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Serum APOC1 levels are decreased 
in young autoantibody positive 
children who rapidly progress 
to type 1 diabetes
M. Karoliina Hirvonen 1,2, Niina Lietzén 1, Robert Moulder  1,2, Santosh D. Bhosale 1,3, 
Jaakko Koskenniemi 2,4,5, Mari Vähä‑Mäkilä 4, Mirja Nurmio 4, Matej Orešič  1,6,  
Jorma Ilonen 7, Jorma Toppari 2,4,5, Riitta Veijola  8,9, Heikki Hyöty 10,11,  
Harri Lähdesmäki 12, Mikael Knip  13,14,15, Lu Cheng 12* & Riitta Lahesmaa 1,2,16*

Better understanding of the early events in the development of type 1 diabetes is needed to improve 
prediction and monitoring of the disease progression during the substantially heterogeneous 
presymptomatic period of the beta cell damaging process. To address this concern, we used mass 
spectrometry-based proteomics to analyse longitudinal pre-onset plasma sample series from children 
positive for multiple islet autoantibodies who had rapidly progressed to type 1 diabetes before 
4 years of age (n = 10) and compared these with similar measurements from matched children who 
were either positive for a single autoantibody (n = 10) or autoantibody negative (n = 10). Following 
statistical analysis of the longitudinal data, targeted serum proteomics was used to verify 11 proteins 
putatively associated with the disease development in a similar yet independent and larger cohort 
of children who progressed to the disease within 5 years of age (n = 31) and matched autoantibody 
negative children (n = 31). These data reiterated extensive age-related trends for protein levels in 
young children. Further, these analyses demonstrated that the serum levels of two peptides unique 
for apolipoprotein C1 (APOC1) were decreased after the appearance of the first islet autoantibody and 
remained relatively less abundant in children who progressed to type 1 diabetes, in comparison to 
autoantibody negative children.

Type 1 diabetes is an immune-mediated disease that results from destruction of the insulin-secreting beta 
cells in the pancreas, necessitating lifelong treatment with exogenous insulin. The disease is characterized by a 
presymptomatic period of variable length that precedes the clinical manifestation of the disease at the late stage 
of beta cell destruction1. A better understanding of the events that are associated with the development of type 
1 diabetes is needed for the improvement of early prediction and monitoring of the disease and recognition of 
at risk individuals for clinical interventions and therapy. Currently, the presence of circulating type 1 diabetes-
associated autoantibodies is the primary sign of the ongoing disease process and an increased risk for type 1 
diabetes2. In particular, subjects who develop two or more autoantibodies carry a high probability of developing 
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the disease, whereas those who remain positive for a single autoantibody have a considerably lower risk3,4. How-
ever, even for multiple autoantibody positive subjects, the interval between the first autoantibody detection that 
is confirmed (i.e. seroconversion) and the clinical manifestation of the disease is unpredictable, varying from 
months to decades5,6, and the time to diagnosis can only be predicted by following glucose metabolism that starts 
to deteriorate 1–2 years before the diagnosis7,8.

The discovery of early signs of type 1 diabetes has been challenged by the heterogeneity in the rate of disease 
development. As a source for such signals serum/plasma has been of particular interest because blood is easily 
accessible and changes in its composition can be indicative of the disease. Accordingly, mass spectrometry (MS)-
based proteomics has been used for the detection of circulating type 1 diabetes-associated proteins9–14. Recently, 
technological improvements in throughput, data acquisition and speed, together with the possibility to analyse 
serum proteins in an unbiased and hypothesis-free manner, have added to the utility of proteomics for the dis-
covery of disease related patterns15. Previous type 1 diabetes plasma and serum proteomics analyses have ranged 
from post-diagnosis cross-sectional comparisons9–11 to pre-onset sample series obtained from prospective sample 
collections12–14. Studies of diagnosed patients have used pooled samples to determine type 1 diabetes-associated 
proteins in newly diagnosed patients9,11 and in patients with longer duration of the disease10. To establish changes 
occurring prior to diagnosis, temporal studies of both heterogeneous12,14 and more homogeneous populations, 
although with very few samples per individual13, have been reported. Taking into consideration the disease 
heterogeneity together with the effects of age in children16–19 and large inter-individual variability in serum/
plasma protein levels18,20, these earlier type 1 diabetes serum/plasma proteomics studies have been limited by 
the number of sampling points or lack of homogeneity in the selection of participants.

