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A B S T R A C T 

We model the Parker instability in vertically stratified isothermal gas using non-ideal MHD three-dimensional simulations. 
Rotation, especially differential, more strongly and diversely affects the nonlinear state than the linear stage (where we confirm 

the most important conclusions of analytical models), and stronger than any linear analyses predict. Steady-state magnetic 
fields are stronger and cosmic ray energy density is higher than in comparable non-rotating systems. Transient gas outflows 
induced by the nonlinear instability persist longer, of order 2 Gyr, with rotation. Stratification combined with (differential) 
rotation drives helical flows, leading to mean-field dynamo. Consequently, the nonlinear state becomes oscillatory (while both 

the linear instability and the dynamo are non-oscillatory). The horizontal magnetic field near the mid-plane reverses its direction 

propagating to higher altitudes as the reversed field spreads buoyantly. The spatial pattern of the large-scale magnetic field 

may explain the alternating magnetic field directions in the halo of the edge-on galaxy NGC 4631. Our model is unique in 

producing a large-scale magnetic structure similar to such observation. Furthermore, our simulations show that the mean kinetic 
helicity of the magnetically dri ven flo ws has the sign opposite to that in the conventional non-magnetic flows. This has profound 

consequences for the nature of the dynamo action and large-scale magnetic field structure in the coronae of spiral galaxies that 
remain to be systematically explored and understood. We show that the energy density of cosmic rays and magnetic field strength 

are not correlated at scales of order 1 kiloparsec. 

Key words: instabilities – MHD – cosmic rays – ISM: evolution – galaxies: magnetic fields – dynamo. 

1  I N T RO D U C T I O N  

The Parker instability is a magnetic Rayleigh–Taylor or magnetic 
buoyancy instability modified by cosmic rays that carry negligible 
weight but e x ert significant pressure. The instability is an important 
element of the large-scale dynamics of the interstellar medium (ISM) 
as it affects the vertical distributions of the gas, magnetic fields, and 
cosmic rays and can drive gas outflows, thereby affecting the star 
formation. In our previous work (Tharakkal et al. 2022a ), we explored 
the development of the instability, with a focus on its nonlinear 
saturation, in a non-rotating disc with imposed unstable distributions 
of the gas, magnetic field, and cosmic rays. Among the essentially 
nonlinear features of the instability are a transient gas outflow in the 
weakly nonlinear stage and a strong redistribution of magnetic fields, 
cosmic rays, and thermal gas, resulting in a thinner thermal gas disc 
and very large scale heights and low energy densities of the magnetic 
field and cosmic rays. In this paper, we address the effect of rotation 
on the Parker instability. 

Rotation is known to reduce the growth rate of the weak perturba- 
tions but it does not suppress the instability completely (Zweibel & 

� E-mail: devika.tharakkal@gmail.com (DT); anvar.shukurov@ncl.ac.uk 
(AS); graeme.sarson@ncl.ac.uk (GS) 

K ulsrud 1975 ; F oglizzo & Tagger 1994 , 1995 ; Matsuzaki et al. 1998 ; 
Ko wal, Hanasz & Otmiano wska-Mazur 2003 ). Ho we ver, rotation in- 
troduces a fundamentally new feature to the system: under the action 
of the Coriolis force, the gas flows produced by the instability become 
helical and can drive mean-field dynamo action that generates a 
magnetic field at a large scale comparable to that of the initial unstable 
configuration. Hanasz ( 1997 ), Hanasz & Lesch ( 1997 , 1998 ), and 
Thelen ( 2000a ) simulate numerically the mean-field dynamo action 
driven by the magnetic buoyancy with and without cosmic rays, 
while Moss, Shukurov & Sokoloff ( 1999 ) present an analytical 
formulation. A striking feature of the nonlinear evolution of a rotating 
system, noticed by Machida et al. ( 2013 ) in their simulations of the 
galactic dynamo using ideal magnetohydrodynamics (MHD), is the 
possibility of quasi-periodic magnetic field reversals at the time-scale 
of 1 . 5 Gyr , both near the disc mid-plane and at large altitudes. This 
appears to be an essentially nonlinear effect that relies on rotation 
since the linear instability does not develop oscillatory solutions and 
the nonlinear states are not oscillatory without rotation (Tharakkal 
et al. 2022a ). Reversal of azimuthal magnetic fields is also reported in 
Parker instability driven accretion models (Johansen & Levin 2008 ; 
Gaburov, Johansen & Levin 2012 ). Foglizzo & Tagger ( 1994 , their 
section 7.1) find that the Parker instability can be oscillatory in a 
certain range of the azimuthal wave numbers. Machida et al. ( 2013 ) 
relate the reversals to the magnetic flux conservation, but we note that 
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the large-scale magnetic flux is not conserved when the mean-field 
dynamo is active. Our simulations of the nonlinear Parker instability 
in a rotating system suggest a different, more subtle explanation that 
relies on the correlations between magnetic and velocity fluctuations 
not dissimilar to those arising from the α-effect that drives the mean- 
field dynamo action (see below). Large-scale magnetic fields whose 
horizontal direction alternates with height emerge in the simulations 
of mean-field dynamo action by Hanasz et al. ( 2004 ). This spatial 
pattern may be related to the field reversals near the mid-plane. 

