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ABSTRACT Metal artifact correction is a challenging problem in cone beam computed tomography
(CBCT) scanning. Metal implants inserted into the anatomy cause severe artifacts in reconstructed images.
Widely used inpainting-based metal artifact reduction (MAR) methods require segmentation of metal traces
in the projections as a first step, which is a challenging task. One approach is to use a deep learning
method to segment metals in the projections. However, the success of deep learning methods is limited
by the availability of realistic training data. It is laborious and time consuming to get reliable ground truth
annotations due to unclear implant boundaries and large numbers of projections. We propose to use X-ray
simulations to generate synthetic metal segmentation training dataset from clinical CBCT scans.We compare
the effect of simulations with different numbers of photons and also compare several training strategies to
augment the available data. We compare our model’s performance on real clinical scans with conventional
region growing threshold-based MAR, moving metal artifact reduction method, and a recent deep learning
method. We show that simulations with relatively small number of photons are suitable for the metal
segmentation task and that training the deep learning model with full size and cropped projections together
improves the robustness of the model. We show substantial improvement in the image quality affected by
severe motion, voxel size under-sampling, and out-of-FOV metals. Our method can be easily integrated into
the existing projection-based MAR pipeline to get improved image quality. This method can provide a novel
paradigm to accurately segment metals in CBCT projections.

INDEX TERMS CBCT, deep learning, synthetic data, X-ray simulation, metal artifact reduction, metal
segmentation.

I. INTRODUCTION
Cone beam computed tomography (CBCT) acquires 2D
X-ray projections of an object to reconstruct 3D images.
The presence of high-density metallic implant in the
object may corrupt the projection data and cause severe
artifacts such as blooming, streaking, and shading [1] in
the reconstructed images. Several projection-based metal
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artifact removal (MAR) methods have been proposed in
literature [2], [3], [4], [5], [6], [7]. A crucial step in these
methods is the segmentation of corrupt metal traces in the
projections. First, the metals are segmented in the 3D image-
domain by a threshold. Then the segmented metals are
forward-projected to obtain the metal trace in the projections.
The data inside the metal trace is discarded and interpolated
from the nearby projection data. The corrected projections
are back-projected (reconstruction) to generate corrected
3D images.
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Several deep learning-based MAR methods have been
proposed recently. They either work in projection-domain,
image-domain, or both. Projection-domain methods [8], [9],
[10], [11], [12] inpaint the metal trace in the projection
(CBCT) or sinogram (CT) using deep learning architectures.
All of these methods rely on the availability of segmented
metal traces. Image-domain methods, such as [13] and [14]
directly translate from artifact to artifact-free images. Image-
domain methods can effectively reduce metal artifacts in
some cases, however, their effect can be limited by the
presence of scatter, large and varying shapes of metals,
multiple metal implants, and motion artifacts [9]. While
inpainting-based methods deal better with these problems,
they still require accurate metal segmentation in the pro-
jection [15]. In [16], [17], and [18], it was proposed to
incorporate both image and sinogram-domain deep learning.
These methods use filtered back projection (FBP) and
forward projection (FP) layers to propagate the loss from
the image-domain to the sinogram-domain. These methods
were implemented for CT images (slice-wise reconstruction)
though full volume CBCT reconstruction is not feasible due
to its large memory requirements [19].
It was demonstrated in [20] that precise segmentation of

metal traces can enhance the image quality, and conversely,
less accurate segmentation may cause additional artifacts or
even remove anatomical details. As forward projection of the
image-domain metal is used to obtain the metal traces in the
projections, it has several problems. When metal lies outside
of the field-of-view (FOV), image-domain segmentation
methods cannot segment metals in the projections [21]. This
may cause image inhomogeneity in the center and among
the different zones of the FOV [22], [23]. Furthermore,
in the presence of motion artifacts [24], [25], [26], the
metals are blurred and it is difficult to obtain reliable
forward projections of the image-domain segmented metals.
Pre- and post-processing steps were proposed in [27] and
[28] to mitigate motion affected metal artifacts. Moreover,
the forward projection step of the metals need to account
for the partially covered pixels. This can be done by
reconstructing the voxels with smaller size before forward
projection or by taking the voxel diameter into account [29]
at the cost of increased complexity and processing
time.