In the current study, MS-based proteomics was used in the search of early signs of type 1 diabetes. Focusing 
on young children who progressed rapidly to type 1 diabetes within months from seroconversion, longitudinal 
plasma and serum samples collected in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study were 
analysed. Using longitudinal data modelling, plasma protein profiles of multiple autoantibody positive children 
who developed type 1 diabetes before 4 years of age (progressors) were compared to similar measurements from 
matched single autoantibody positive (1AAb+) and autoantibody negative (AAb−) children. Statistically signifi-
cant differences (defined in LonGP analysis in “Methods”) in the plasma protein profiles were observed for several 
proteins. Out of these, 11 candidates were selected for verification measurements using a targeted proteomics 
approach and a larger independent yet similar cohort of DIPP children with more frequent sampling points.

Results
Detection of type 1 diabetes‑associated proteins by discovery proteomics
To investigate early signs of type 1 diabetes in young children who rapidly progress to the disease after serocon-
version, longitudinal sample series were analysed from 10 multiple autoantibody positive DIPP children who 
were diagnosed with type 1 diabetes under 4 years of age and their matched 1AAb + (n = 10) and AAb- children 
(n = 10) (Fig. 1a, Supplementary Table S1, Supplementary Fig. S1). The children were matched on the basis of 
human leukocyte antigen (HLA) risk group, sex, region and date of birth. MS-analysis of these depleted plasma 
samples resulted in the identification and quantification of 269 protein groups (hereafter referred as proteins), 
including proteins identified with uniquely associated peptides and proteins that could not be distinguished 
by the identified peptides and were therefore collapsed to protein groups (Supplementary Table S2), with an 
average of 254 (± 17) proteins per sample. An additive Gaussian process regression model (LonGP) was used 
to deconvolute the longitudinal protein patterns into various effects associated with seroconversion, the onset 
of type 1 diabetes, study groups, age and sex. These effects could separate the study groups, as well as depict the 
normal variation in plasma proteomes including the effects of age and sex.

Age is one of the strongest factors affecting plasma proteome in early childhood
In these measurements, 115 out of the total 269 quantified proteins showed statistically significant age-associated 
trends (Fig. 2a, Supplementary Table S2), the majority of which were concordant with previously published pro-
teomics studies on paediatric serum/plasma samples16–19 (Fig. 2a, Supplementary Table S3). The age-associated 
protein patterns clustered into two distinct groups with either increasing or decreasing age trend (Fig. 2a–c). 
Sex-associated differences were observed for three immunoglobulins (Supplementary Table S2), which remained 
lower in boys in the first 18 months of life. Overall, a wide degree of variability in the plasma proteomes was 
observed both at the protein level and in longitudinal trends.

Type 1 diabetes‑associated changes in protein levels observed in the discovery data
With the alignment of the longitudinal protein profiles of the progressors, 1AAb+ and AAb− children on the 
basis of seroconversion dates and age at sampling, 14 proteins with seroconversion-associated changes were sub-
sequently identified by LonGP analysis (Table 1, Supplementary Table S2). The largest changes were observed in 
prolow-density lipoprotein receptor-related protein 1 (LRP1), immunoglobulin J chain (IGJ) and apolipoprotein 
A4 (APOA4). Among the seroconversion-associated proteins, apolipoprotein(a) (LPA) and insulin-like growth 
factor binding protein 2 (IGFBP2) also showed age-associated changes.

