interpolation, we only interpolate within the convex hull
spanned by the data points, and determine outside positions
by using their nearest neighbors.

Fig. 5b illustrates the reconstruction perfor-
mance of the different approaches regarding the
dB-MSE ε [c.f. Eq. (8)]. Generally, the approaches per-
form similarly with low dB-MSE values after approxi-
mately 100 steps, but GP regression and linear interpola-
tion achieve the smallest errors. Nearest neighbor, linear,
and cubic interpolation exhibit an increased peak after
approximately 30 steps because the nearest neighbor in-
terpolation for receiver positions outside the convex hull
extends the amplitude values across room boundaries. This
phenomenon is not as pronounced for the GP regression
due to the finite kernel length scale, which models the un-
certainty for positions far away from the measured data.
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Figure 5: Comparison of (a) different path planning approaches
(RRT: Rapidly-exploring Random Tree, RandN: Random Neigh-
bor, RandW: Random Walk) and (b) different interpolation ap-
proaches (GP: Gaussian Process regression, NN: Nearest Neigh-
bor, Lin.: Linear interpolation, Cub.: Cubic interpolation). The
plot shows the dB-MSE [c.f. Eq. (8)] between the reconstruc-
tion achieved by the respective strategies and the ground truth
obtained from GP regression on a dense grid (c.f. Fig. 2). A
dB-MSE value of 0 dB corresponds to a perfect reconstruction.

The error increases again for the cubic interpolation after
approximately 100 steps due to overshooting.

5. DISCUSSION

The evaluation demonstrated the proposed measurement
strategy and indicated that RRT-based path planning and
GP regression outperformed other approaches in the inves-
tigated example. Path planning using RRTs quickly ex-
plores the investigated multi-room environment, whereas
the RandN and RandW approach had difficulties transition-
ing between the rooms. Although the RandW approach
has reportedly yielded uniform coverage in environments
with a single room [3], it seems to fail in more general
multi-room environments.

The comparison of different interpolation approaches
did not show marked differences in the investigated sce-
nario. Standard interpolation approaches reconstruct the
common-slope maps similarly well as the GP regression.
However, we assume that the GP regression will leverage
its full potential when reconstructing other field quantities
that exhibit more complicated spatial interactions, or when
reconstructing the entire sound field [12]. Furthermore, GP
regression has a significant advantage in the robotic map-
ping scenario because it allows dealing with uncertainty
and measurement noise [11, 13].
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6. CONCLUSION

This paper proposed a new measurement strategy for au-
tonomous robot-based room acoustic measurements in en-
vironments, for which no geometric information is avail-
able before the measurements. The strategy uses rapidly-
exploring random trees (RRTs) for path planning and con-
tinuously estimates the investigated acoustic field quantity
using Gaussian process (GP) regression. We demonstrate
the strategy in a multi-room environment, for which we
measure and reconstruct a late reverberation quantity, the
common-slope amplitude. Our evaluation shows that the
RRT-based path planning quickly explores the environ-
ment, while other approaches have difficulties transitioning
between the rooms. The GP regression is suitable for noisy
measurements and achieves slightly improved reconstruc-
tion performance compared to other interpolation methods.
Autonomous robot systems using the proposed strategy
will speed up room acoustic data collection significantly.
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