While several deep learning methods have been inves-
tigated for MAR, few have been proposed to directly
segment the projection-domain metals in CBCT scans, owing
to the unavailability of accurate metal labels [30], [31].
A U-Net [32] architecture was used in [30] to segment metals
in dental CT projections. The network was trained and tested
on a very small dental CT dataset (five patients for training
and four patients for testing) due to the time consuming
process of creating ground truth labels. Pairs of metal and
metal free projections from cadaver CBCT scans were used
in [31] to train a U-Net architecture. Acquiring data from

cadaver images is a rare process and the data might still lack
the quantity and variety of images. They used a consistency
check condition to reduce false positives which provides
more consistent segmentation of metals in the projections.
The consistency check involved extra steps to reconstruct
larger volumes and needed to calculate accurate thresholds
for the metals in the reconstruction. Furthermore, we found
that consistency check did not work well for motion-affected
scans.

Monte Carlo simulations have been used to generate
training data for deep learning-based metal in-painting and
scatter correction methods [10], [17], [33], but the use of
simulated dataset in metal segmentation training has not been
investigated yet. Motivated by the importance of accurate
training data for metal segmentation, we used Monte Carlo
simulations to generate metal-corrupted CBCT projections
and corresponding metal labels for network training. For the
tasks of in-painting and scatter correction, simulations with
low noise levels are needed [10], [17], [33]. The noise in the
simulated projections decreases with the increase in numbers
of photons per detector pixel [33], however, running the
simulations with large number of photons is computationally
expensive. In contrast, for metal segmentation training task,
we used simulations with only 300 to 1400 photons per
detector pixel (noisy) and compared the results with the
simulations of 5000 photons per detector pixel (clean). Noisy
simulations are faster to compute and add realistic noise to
the dataset.

We trained a modified version of U-Net only on the
simulated data to segment metal traces in the projections.
In addition, we used a simple strategy to augment our
simulated dataset further by training the network on full
size and cropped projections together. Our simulated dataset
included multiple anatomies such as knee, wrists, ankle,
palm, and foot. We demonstrate the robustness of our metal
segmentation model on 10 metal-affected and 6 non-metal
clinical scans.

As U-Net architectures have been used in [30] and [31] for
the metal segmentation in projection data, using U-Net is not
a contribution of this work. However, our main contributions
are as following:

1) We propose a new training approach for metal segmen-
tation in CBCT projection that uses simulated dataset
(with different noise levels) obtained from real metal-
affected cases.

2) We propose a simple data augmentation strategy by
training the network with crops and full size images.
This strategy effectively reduces false positives in
6 unseen clinical CBCT scans without metals.

3) We demonstrate the metal artifact reduction on
10 unseen clinical CBCT scans affected by metals. The
results show good performance in challenging cases
such as motion-affected and out-of-FOV metals, and
they are robust to voxel size changes.
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TABLE 1. Description of scans used for simulated training data
generation and testing of the trained models. kV is the tube voltage in
kilovolt, voxel is the size of reconstructed voxels in mm, views are the
number of projections per scan and anatomy is location of the body part
irradiated with X-rays. kV values were not available for set 1 and set 2 in
train set.

II. METHODS
In this section, we explain the dataset used for the
experiments, our pipeline to generate the training data,
the simulation process, the network architecture used for
segmentation of metals, implementation of the network, and
the evaluation methods in detail.

A. DATASET
We used an unidentifiable and pseudonymized clinical
dataset acquired by Planmed Verity® scanner (Planmed
Oy, Helsinki, Finland) with patient permission for use in
research and development studies. This study was performed
in line with the principles of the Declaration of Helsinki.
The dataset had 26 clinical scans taken at different extremity
anatomies and was collected over multiple years, which
makes the dataset diverse and realistic. Out of 26 scans,
20 were metal-affected and 6 were without any metal. Out of
20 metal-affected scans, we included 10 scans for simulated
training data generation. The remaining 10 metal-affected
and 6 non-metal scans were used for evaluation of the trained
models. Source-to-detector distance was 580 mm and source-
to- isocenter distance was 392 mm. The description of the
training and testing dataset is given in Table 1. Each scan had
multiple projection views, ranging from 300 to 450. The tube
voltage varied from 90 kV to 96 kV. All scans had isotropic
spatial resolution, with voxel spacings of 0.6mm, 0.4 mm
or 0.2 mm. Different anatomy locations were scanned,
including, knee, wrist, foot, ankle, palm, and forearm. The
detector size was 238.76 mm × 189.99 mm. The size of each
detector pixel was 0.254 mm × 0.254 mm. The dimension of
each projection was 948 × 740 pixels.
From the training set of 10 scans in Table 1, we created