LonGP analysis identified three proteins that exhibited changes associated with the clinical manifestation of 
type 1 diabetes (Table 1, Supplementary Table S2). These were revealed through the alignment of the longitudinal 
protein profiles of the progressors according to the date of diagnosis, and 1AAb+ and AAb− children with the 
diagnosis age of the matched progressors. Statistically significant differences were observed in the longitudinal 
profiles of cysteine-rich secretory protein 3 (CRISP3), apolipoprotein C1 (APOC1) and complement C1q sub-
component subunit B (C1QB).
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The three study groups were distinguished from each other by protein level differences in immunoglobulin 
heavy constant mu (IGHM) and alpha-2-macroglobulin (A2M), which were both depletion targets (Table 1, 
Supplementary Table S2). The lowest IGHM plasma levels were detected in the group of progressors, with higher 
levels in the 1AAb + group, and the highest levels in the AAb- group. One of the functions of the IGHM pentamer 
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Figure 1.   Schematic presentation of the study design. (a) First, discovery proteomics was used for the 
identification of disease-associated proteins after which (b) the selected candidates were verified using targeted 
proteomics. Progressors group = children who progressed to type 1 diabetes. In the discovery proteomics 
study, all progressors were also positive for ≥ 2 autoantibodies. 1AAb+ group = children positive for a single 
autoantibody without progression to type 1 diabetes. AAb− group = autoantibody negative children.
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Figure 2.   Proteins with age-associated changes in the discovery proteomics cohort in children up to 36 months 
of age. (a) Hierarchical clustering of the 115 proteins that followed statistically significant age-associated changes 
in LonGP analysis. The proteins clustered into two distinct groups with either increasing or decreasing age 
trends. Child-specific z-scores were calculated for each protein at all time points, each time point was then 
assigned to a specific age group and the z-scores were averaged across all children within the age group. Proteins 
reported to have age-associated changes in previous pediatric publications are indicated in the separate color 
columns (regardless of the reported trend). The proteins color coded with green and orange indicate the most 
significantly enriched Gene Ontology classifications with increasing and decreasing age trends, respectively. 
Examples of the proteins with (b) increasing and (c) decreasing age trends are included.
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is to act as a carrier for CD5 antigen like (CD5L) in the blood21. Individual specific longitudinal protein patterns 
of CD5L were strikingly similar with the IGHM patterns and therefore CD5L was selected as an additional target 
for verification, although its expression level differences remained below the significance threshold.

Targeted proteomics analysis of the selected candidates
Based on the discovery study results, verification measurements were made to further explore the protein levels 
of 11 candidates (Table 1, Supplementary Fig. S2) in an independent set of longitudinal serum samples from 31 
DIPP children who were diagnosed with type 1 diabetes before 5 years of age and matched AAb− children (n = 31) 
(Fig. 1b, Supplementary Table S4, Supplementary Fig. S3). The selection of the candidates was based on LonGP 
results, a visual inspection of the data and data completeness. An SRM assay was designed for the analysis of 
24 peptides representing the 11 candidates and an internal standard. Analysis of the normalised SRM data was 
carried out at the peptide level using the LonGP model.

Out of the 11 candidates, the age-associated changes observed for four proteins in the discovery study were 
verified in the targeted proteomics analysis (Supplementary Table S5, Supplementary Fig. S4). Moreover, the 
targeted proteomics analysis with a larger cohort of children and more frequent sampling points, revealed age-
associated trends for peptides representing APOA4, APOC1, IGJ and serotransferrin (TF), as well as one of the 
measured peptides representing vitamin D-binding protein (GC) (Supplementary Table S5, Supplementary 
Fig. S4).

In terms of verification of the disease-associated changes, the levels of both peptides representing APOC1 
were consistently decreased after seroconversion (Fig. 3a,b, Supplementary Table S5).

Discussion
Better understanding of the early events in the development of type 1 diabetes is needed to help identify increased 
risk and to monitor the presymptomatic period of the disease that varies conspicuously among individuals. 
Currently, the detection of autoantibodies provides prognostic markers, which indicate the overall probability 
of developing the disease. However, heterogeneity in the rate of disease progression has challenged the charac-
terization of the early stages of disease development. To address this challenge and establish protein patterns that 
would distinguish children who rapidly progress to type 1 diabetes from matched AAb− children, we studied 
longitudinal plasma and serum proteomes of more homogeneous cohorts of genetically susceptible children, in 
which the progressors developed the disease before 5 years of age. From these discovery proteomics analysis, 11 
proteins showing disease-associated changes were selected for verification using targeted proteomics and a larger 

Table 1.   Type 1 diabetes-associated protein level changes in the discovery cohort using LonGP. LonGP terms 
refers to changes associated to the time of seroconversion (“sero”), changes associated to the time of type 
1 diabetes diagnosis (“t1d”) or protein level differences observed between the three study groups (“group” 
and “group × age”). To consider the effect as statistically significant, the explained variation of the effect was 
required to be > 1%. Selected candidates for the SRM analysis are indicated in the last column. aCD5L was 
selected for SRM analysis on the basis of its known association with IGHM and the similarity between the 
individual specific protein profiles of CD5L and IGHM.