We explore the effects of rotation on the Parker instability in 
a numerical model similar to that of Tharakkal et al. ( 2022a ), 
quantifying both its linear and nonlinear stages and identifying the 
roles of the Coriolis force and the velocity shear of the differential 
rotation. We consider the instability in a local rectangular box with 
parameters similar to those of the Solar neighbourhood of the Milky 
Way. The structure of this paper is as follows. Section 2 describes 
briefly the numerical model, and in Section 3 we consider the linear 
stage of the instability. Section 4 presents a detailed comparison of 
the distributions of the thermal and non-thermal components of the 
system in the nonlinear, saturated stage of the instability and how they 
change when the rotational speed and shear rate vary. In Section 5 , we 
clarify the mechanism of the magnetic field reversal. The mean-field 
dynamo action of the motions induced by the instability is our subject 
in Section 6 where we discuss the kinetic and magnetic helicities. 
Section 8 discusses the effects of rotation on the systematic vertical 
flows. 

2  BA SIC  E QUAT I O N S  A N D  T H E  N U M E R I C A L  

M O D E L  

We use a model very similar to that of Tharakkal et al. ( 2022a ), with 
the only difference being that we now consider rotating systems, 
with either a solid-body or differential rotation. We consider the 
frame rotating at the angular velocity of the centre of the domain 
with the z-axis aligned with the gravitational acceleration and the 
angular velocity �, the y -axis directed along the azimuth and the 
x -axis parallel to the radial direction of the local cylindrical frame. 
Vector x -components are occasionally referred to as radial, while 
y -components are called azimuthal. 

The non-ideal MHD equations are formulated for the gas density 
ρ, its velocity U , total pressure P (which includes the thermal, 
magnetic and cosmic-ray contributions), magnetic field B and its 
vector potential A , and the energy density of cosmic rays εcr . 
The initial conditions represent an unstable magnetohydrostatic 
equilibrium, and the corresponding distributions ρ0 , B 0 , and εcr, 0 in 
z are maintained throughout the simulation as a background state. We 
solve for the deviations from them, denoted ρ

′ 
for the density, u for 

the velocity, P 

′ 
for the total pressure, b for the magnetic field and a for 

its vector potential, and ε′ 
cr and F 

′ for the cosmic ray energy density 
and flux. Cosmic rays are described in the fluid approximation with 
non-Fickian diffusion, so we have separate equations for their energy 
density and flux. The go v erning equations are solved numerically 
in a rectangular shearing box of the size 4 × 4 × 3 . 5 kpc 3 along 
the x , y , and z ax es, respectiv ely, with the mid-plane at z = 0 and 
| z| ≤ 1 . 75 kpc . The boundary conditions are periodic in x , sliding- 
periodic in y and allow for a free exchange of matter through the top 
and bottom of the domain as specified in detail by Tharakkal et al. 
( 2022a ). 

The total velocity is given by U = U 0 + u , where U 0 = S x ̂  y 
is the mean rotation velocity in the rotating frame with the shear 
rate S = x d �/ d x, and u is the deviation from this, associated with 
the instability. For a solid-body rotation, S = 0, we have U 0 = 0. 

Table 1. The list of simulation runs discussed: the numerical resolutions 
along each axis, the angular velocity and rotational shear, and the instability 
growth rate computed for u z and b z . 