10 reconstructions. Two more reconstruction were created
by combining metals from multiple reconstructions. These
reconstructions were used to generate 3450 projections using
simulation procedure described in Section II-C. As we did
not want to compromise the quality of segmentation near
metal boundaries, we did not downsample projections for
training as in [30]. To increase the data variability, we created

four crops of size 474 × 370 from each projection. The crop
was included in the training only if the sum of metal pixels
was at least 100 pixels in the cropped projection. Thus we
had 9305 crops for training. From the test set of 10 metal-
affected scans in Table 1, we created metal labels manually.
Since it was time consuming to segment metals in all of the
projections, we manually segmented metals in 10 projections
from each of the 10 scans. So, in total we gathered 100 pairs of
metal-corrupted projections and corresponding ground truth
metal labels from the clinical dataset. For the remaining test
set of 6 metal-free scans, we did not require ground truth
labels. Those scans had a total of 2400 metal-free projections.

B. TRAINING-DATA GENERATION PIPELINE
The pipeline to generate pairs of metal corrupted projections
and corresponding ground truth metal traces is shown in
Fig. 1. The pipeline had two main parts. In the first part
(shown in the colored box), a segmentation of metals in
3D and an initially corrected volume were obtained. In the
second part, a simulation process was used to generate pairs
of training data which is described in detail in Section II-C.
First, the 3D image volume was reconstructed from real

CBCT projections. Then we segmented the image-domain
metals in the 3D reconstructed images using a global
threshold. The segmented metals were not smooth and
complete due to the artifacts remaining in the reconstruction.
To smoothen and complete the metal boundaries, we applied
median filtering and binary dilation to the segmented metals
in 3D. The segmented 3D metals were further clipped to
a minimum value of 3400 Hounsfield Units (HU). The
segmented 3D metals were simulated to get only-metal
projections. Binary metal traces for the ground truth were
obtained by applying a threshold to the simulated metal
projections. This thresholding step was straightforward and
was done to assign a value of 1 to the metal pixels and 0 to the
background. The binarized metal traces constituted ground
truths for the model training.

To obtain the metal corrupted projections, we first created
metal free reconstruction. The 3D metals obtained from the
first step were put back into the metal free reconstruction
and the metal-inserted volume was used to simulate metal-
corrupted projections. An example of original projection,
a simulated projection and the corresponding ground truth
metal trace is shown in Fig. 1. The simulated ground truth
metals do not always align with the original projection due to
morphological operations and inaccuracies in the 3D metal
segmentation step. However, the metal ground truth aligns
accurately with the metals in the simulated metal corrupted
projection. An example of such simulations is shown in Fig. 2
where third small metal is not present in the traget metal mask
and the two metals are dilated in comparison to the metals
in the original projection. However, the metals in the target
metal trace aligns well with the simulated projections. This is
the reason why we used simulated projections for the training
instead of original projections.
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FIGURE 1. Pipeline for generating training pairs with examples of intermediate results. The yellow colored box illustrates conventional method for metal
artifact reduction. The metal corrupted original 2D projections were first reconstructed using FDK [34]. The metal was segmented and refined. The metals
are put back in the initial corrected volume. Then metal and metal inserted volumes were simulated using Monte Carlo simulations. The ground truth
binary traces were obtained by applying a threshold to the simulated metal masks.

FIGURE 2. An example of original projection, simulated projections, and
the corresponding target metal trace. The noisy projection was generated
with 300 photons per detector pixel and the clean projection was
generated with 5000 photons per detector pixel. The area around metals
is enlarged to show the differences. The simulated projections and the
corresponding mask were used for training.