Protein ID Gene name Protein name
Explained variation 
of "age" (%)

Disease-associated effect 
(LonGP term)

Explained variation of the 
disease-associated effect (%)

Selected for 
SRM analysis

Q07954 LRP1 Prolow-density lipoprotein receptor-related 
protein 1 – "Sero" 21.4 –

P01591 IGJ Immunoglobulin J chain – "Sero" 16.1 x

P06727 APOA4 Apolipoprotein A-IV – "Sero" 15.2 x

P20851 C4BPB C4b-binding protein beta chain – "Sero" 6.0 –

P35443 THBS4 Thrombospondin-4 – "Sero" 4.9 –

P02774 GC Vitamin D-binding protein – "Sero" 4.4 x

P08519 LPA Apolipoprotein(a) 8.7 "Sero" 4.3 x

P04075 ALDOA Fructose-bisphosphate aldolase A – "Sero" 3.4 –

P43121 MCAM Cell surface glycoprotein MUC18 – "Sero" 2.9 –

P02765 AHSG Alpha-2-HS-glycoprotein – "Sero" 2.3 –

P49747 COMP Cartilage oligomeric matrix protein – "Sero" 2.0 –

P18065 IGFBP2 Insulin-like growth factor-binding protein 2 47.7 "Sero" 1.7 x

P02787 TF Serotransferrin – "Sero" 1.4 x

P00748 F12 Coagulation factor XII – "Sero" 1.2 x

P54108 CRISP3 Cysteine-rich secretory protein 3 – "t1d" 3.9 x

P02654 APOC1 Apolipoprotein C-I – "t1d" 2.1 x

P02746 C1QB Complement C1q subcomponent subunit B 1.0 "t1d" 2.1 –

P01871 IGHM Immunoglobulin heavy constant mu 24.2 "Group" and "Age × group" 9.8 and 4.2 x

P01023 A2M Alpha-2-macroglobulin – "Group" 7.8 –

O43866 CD5La CD5 antigen-like 26.5 – – x
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independent cohort of children. The measurements revealed how the levels of two peptides representing APOC1 
decreased after seroconversion and remained lower in children who developed type 1 diabetes.

In keeping with earlier studies, these data reiterate that age is one of the most dominating factors affecting 
plasma/serum proteome in early childhood16–19. Targeted proteomics analysis of the 11 candidates in a larger 
cohort with more frequent sampling points, verified age-associated protein level changes for four proteins and 
identified another five age-associated proteins. Of those five proteins, for APOC1, APOA4 and IGJ, the most 
prominent effect of age was observed during the first year of life. The identification of these additional trends 
was likely enabled by the more frequent sampling during the first year of life in the targeted proteomics dataset 
(up to 4 samples per child in the verification cohort before the age of 13 months, compared with up to 2 samples 
per child in the discovery cohort). Taken together, longitudinal study designs with frequent sampling points and 
well-matched controls are key considerations to minimize possible sources of error in serum/plasma discovery 
proteomics studies in young children. Moreover, quantification differences between plasma and serum have been 
previously noted, particularly with coagulants and platelet proteins22. To avoid such bias in the current study, 
plasma and serum were not mixed within the study cohorts, and the targets selected for SRM analysis were not 
among the most significantly altered proteins between plasma and serum22.

In the discovery study, lower APOA4 levels were observed after seroconversion to autoantibody positivity 
both in the progressors and in the 1AAb+ children compared to AAb− children. Similarly, in earlier proteomics 
studies lower APOA4 levels have been observed in longitudinal serum profiles of multiple autoantibody positive 
children who later progressed to type 1 diabetes at the median age of 4.1 years12, and in seroconverted children 
with a median age of 3.2 years13. In the current verification cohort, however, the disease-associated changes were 
not observed. Instead, age-associated changes were detected in peptides representing APOA4 (Supplementary 
Fig. S4). For the discovery measurements, the limited number of samples collected under one year of age, might 
have caused some bias, as discussed in the previous section. This emphasizes the importance of data complete-
ness in longitudinal studies.