( � x , � y , �z) � S � 

[pc] [km s −1 kpc −1 ] [km s −1 kpc −1 ] [Gyr −1 ] 

�00N (15,7,13) 0 0 23 
�30N (31,15,27) 30 0 22 
�30S (31,15,27) 30 −30 12 
�60S (31,15,27) 60 −60 7 

Both S and � are assumed to be independent of z and S < 0 for 
realistic galactic rotation profiles. We neglect the vertical gradient 
of � and S ; for its observed magnitude of order −15 to 25 km kpc −1 

(section 10.2.3 of Shukurov & Subramanian 2021 , and references 
therein), � and S only vary by about 10–15 per cent within | z| � 

1 . 5 kpc . 
The presence of rotation only affects the momentum and induction 

equations, so equations (1), (4)–(6), (9) and (10) for the mass 
conservation and cosmic rays of Tharakkal et al. ( 2022a ) still apply 
and only the momentum and induction equations are augmented with 
terms containing � and S : 

D u 

D t 
= −∇P 

ρ
+ g + 

( ∇×B ) ×B 
4 πρ

− Su x ̂  y − 2 � × u + ∇ · τ , (1) 

∂ a 
∂t 

= u × ( ∇ × A ) − Sa y ̂  x − Sx ∂ a 
∂y 

− η∇ × ( ∇ × a ) , (2) 

where D / D t = ∂/∂t + ( U 0 + u ) · ∇ is the Lagrangian deri v ati ve, g 
is the gravitational acceleration, and τ is the viscous stress tensor. 
The Kepler gauge for the vector potential, as described by Oishi & 

Mac Low ( 2011 ) (see also Brandenburg et al. 1995 ), is appropriate 
for this shearing box framework. 

We use the gravity field g = −g( z) ̂ z obtained by Kuijken & 

Gilmore ( 1989 ) for the Solar vicinity of the Milky Way and 
consider an isothermal gas with the sound speed c s = 18 km s −1 and 
temperature T = 3 . 2 × 10 4 K. In the background state (identified 
with the subscript zero, this is also the initial state), both the 
magnetic and cosmic ray pressures are adopted to be half the thermal 
pressure, P m, 0 / P th, 0 = P cr, 0 / P th, 0 = 0.5, where P th,0 = c 2 s ρ0 (0), 
P m,0 = B 

2 
0 (0) / (8 π ), and P cr, 0 = εcr0 (0)/3 are the thermal, magnetic, 

and cosmic ray pressures, respectively, and B 0 (0) = 5 μG . The gas 
viscosity ν (included in τ ) and magnetic dif fusi vity η are chosen 
as ν = 0 . 1 kpc km s −1 and η = 0 . 03 kpc km s −1 , respectively, to be 
somewhat smaller than the turbulent values in the ISM (see Tharakkal 
et al. 2022a , for further details and justification). 

Table 1 presents the simulation runs discussed in this paper. The 
value of � near the Sun is close to 30 km s −1 kpc −1 (referred to 
as the nominal value hereafter), and S = −� when the rotational 
speed is independent of the galactocentric distance (a flat rotation 
curve), | � × r | = const . Model �00N is identical to Model Sim6 of 
Tharakkal et al. ( 2022a ), Model �30N only differs by the solid-body 
rotation at the nominal angular velocity, Model �30S adds the large- 
scale velocity shear (differential rotation), whereas Model �60S has 
both the angular velocity and its shear doubled. The averages at z = 

const (horizontal averages) are denoted 〈···〉 h . 
Fig. 1 presents a pictorial summary of the changes in the magnetic 

field and gas density as the instability develops through its linear 
stage and then saturates in Model �30S . During the linear phase, at 
t = 0 . 3 Gyr , the magnetic field and gas density retain the structure 
of the imposed fields with weak perturbations in ρ. By the weakly 
nonlinear stage at t = 0 . 6 Gyr , both the gas density and magnetic 
field are strongly perturbed to the extent that the mean azimuthal 
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(b) t = 0.6 Gyr

0.08 2.50 4.92-2.67 1.30 5.266e-28 5e-25 1e-24

(a) t = 0.3 Gyr

z

yx

t [Gyr]
0.3 Gyr

2.6 Gyr

Figure 1. The evolution of the gas density and magnetic field in Model �30S is illustrated for its three significant epochs: (a) the linear stage, (b) beginning 
of the magnetic field reversal in the early nonlinear stage, and (c) the advanced nonlinear state (the specific simulation times are indicated for each frame). 
Selections of magnetic lines are shown (with colour representing the local magnetic field strength in μG) in the ( x , y , z)-space at the time indicated to the left 
of each frame. The horizontal average of the azimuthal magnetic field 〈 B y 〉 h in μG is shown with colour on the vertical ( z, t )-plane as it evolves continuously 
(rather than at discrete times used for the magnetic lines). The gas density distribution is shown with colour on the vertical ( x , z)-planes (in g cm 