C. SIMULATION PROCESS
We used Monte Carlo simulations to generate accurate
metal segmentation training dataset. The implementation was
similar to the one described in [35] and [36]. We simulated
path of X-ray photons through the voxelized reconstructions
obtained from 10 metal-affected clinical CBCT scans as
described in Section II-B. Such clinical scans represent
realistic variations in the metal shapes and sizes. The
reconstruction volumes were first segmented into four
different materials by applying thresholds on HU values. The
volumes were segmented into air, soft tissue, bone, and metal
as follows:

Mx,y,z =


air, if Vx,y,z < −500,
soft tissue, if − 500 ≤ Vx,y,z < 500,
bone, if 500 ≤ Vx,y,z < 3400,
metal, if Vx,y,z ≥ 3400,

(1)

where Vx,y,z is the voxel value in Hounsfield Units (HU) at
a location x, y, z in the reconstructed volume V andMx,y,z is
the corresponding material obtained from thresholds.
We simulated the voxelized geometries of CBCT scanner

used to acquire the clinical scans to keep the dataset realistic.

Each X-ray photon was started from a point source located
at the position given by the scanner geometry. The path
of the photon was simulated along a straight line from the
X-ray source location to the rectangular detector grid as
shown in Fig. 3. The initial energy of each photon was
randomly sampled from a polychromatic energy distribution
according to the kV used during the scan. When the
X-ray photon passes through the object volume, the photon
interacts with the object’s material according to object’s
density and photon energy. Three types of X-ray interactions
were simulated, namely, photoelectric absorption, Compton
scattering, and Rayleigh scattering based on [37]. Energy-
dependent attenuation curves provided in [37] were used for
each of the material obtained from the segmentation in (1)
to model interactions of the polychromatic X-ray photons
during transport. Projections were formed by integrating the
energy entering detector pixels. More detailed explanation
about the Monte Carlo simulations can be found in [35]
and [36]. We simulated multiple 2D projection views for
each static reconstruction volume by rotating the source
and detector according to the original geometry used by
CBCT scanner. Furthermore, a simulation was done for each
projection view without the object in the field-of-view to
obtain 2D projections, called flat field. Projections were
normalized and linearized, according to

psim = − log
(
S
F

)
, (2)

where S is the simulated projection and F is the simulated flat
field projection.

D. NETWORK ARCHITECTURE
Themodified U-Net architecture used for metal segmentation
training is shown in Fig. 4. It consisted of 4 downsampling
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FIGURE 3. Illustration of CBCT geometry for Monte Carlo simulations.
Incident rays leaving the object along a straight line primary (blue) and
scattered rays (red) are shown.

(encoder) and 4 upsampling (decoder) blocks. Each down-
sampling block had two convolutional layers (kernel size =

3 × 3, stride = 1 × 1, zero padding), each followed by a
rectified linear unit (ReLU) and an instance normalization
layer [38]. In the first block, the network had 16 channels.
The number of channels was doubled in each block. After
every two convolutional layers, a 2×2max-pooling layer was
applied to downsample features. Each upsampling block had
a bilinear upsampling layer followed by a convolutional layer
(kernel size= 3×3, stride= 1×1, zero padding). The features
from encoder blocks were concatenated to the features of
decoder blocks to allow flow of high resolution information
from earlier layers. Output of each upsampling block was
padded to match the dimensions of the skip connection
from the encoder side. This padding scheme ensured the
size of input and output remain same and varying sizes of
input images could be given to the network during training.
The final layer in the network was a 1 × 1 convolutional
layer without any activation. A sigmoid function was applied
after the final layer of the network to convert the network
output to a probability map. To obtain metal segmentation
during the inference, pixels with probability equal to or above
0.5 were classified as metal and pixels below the probability
of 0.5 were classified as background.

E. IMPLEMETATION DETAILS
Our network was implemented using PyTorch [39] deep
learning library and was trained on a single GeForce
RTX 2080 Ti Rev. A (11GB), with a batch size of 4. We used
Adam optimizer (β1 = 0.9, β2 = 0.999) [40] to optimize the
network parameters to minimize loss between the network
output and ground truth. The initial learning rate was set
to e−4 and reduced after each epoch in logarithmic steps
down to e−6. The learning rate was reduced during the first
25 epochs and was fixed to e−6 after that. As [41] showed
that stacked data augmentations are effective for the model’s
generalization in medical segmentation tasks, we applied a
number of stacked data augmentations during training. Each
input projectionwas normalized by itsmaximumvalue before

augmentation. We used horizontal and vertical flips, image
shift, rescale, rotation, Gaussian noise, multiplicative noise,
elastic transformation, and mask dropout augmentations. The
augmentations were applied on-the-fly during training with
a probability of 0.2 for each augmentation. Therefore, each
epoch had a slightly different set of inputs. To avoid over-
fitting, the training was stopped if the loss did not decrease
for five epochs (early stopping). The model parameters and
data augmentations were initialized with random seed 2060.
To account for stochastic training process, we trained each
model two more times with random seeds 12060 and 22060.
We used binary cross entropy loss for training the neural

network, defined as

l =
1

N × w× h

N×w×h∑
i=0

yi log(σ (xi))