Decreasing levels of IGFBP2 were observed in the discovery cohort in the progressors and in the 1AAb+ 
children compared to the AAb− children, which is in line with the previous proteomics studies that focused on 
children during the presymptomatic period of the disease12,14. In contrast, higher levels of IGFPB2 were reported 
in patients with type 1 diabetes, although with longer disease duration10. Coxsackievirus B1 (CVB1) infections 
have been associated with the risk of developing type 1 diabetes-associated autoimmunity and in particular with 
the appearance of insulin autoantibodies (IAA) as the first autoantibody23. In our recent study, persistent CVB1 
infection suppressed the secretion of IGFBP2 from human pancreatic ductal-like cell line PANC124. Similarly, 
IGFBP2 expression was suppressed in a CVB1-infected human lung cancer cell line, and the suppression was 
reversed after treatment with an antiviral drug25. Moreover, the expression of IGFBP2 is the highest in the pan-
creas and the liver26, indicating that the changes in IGFBP2 levels in plasma might reflect changes in its expression 
in these organs. In the current study, the majority of seroconverted children in the discovery cohort had IAA as 
the first autoantibody, whereas in the targeted proteomics cohort the proportion was for only one third. Distinct 
autoantibody profiles have been associated with different disease trajectories27, and therefore such differences 
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between the discovery and verification cohorts might influence the ability to verify the disease-associated dif-
ference in IGFBP2 levels. Accordingly, it would be important to study IGFBP2 expression specifically in subjects 
with IAA as their first autoantibody.

Although targeted for immunodepletion in the discovery analyses, plasma IGHM levels separated the three 
study groups from each other, with levels ranging from the lowest in the group of progressors, intermediate levels 
in the 1AAb+ group and the highest levels in the AAb− group. However, in the targeted proteomics analysis, 
the levels of IGHM did not distinguish the progressors from the AAb− children. Nevertheless, reduced total 
plasma IgM has recently been reported in school aged children with type 1 diabetes28. Certain variants of the 
IGHM gene locus have been associated with an increased risk to type 1 diabetes29,30. Interestingly, in a plasma 
proteomic study of twins, both IGHM and its binding partner CD5L were reported among the top proteins, that 
were mostly affected by heritability20. Further investigation of the risk variants in the IGHM region and their 
association with serum/plasma IGHM levels remains to be made.

Targeted proteomics analysis of the selected candidates revealed that the levels of two peptides from APOC1 
distinguished the children who progressed to type 1 diabetes from AAb− children. A discrepancy was observed 
between the APOC1 LonGP results in the discovery and the validation dataset, by which the changes were associ-
ated with the type 1 diabetes diagnosis and seroconversion, respectively (Supplementary Fig. S2 and Fig. 3a,b). 
For the discovery dataset, LonGP regression indicated a consecutive peak and trough in APOC1 levels prior to 
T1D diagnosis (Supplementary Fig. S2), whereas a general decrease in APOC1 after seroconversion was observed 
in the validation dataset (Fig. 3a,b). In keeping with the coverage and consistency of the validation samples rela-
tive to the smaller sample size per individual in the discovery data, we conclude that the data from the progressor 
group are consistent with a decrease in the APOC1 level after seroconversion. This is described in further detail 
in the Supplementary Discussion and Supplementary Figs. S5–S7. Closer inspection of data from our earlier 
longitudinal serum proteomics study of children also demonstrated lower serum APOC1 levels in children who 
progressed to type 1 diabetes compared to AAb− controls12 (see Supplementary Fig. S8). Furthermore, lower 
plasma and serum abundance of APOC1 was reported in patients with recently diagnosed type 1 diabetes com-
pared to healthy controls although the difference was not statistically significant9. In contrast, increased APOC1 
levels have been reported in adult patients affected by type 1 diabetes31. APOC1 plays important roles in lipid 
homeostasis, and lipid disorders are commonly diagnosed in patients with type 1 diabetes32,33. Several enzymes 
that participate in lipoprotein metabolism are modulated by APOC1, including cholesterol ester transfer protein 
(CETP), the activity of which is potentially inhibited by APOC131,34. Increased CETP-activity has been observed 
in patients with type 1 diabetes and plasma APOC1 concentrations correlated inversely with CETP-activity in 
normoglycemic-normolipidemic controls but not in individuals with type 1 diabetes, indicating that APOC1 
activity could be compromised in this population31. The latter study also suggests that the glycation of APOC1 
as a result of hyperglycemia in diabetes may impair its inhibitory function. Differences in plasma APOC1 levels 
have also been previously reported in the context of type 2 diabetes and in relation to nutrition35,36. Recently, 
lower plasma APOC1 levels were reported in adults after caloric restriction and increasing levels in response 
to glucose consumption36. Interestingly, in the latter study, decreased plasma APOC1 was also observed to be 
associated with undiagnosed type 2 diabetes and prediabetes36. To conclude, lower APOC1 levels are detected 
during the presymptomatic period of type 1 diabetes and in recently diagnosed patients whereas higher APOC1 
levels are observed in adult patients. The reasons behind these contrary observations, as well as the possible role 
of structurally modified or otherwise dysfunctional APOC1, remain to be addressed.