−3 ) for each 
time. 

magnetic field 〈 B y 〉 h starts re versing. The re versal is complete in the 
late nonlinear stage at t = 1 . 6 Gyr and magnetic loops are prominent. 
We explain and detail these processes below. 

3  T H E  LIN EAR  INSTABILITY  

The linear phase of the Parker instability in the absence of rotation is 
discussed in detail in our previous work (Tharakkal et al. 2022a ), 
where we compare the growth rate and the spatial structure of 
the most rapidly growing mode with those obtained in a range of 
analytical and numerical models. In this section, we focus on the 
modifications of the exponentially growing perturbations caused by 
the rotation and velocity shear. 

Figs 2 (a) and (b) show the evolution (in both the linear and 
nonlinear stages) of the root-mean-square (r.m.s.) magnitudes of 
the perturbations in the magnetic field and velocity, while panels (c) 
and (d) show how the total magnetic field strength B r.m.s. and the 
mean cosmic ray energy density εcr at z = 0, respectively, evolve in 
the models of Table 1 . As expected (Shu 1974 ; Zweibel & Kulsrud 
1975 ; Foglizzo & Tagger 1994 , 1995 ; Hanasz & Lesch 1997 ), the 
instability growth rate � (given in Table 1 ) decreases systematically 
with the angular velocity. The stretching of the magnetic lines along 
the radial ( x ) direction by the Coriolis force enhances the magnetic 
tension thus opposing the instability while the differential rotation 
shears the perturbations to reduce the radial wavelength. The analysis 
by Foglizzo & Tagger ( 1994 ) reports the shearing of lower k x modes 
to higher modes, where the Parker instability is the strongest. 

The spatial structure of the unstable modes is illustrated in Fig. 3 , 
which presents the two-dimensional power spectra of the perturba- 
tions affected by the solid-body (panels c and d) and differential 
(panels e and f) rotation and compares them with the non-rotating 

case (panels a and b). The spectra of the velocity and magnetic field 
perturbations are identical when � = 0 but noticeable differences 
develop in rotating systems. In contrast to the analysis of Shu ( 1974 ) 
we find that the rotation reduces the azimuthal wavenumber, k y . 
The solid-body rotation leads to wider spectra in the radial and 
azimuthal wave numbers. Studies by Foglizzo & Tagger ( 1994 ) 
report similar growth rates for k x → ∞ in non-rotating and uniformly 
rotating systems. These authors also find that for the lower values 
of k x the range of k y is narrow in the rotating system compared to 
the non-rotating case. In contrast to this, we see a wider range of 
significant k y modes for k x → 0. Since the Coriolis force couples 
the radial and azimuthal motions, the spectra in k x and k y are more 
similar to each other than in the case � = 0. Ho we v er, the v elocity 
shear strongly reduces the range of k y while the perturbations have 
significantly larger radial wave numbers k x than in the cases � = 

0 and S = 0. The simulations discussed in this work have explicit 
(magnetic) dif fusi vity and viscosity. Rodrigues et al. ( 2016 ) consider 
the effect of viscosity and diffusivity on the instability’s growth 
rate in a similar setup; they find that the growth rate does not 
vary much. We also consider the effect of varying viscosity and 
dif fusi vity in our previous work (Tharakkal et al. 2022a ), and obtain 
similar results. The explicit viscosity and dif fusi vity constrain the 
perturbations with high wavenumber that can develop in the system. 
Equation (27) in Tharakkal et al. ( 2022a ) gives an approximate upper 
limit for k x constrained by the magnetic dif fusi vity. The dependence 
of maximum k x on viscosity will follow a similar relation. 