+ (1 − yi) log(1 − σ (xi)), (3)

where N is the batch size, w, h are width and height of the 2D
projection image, xi is the network output at pixel location i,
σ is the sigmoid function, and yi is the corresponding ground
truth pixel value.

F. EVALUATION
We used 100 manually segmented metals from projec-
tions of 10 clinical scans as ground truths for evaluation
of different metal segmentation methods. We evaluated
U-Net-based models trained on noisy and clean simulations.
For each of the noisy and clean simulations, the model
was trained on full size, crops, and their combination.
For forward projection-based conventional MAR (CMAR),
we segmented the metals in 3D images using connected
component region growing segmentation similar to [3]. Metal
seeds were started at the voxels with intensities of more
than 7000 HU. The metal region was grown starting from
the seeds, by checking the intensities of the connected
pixels in the neighborhood. If the neighboring pixel had
an intensity of more than 3000 HU, it was included in
the metal region. The segmented 3D metals were forward
projected to create metal traces in the 2D projections. We also
experimented with higher values than 3000 HU for lower
(region growing) threshold, but then some metals were
missed and undersegmented.

We also compared our results with moving metal artifact
reduction (MMAR) [28]. We used MMAR to refine the
coarse metal traces obtained by CMAR. For the patch-based
training (Noisy (crops) and Clean (crops)), we followed [31]
and used random crops of size 512× 512 during the training.
The inference was done on full size projections. For a fair
comparison, we used the same U-Net network with the same
parameters for all compared methods. For the comparison
with the consistency check, we followed [31] to reconstruct
3D binary metal from the initial segmentation of Noisy
(full+crops) model and forward project 3D binary metal to
get updated metal traces.
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FIGURE 4. Network architecture used for metal segmentation. Simulated projections are given as input to the network. A sigmoid function and a
threshold of 0.5 was applied at the output of the network to get binary metal trace.

The quantitative segmentation performance of the com-
pared methods was evaluated using Dice Similarity Coeffi-
cient (DSC), Intersection over union (IOU) and False positive
rate (FPR) [42]. These metrics are defined as

DSC =
2TP

2TP + FP + FN
, (4)

IOU =
TP

TP + FP + FN
, (5)

FPR =
FP
TN

, (6)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Metal traces found from the compared methods were
inpainted from the nearby pixels using a 2D interpolation
method. The inpainted projections were reconstructed using a
modification of FDK [34] algorithm. The 3Dmetals obtained
from the region growing-based method were put back in the
reconstructions.

III. RESULTS
In this section we compare the quantitative metal segmen-
tation performance of U-Net-based models with the forward
projection-based CMAR,MMAR, and the consistency check.
Then we show the qualitative impact of metal trace segmen-
tation on the reconstructed images.

A. QUANTITATIVE ANALYSIS
1) CLINICAL DATA WITH METALS
As performance measures, we calculated the mean DSC
and IOU for 10 test scans. Table 2 shows the segmentation

TABLE 2. Mean DSC (%) and mean IOU (%) (± standard error) calculated
for metal trace segmentation on 10 test scans. ↑ indicates that higher
values are better.

performance of CMAR, MMAR, six U-Net-based models,
and the consistency check-based segmentation applied on
the model Noisy (full+crops). Compared to the CMAR
and MMAR, all six U-Net-based models had higher mean
DSCs and IOUs. This shows that the deep learning meth-
ods segmented metals more accurately than the forward
projection-based CMAR and MMAR. The model Noisy
(full+crops) gave the highest mean DSC=94.8 (SE=0.6)
and IOU = 90.2 (SE=1.1). When MMAR was applied on
the dilated metal traces obtained from CMAR, the mean
DSC decreased from 90.5 (SE=2.0) to 89.1 (SE=2.2) and
the mean IOU decreased from 84.4 (SE=3.2) to 81.5 (3.4).
Furthermore, when consistency check [31] was applied on the
best model Noisy (full+crops), it decreased the mean DSC
from 94.8 (SE=0.6) to 91.0 (SE=3.4) and themean IOU from
90.2 (SE=1.1) to 85.0 (SE=4.8). The mean DSC and IOU
scores decreased due to the challenging cases of metals which
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FIGURE 5. Boxplot visualization of DCE and IOU scores for CMAR, MMAR,
U-Net models, and consistency check. The rectangles contain data within
the first and the third quartiles. The endpoints of the lower and upper
whiskers are selected as the first quartile - 1.5 times the interquartile
range (IQR) and third quartile + 1.5 IQR, respectively. The medians are
visualized as red lines and the means as green triangles. The outliers are
the points that are outside the interval defined by the whiskers.