In summary, our data further explored the strength of moderately abundant serum proteins for the charac-
terization of the emerging risk of type diabetes development among HLA-conferred and autoantibody positive 
children. These analyses reiterated that age is among the most dominating factors affecting plasma/serum pro-
teome in early childhood and should therefore be carefully considered in study designs. Using LonGP modelling, 
we were able to take into account the nonlinear effect of age while extracting disease-associated changes from 
the data. From the initial discovery proteomics measurements, several proteins with prior literature associations 
were noted. The magnitude of changes of the discussed proteins (APOA4, IGFBP2, IGHM, and APOC1) were 
at a similar level in the discovery data. However, despite replicating the age-associated changes in these well-
matched cohorts, the disease-associated signals were challenging to reproduce. This could be partly explained 
by the subtle levels of disease-associated changes, the relatively low number of participants, dissimilarities in 
their sample series and autoantibody profiles, in addition to differences in sample storage, preparation and 
analysis. Nevertheless, we were able to verify that decreased serum levels of two peptides representing APOC1, 
were associated with rapid progression to type 1 diabetes. In future follow-up studies, APOC1 measurements 
could be combined with other relevant targets, which might assist with the monitoring of disease progression 
and stratification for early interventions, especially in young at risk individuals. The causal connection between 
low APOC1 levels and type 1 diabetes, and the mechanisms involved, remain to be explored.

Methods
Study participants
Blood plasma or serum samples, collected in the DIPP study from children (n = 92) carrying HLA-conferred 
genetic risk for type 1 diabetes37, were used for these analyses. The selected participants regularly attended their 
DIPP clinical study centre (1996–2015), in the cities of Tampere or Turku. At each visit a non-fasting plasma or 
serum sample was collected. The samples were stored at − 80 °C until analysis. The parents gave their written 
informed consent for participation. The study followed the guidelines of the Declaration of Helsinki and the 
Regional Ethics Committee of the Joint Municipal Authority of Northern Ostrobothnia Hospital District, Oulu, 
Finland, approved the study protocol.
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Discovery proteomics
A subset of ten children who had developed multiple (≥ 2) autoantibodies and who all had later developed type 
1 diabetes before 4 years of age were defined as progressors. Each progressor was matched, on the basis of HLA 
risk group, sex, region and date of birth (± 1.4 years), with one child testing positive for a single autoantibody 
(1AAb+) and another autoantibody negative child (AAb−). For each child, a longitudinal series, with up to four 
follow-up plasma samples was analysed (Supplementary Table S1, Supplementary Fig. S1). The samples were 
collected between 3 and 36 months of age, 101 samples in total. Neither the 1AAb+ nor AAb− children developed 
diabetes, and the AAb- remained autoantibody negative during the follow-up period.

The sample series from each matched triplet (formed by progressor, 1AAb+ and AAb− child) were prepared 
and analysed batch-wise in a blinded fashion. The sample preparation, including immunodepletion of the 12 
most abundant plasma proteins (Pierce Top 12 Abundant Protein Depletion Spin Columns, Thermo Scientific, 
USA), was carried out as described in Lietzén et al.18 with modified double desalting. Retention time standard 
peptides (iRT, Biognosys, Switzerland) were spiked into each sample for quality control of the liquid chroma-
tography tandem mass spectrometry (LC–MS/MS) analyses.

Each sample was analysed in triplicate using Q Exactive™ Hybrid Quadrupole-Orbitrap™ mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany) that was interfaced with an EASY-nLC 1000 liquid chromatograph 
(Thermo Fisher Scientific) with a nano-electrospray ion source (Thermo Fisher Scientific). See Supplementary 
Methods online for further details of the LC–MS/MS method.