4  T H E  SA  T U R A  TED  STA  TE  

Fig. 2 also shows that the nonlinear development of the instability 
and its statistically steady state are strongly affected by the rotation 
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Figure 2. The evolution of the r.m.s. magnitudes at the mid-plane z = 0 of 
(a) the magnetic field perturbation | b | , normalized to B 0 (0) (the strength of 
the background magnetic field at z = 0), and (b) gas speed in the Models 
�00N (solid, no rotation), �30N (dash-dotted, solid-body rotation at the 
nominal �), �30S (dotted, differential rotation at the nominal � and S ), 
and �60S (dashed, doubled � and S ). Similarly, panels (c) and (d) show 

the horizontally averaged total magnetic and cosmic ray energy densities at 
z = 0 for those models, normalized to the respective mid-plane values in the 
background state, 〈 B 〉 xy (0)/ B 0 (0) and 〈 εcr 〉 xy (0)/ εcr0 (0), respectively. 

Figure 3. The two-dimensional power spectra of u z (left-hand column, in 
the units of kpc 2 km 

2 s −2 ) and b z (right-hand column, in kpc 2 μG 

2 ), averaged 
o v er | z| < 1 . 75 kpc , in Models �00N (a and b), �30N (c and d), and �30S 
(e and f) at t = 0 . 3 Gyr (the linear stage of the instability). 

and velocity shear. Solid-body rotation does not affect much the 
magnitude of the magnetic field perturbations at t � 1 Gyr , presented 
with the solid and dash-dotted curves in panel (a), but reduces 
the velocity perturbations shown in panel (b). Understandably, the 
velocity shear enhances both (the dotted curves) by stretching the 
radial magnetic fields which, in turn, affect the motions. The case 
of faster rotation and correspondingly stronger shear confirms this 
tendency (dashed curves). 

Figs 2 (c) and (d), which show the total magnetic field strength 
and cosmic ray energy density at z = 0, suggest that the structure of 
the magnetic field is changed profoundly by rotation and, especially, 
by the velocity shear. For example, the magnitude of the magnetic 
field perturbations in Model �30S shown with the dotted curve in 
panel (a) is less than twice larger than at � = 0 (solid curve), but the 
total magnetic field at z = 0 shown in panel (c) is almost an order 
of magnitude stronger since the perturbation is better localized near 
z = 0 (see below). The instability still remo v es both the magnetic 
field and cosmic rays from the system as in the case � = 0, but at a 
much lower efficiency that depends on both the angular velocity and 
the rotational shear. 

As compared to the case � = 0, the system retains stronger 
magnetic field under the solid-body rotation but less cosmic rays, 
as shown with the solid and dash-dotted curves in Figs 2 (c) and 
(d). Fig. 4 clarifies the details of the changes effected by rotation 
and velocity shear, presenting the varying vertical profiles of the gas 
density, magnetic fields and cosmic rays in Models �00N , �30N , 
and �30S . Both solid-body and differential rotations reduce the 
gas scale height in the saturated state. The comparison of panels 
(b and c) and (e and f) shows that the solid-body rotation leads to 
narrower distributions (smaller scale heights) of both magnetic field 
and cosmic rays about the mid-plane. Moreo v er, as we discuss below, 
the gas flow becomes helical in a rotating system (see Section 6 ), 
supporting the mean-field dynamo action. As a result, a large-scale 
radial magnetic field B x , clearly visible in Figs 5 (d) and (f), emerges 
in a rotating system. 
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Figure 4. The evolution of the vertical profiles of the horizontally averaged and normalized gas density 〈 ρ〉 h / ρ0 (0) (left-hand column), magnetic field strength 
〈 B 〉 h / B 0 (0) (middle), and cosmic ray energy density 〈 εcr 〉 h / εcr0 (0) (right-hand column). First row: Model �00N (no rotation), second row: Model �30N (nominal 
solid-body rotation), third row: Model �30S (nominal rotation and shear). The times corresponding to the line styles are given in the legend of each row. Note 
that the direction of the mean azimuthal magnetic field 〈 B y 〉 h has reversed within a certain distance of the mid-plane at the later times, t = 1.6 and 2 . 6 Gyr . 

The velocity shear changes the nonlinear state qualitatively. First, 
the scale heights of B and εcr near the mid-plane are even smaller 
at t = 0 . 6 –0 . 9 Gyr in panels (h) and (i) than at the comparable 
times in panels (e) and (f). Secondly, and more importantly, the 
vertical profile of the magnetic field strength evolves to become 
more complicated at t = 1 . 6 Gyr in Panel (h), and the cosmic ray 
distribution reflects this change. The energy density of cosmic rays 
in Model �30S , 〈 εcr 〉 h (0) = 0.2 εcr0 at t = 1 . 6 Gyr (Fig. 4 i) is ten 
times larger than in Model �00N . Differential rotation helps to 
confine cosmic rays because it drives dynamo action generating 
strong horizontal magnetic field, and this slows down the escape 
of cosmic rays as they spread along larger distances guided by the 
magnetic field. 