is explained further in the qualitative analysis in Section III-B.
Among the three models trained on clean simulations, Clean
(full+crops) had the highest mean DSC=93.8 (SE=0.8) and
IOU=88.6 (SD=1.4), which is similar to the finding that the
Noisy (full+crops) model had the highest mean DSC and
IOU among the three models trained on noisy simulations.

We present the DSC and IOU results in Fig. 5. The box
plots of DSCs and IOUs of MMAR had the largest spread
over values. The median values of DSCs and IOUs of Noisy
(full + crops) model were close to the median values of
Noisy (crops). Boxplots of Noisy (full+crops) did not have
any outliers as opposed to one outlier in Noisy (crops).
The boxplots of Clean (crops) and Clean (full+crops) had
more outliers than Noisy (crops) and Noisy (full+crops).
Furthermore, the boxplots of consistency check had more
vertical spread and showed one outlier in comparison to the
boxplots of Noisy (full + crops).

2) CLINICAL DATA WITHOUT METALS
When comparing the segmentation performance of the
models in the presence of the metals, it is also important to
know how the models behave when the CBCT projections
do not contain any metal. This comparison might show the
model’s generalization. This comparison does not require
ground truth metal traces. Table 3 shows the FPR of
the 6 models calculated for metal-free projections from
6 clinical scans. The mean FPR for the Noisy (full+crops)
was 0.51×10−3 (SE=0.16×10−3) which was less than
the mean FPR given by Noisy (crops), i.e., 0.85×10−3

(SE=0.36×10−3) and the mean FPR given by Noisy (full),

TABLE 3. Mean FPR (10−3) (± standard error) calculated for 6 scans
without any metals. ↓ indicates that lower values are better.

i.e., 14×10−3 (SE=5×10−3). Similarly, the model trained on
simulations with 5000 photons per pixel (Clean (full+crops))
had least mean FPR i.e., 0.44×10−3 (SE=0.16×10−3)
compared to the mean FPR given by Clean (crops), i.e.,
8×10−3 (SE=2×10−3) and the mean FPR given by Clean
(full), i.e., 23×10−3 (SE=5×10−3). Overall, this analysis
on the metal-free projections showed that the models trained
on the full size and cropped projections together were more
robust the false positives compared to the models trained on
only full size or only cropped projections.

3) COMPARISON OF DIFFERENT TRAINING RUNS
The comparison of DSC scores on test data for the 6 models
obtained from 3 independent training runs is shown in
Table 4. The mean DSC score for each run is shown in
the columns named, seed1 (2060), seed2 (12060), and seed3
(22060). The last column named delta is the difference
between maximum and minimum DSC scores across three
runs. The model Noisy (full+crops), trained on the noisy
full size and cropped projections, had the best mean DSC
scores in each independent run, i.e., 94.8 (SE=0.6), 94.5
(SE=0.7), and 94.5 (SE=0.7). The delta for the model
Noisy (full+crops) was 0.3, which was less than the delta
of model Noisy (full), i.e., 2.3 and the delta of model Noisy
(crops), i.e., 1.9. Similarly, the delta for the model Clean
(full+crops) trained on clean full size and crops was 0.4,
which was less than the delta of model trained on Clean
(full), i.e., 2.1 and the delta of the model Clean (crops),
i.e., 2.4. It can be deduced that the models trained on full
size and crops were giving more stable mean DSC scores
across three independent runs. Furthermore, the model Noisy
(full+crops) had a slightly smaller delta (0.3) than the delta
of the model Clean (full+crops), i.e., 0.4. These results
show that the model trained on noisy full size and cropped
projections was most robust model in terms of DSC scores.