Discovery proteomics data processing
The LC–MS/MS data was processed using MaxQuant software version 1.5.5.138 with the built-in Andromeda 
search engine39. A combined SwissProt human and TrEMBL enterovirus protein sequence database (April 2014, 
63,470 entries) with added iRT peptide sequences and common contaminants was used. Label-free quantification 
(LFQ) was selected with trypsin digestion (maximum two missed cleavages), methionine oxidation as a variable 
modification and cysteine carbamidomethylation as a fixed modification. A false discovery rate of 1% for protein 
and peptide levels was applied, determined by searching the reversed database. Otherwise, MaxQuant default 
settings were used with selection of “match between runs”.

The MaxQuant output file was pre-processed with Perseus software40 using normalised LFQ intensities. Con-
taminants and proteins detected with less than two unique peptides, or present in less than 50% of the samples 
were filtered out. The median intensities were calculated from the technical replicates and log2 transformed for 
statistical analyses. See Supplementary Methods online for further details.

Targeted proteomics verification
For the verification of observations from the discovery analyses, a separate series of 524 serum samples from 62 
DIPP children were analysed. These were collected between 2 and 60 months of age from children diagnosed 
with type 1 diabetes before 5 years of age (n = 31) and their matched AAb− children (n = 31) (difference in dates 
of birth of the matched pairs ± 3.4 months), with a median of nine samples per child (Supplementary Table S4, 
Supplementary Fig. S3). The AAb− children remained autoantibody negative and did not develop diabetes dur-
ing the follow-up period.

The verification samples were prepared without immunodepletion of the abundant proteins, as described 
elsewhere41. Heavy isotope-labeled synthetic peptide analogues (PEPotec, Thermo Fisher Scientific, USA) for 
the protein targets were spiked (~ 10 fmol/µl) into the digests together with retention time standards (MSRT1, 
Sigma-Aldrich, USA). The targets and additional details are provided in Supplementary Table S6 and Supple-
mentary Methods online.

A TSQ Vantage Triple Quadrupole Mass Spectrometer (Thermo Scientific, Bremen, Germany) coupled with 
an Easy-nLC 1000 liquid chromatograph (Thermo Scientific) was used to perform the selected reaction monitor-
ing (SRM). The analyses were conducted in three batches, using the same column configuration as described for 
the discovery measurements and slightly varying chromatographic conditions. Aliquots of a reference sample 
were periodically analysed to monitor the performance and reproducibility of the assay (see Supplementary 
Table S7). Skyline software42 was used to develop the data acquisition method and inspect the data. The peptide 
peak areas were normalised by dividing the total peak area of each peptide with the sum of the peak areas of 
endogenous alpha-1B-glycoprotein (A1BG) peptides (SGLSTGWTQLSK and ATWSGAVLAGR) in the same 
sample. A1BG was selected as a global standard based on our previous studies, in which it was among the most 
stable proteins in serum and plasma in children12,18. The exported peptide level data was then analysed with 
LonGP.

LonGP analysis
LonGP was used to model the longitudinal changes in both datasets43. Selected continuous covariates included 
age (days from birth to sampling date), sero (days from seroconversion date to sampling date) and t1d (days 
from type 1 diabetes diagnosis date to sampling date), which were converted into the unit of months. Discrete 
covariates included sex (male = 1, female = 0), group (progressors = 1, 1AAb+ = 2, AAb− = 3), pair (pair id) and 
id (individual id). Interaction flags for sero and t1d were set to false. Non-stationary kernels were used for “sero” 
and “t1d”, where we used the kernel parameters (a = 0.5, b = 0, c = 40) such that the main variations occur between 
− 12 month to + 12 month. For the data from targeted analysis, an additional discrete covariate “batch” was used 
to represent different MS batches for the same peptide. Default LonGP parameters were used. The preprocessed 
data files and parameter specification files for both discovery and validation experiments are provided in a sup-
plementary file (see Supplementary Data online). To be considered statistically significant, the effect was required 
to be included in the final cross-validated model and the explained variation of the effect to be > 1%. Although 
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the variation threshold of 1% corresponds to a small effect size, the size of some effects was notably larger than 
1%, and for consistency the explained variation for each protein is reported.

Data availability
The mass spectrometry discovery proteomics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE44 partner repository with the dataset identifier PXD033744. The raw SRM data and Skyline 
documents are available through Panorama Public45 (https://​panor​amaweb.​org/​APOC1_​rapid​T1D.​url) with 
the dataset identifier PXD033946.
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