B. QUALITATIVE ANALYSIS
For the qualitative analysis, we show the metal segmentation
and the effect of accurate metal segmentation on the
corresponding reconstructions. For all qualitative visual-
izations we compared Noisy (full+crops) reconstructions
with the reconstructions from CMAR, MMAR, consis-
tency check step [19] applied on the segmentation from
Noisy (full+crops), and Clean (full+crops). We analyzed
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FIGURE 6. Test scan 4 with large motion and complex metal implants. The first row shows segmentation of metals in an input projection
by various methods. The second row shows two axial image slices from the reconstructions (slice location 370 and 511, respectively) and
the corresponding magnified region of interest. Yellow boxes show the location of the region of interest in the axial image. Our method,
Noisy (full+crops) segmented metals in the projection most accurately which reduced most of the artifacts in the reconstructed axial
slices.

FIGURE 7. Test scan 9 with a complex metal shape. The first row shows an input projection, ground truth, and segmentation of the metal by
several methods. Parts of the metal are enlarged to show the minute segmentation differences on the right of the segmented projections.
The second and third rows show two axial image slices from the reconstructions with the corresponding magnified regions of interest. The
axial slices are from slice location 169 and 396, respectively. Yellow boxes show the location of the region of interest in the axial image.
Noisy (full+crops) and Clean (full+crops) segmented metals well which reduced most of the artifacts and preserved more details in the
reconstructions.

TABLE 4. Mean DSC (%) (± standard error) calculated for three training
runs for metal trace segmentation on 10 test scans. Delta is difference
between maximum and minimum mean DSC for the corresponding
method.

improvements in the image quality in complex cases such as
the motion affected and out-of-FOV metal cases.

1) MOTION AFFECTED VOLUME
The qualitative results on the challenging motion case are
shown in the Fig. 6. The segmentation of metals and
two axial images from the reconstructions are visualized.
The uncorrected images contained large artifacts from the
presence of the large metals as well as the motion during
the scan. The CMAR method over-segmented the metals
in the projection. The conventional method reduced some
artifacts in the reconstructed images but still there were
many remaining streaks and darkening around the metal.
The over-segmentation of metals in CMAR reduced some
bone details in the axial image as well. MMAR refined
the segmentations from CMAR but the holes inside the
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FIGURE 8. Test scan 6 containing out-of-FOV metal. The first row shows segmentation of the metals in the input projection by different methods and
corresponding grond truth. The second row shows an axial slice from the reconstruction with the corresponding magnified region of interest. MMAR,
Noisy (full+crops), and Clean (full+crops) segmented metals accurately without the need of larger reconstruction.

metals could not be recovered. The corresponding image
slices for MMAR still had some remaining artifacts. The
Noisy (full+crops) model segmented metals in projections
most accurately. Most of the artifacts were reduced and the
bones near the metal were clearly visible in the axial images.
Because of the large motion, the consistency check method
missed some of the blurred metals in the reconstructions and
the forward projection of these metals removed most of the
metal trace in the projections. This caused the artifacts to
reappear in the images and affected image quality adversely.
The model Clean (full+crops) missed some part of metals in
the projection, this caused artifacts in one of the axial images.

2) UNDER- AND OVER-SEGMENTATION
Another interesting case is shown in Fig. 7. The metals
were over-segmented by the region growing-based CMAR.
The over-segmentation reduced some details near the metal
such as the bone is blurred in the reconstructed axial image.
MMAR could not deal with the complex shape of the metal
and dilated the CMAR segmentationmore. On the other hand,
Noisy (full+crops) and Clean (full+crops) models segmented
the metal traces well. As a result, the axial images from
both of those methods had more details visible around the
metal and the bone is better preserved. The consistency check
missed only small part of the metal traces in the projection.
The small under-segmentation caused significant artifacts
in the reconstructed images. The results clearly showed that
the under-segmentation may cause large artifacts in complex
cases and over-segmentation may blur crucial details.

3) OUT-OF-FOV METAL
Fig. 8 shows when metal was in the out-of-FOV region,
forward projections of image-domain metal failed to seg-
ment metal traces in the projection domain (CMAR and
consistency check), which, in turn, caused artifacts in the

reconstructions. MMAR was able to recover the metals
from the CMAR and did not need larger reconstruction.
The original volume size for the reconstruction of the scan
was 801 × 801 × 601. To account for out-of-FOV metals
in the forward projections, image reconstruction needed to
be done on a larger size grid. When reconstruction was
done for a volume size of 801 × 801 × 661, the forward
projection included all of the metals in the projections
(CMAR large grid and consistency check large grid). Noisy
(full+crops) and Clean (full+crops) models segmented the
metal traces directly in the projections without the need of
larger reconstruction. As we used the same metal inpainting
and reconstruction procedure for all methods, it is clear
from Fig. 8 that most of the artifacts were reduced in the
reconstructed images if themetals were segmented well in the
projections. In this case, the out-of-FOV metal was relatively
close to the reconstruction edge. In some clinical cases where
the out-of-FOV metal is far from the reconstruction FOV, the
segmentation of metal is not possible. In such situations, our
method will still segment metals in the projections without
large reconstructions.

4) EFFECT OF VOXEL SIZE
The effect of small voxel sizes on the forward projections of
metals is shown in Fig. 9. The images were reconstructed
with a voxel size of 0.6 mm. The forward projection
did not consider the voxel size and sampling artifacts are
visible in the metal projections of the CMAR. Furthermore,
CMAR missed some part of the metal, which was recovered
by consistency check and MMAR. However, the MMAR
segmentation resulted in oversegmentation of the metals
and the consistency check segmentation still shows some
sampling artifacts. Additional artifact can be seen in the
reconstruction of CMAR, MMAR, and the consistency
check. The model trained on the clean simulations missed
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FIGURE 9. Test scan 8 with 0.6 mm voxel size. The first and second rows show segmentation of
metals in the input projections by different methods and the corresponding ground truths. The
third row shows an axial slice from the reconstructions. Our method, Noisy (full+crops)
segmented metal traces best.

some metal part in the projections which caused artifacts
in the reconstructed images. The model trained on noisy
simulations segmented metals well which did not cause any
additional artifacts. This visualization shows, that our method
does not need to account for the voxel size as it segments
metals directly in the projections.

IV. CONCLUSION
In this paper, we proposed to use noisy Monte Carlo
simulations to train a U-Net architecture for the segmen-
tation of metals in CBCT projections. We experimentally
demonstrated that synthetic data could substitute real data
for metal segmentation training. We showed that the model
trained with noisy simulations outperformed the model
trained on time-consuming cleaner simulations for the metal
segmentation task. We also showed that adding the crops to
the full size projections during the training helped to get more
robust metal segmentation on the real clinical test scans. The
forward projection based methods, such as CMAR, MMAR,
and consistency checks are prone to errors and require tuning
of parameters. However, segmenting the metals directly in
projections is more robust solution.

The model trained on full size projections and crops,
significantly reduced the false positives in the non-metal
projections. Although, we trained our model on limited
simulations, we have shown the applicability of the model on
a diversified real dataset acquired from multiple anatomies
and scanner sites. We have discussed noticeable improve-
ments in the reconstruction image quality of motion-affected

and out-of-FOV metal affected scans by obtaining better
segmentation traces of metals. Recently, a Fourier dual-
domain restoration network has been shown to be more
robust to metal trace defects [43] which is another approach
to alleviate the artifacts coming from wrong segmentation
of metals. In our future work, we will consider to test the
application of our method on more diversified and larger
dataset including dental scans.

V. STUDY LIMITATIONS
While we have demonstrated excellent results for metal
artifact correction using our method, we have used only
simulated data for the training. This approach helps to
address the challenges associated with obtaining enough
clinical data for training and manually segmented ground
truth. However, simulated projections might not fully capture
all the variations and complexities inherent in the clinical
scans. This could potentially impact the generalizability and
effectiveness of our proposed method in real-world scenarios.
To address this limitation, we incorporated noisy simulations
and included 10 clinical scans for testing. Although we have
included complex cases, such as those with motion artifact
and out-of-fov metals, there is still a necessity to include a
larger dataset to fully establish the model’s generalizability
and effectiveness.

As we have noted earlier, metal artifact reduction methods
often require precise segmentation of metal traces in CBCT
projections. The efficacy of the trained model’s performance
depends upon the accuracy of this ground truth metal
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segmentation. If the metals in the simulated training data
are not segmented accurately, the performance of the trained
model may degrade on the real clinical cases.
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