The change in the vertical profile of 〈 B 〉 h in Model �30S at 
t = 1 . 6 Gyr reflects the reversal of the horizontal magnetic field near 
the mid-plane discussed and explained in Section 5 . 

5  MAGNETIC  FIELD  REVERSAL  

The reversal of the magnetic field in the nonlinear stage of the 
instability has been noticed earlier by a few authors (see Section 1 ) 
but our simulations identify it as a generic feature of the Parker and 
magnetic buoyancy instabilities in rotating systems. This process is 
illustrated in Fig. 5 which sho ws ho w the e volution of the large-scale 
horizontal magnetic field components 〈 B x 〉 h and 〈 B y 〉 h depends on 
rotation and the velocity shear. 

Fig. 5 (a) shows again (see also Tharakkal et al. 2022a , for 
details) that, in a non-rotating system, the azimuthal magnetic 
field 〈 B y 〉 h decreases with time in strength and its scale height 
increases, while the radial field 〈 B x 〉 h shown in Fig. 5 (b) is much 

weaker and varies along z without any systematic pattern. Solid- 
body rotation causes two major changes: the azimuthal field strength 
(Fig. 5 c) first decreases faster than without rotation but then starts 
growing and, at late times, is stronger than for � = 0. The field 
direction remains the same as of the imposed field, 〈 B y 〉 h > 0. 
Meanwhile, the radial field (Fig. 5 d) is, at late times, comparable 
in strength to 〈 B y 〉 h , well-ordered and is predominantly ne gativ e, 
〈 B x 〉 h < 0. This change is a result of the mean-field α2 -dynamo 
action driven by the mean helicity of the gas flow as discussed in 
Section 6 . 

The differential rotation of Model �30S (Figs 5 e and f) changes 
the e volution e ven more dramatically: it dri ves the more ef ficient αω- 
dynamo with stronger 〈 B x 〉 h and, remarkably, e xhibits a rev ersal of the 
large-scale horizontal magnetic field. The reversal starts in the weakly 
nonlinear phase at t = 0 . 5 Gyr with a rather abrupt emergence of a 
relatively strong positive radial magnetic field near the mid-plane, 
〈 B x 〉 h > 0. The velocity shear with S < 0 stretches the positive 
radial field into a ne gativ e azimuthal magnetic field, so that 〈 B y 〉 h 
starts decreasing and reverses at t = 1 . 6 Gyr (Fig. 5 e). The total 
horizontal magnetic field strength ( 〈 B x 〉 2 h + 〈 B y 〉 2 h ) 

1 / 2 decreases to a 
minimum before increasing again, as 〈 B y 〉 h decreases to zero and then 
re-emerges with the opposite direction. These changes in the large- 
scale magnetic field structure start near the mid-plane and spread to 
larger altitudes because of the magnetic buoyancy. 

5.1 The mechanism of the reversal 

To understand the process that leads to the reversal of the large- 
scale azimuthal magnetic field, we consider individual terms in 
the induction equation written for the deviation from the imposed 
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Figure 5. The evolution of the horizontally averaged magnetic field components, 〈 B y 〉 h (left-hand column) and 〈 B x 〉 h (right-hand column) in Models �00N 
(a and b), �30N (c and d), and �30S (e and f). For �30S the mean azimuthal field 〈 B y 〉 h decreases after t = 0 . 6 Gyr , and undergoes a reversal in sign at 
t ≈ 1 . 6 Gyr , with the reversal then spreading to higher altitudes. Meanwhile, the mean radial field 〈 B x 〉 h becomes positive and relatively strong near z = 0 rather 
abruptly at t ≈ 0 . 5 Gyr and then also spreads away from the mid-plane. 

magnetic field, 

∂ b 
∂t 

= −( U · ∇) B + ( B · ∇) U − B ∇ · U + η∇ 

2 b . (3) 

Fig. 6 shows, for Model �30S , the evolution of the mean radial 
and azimuthal components of the first three terms on the right-hand 
side of this equation, which represent the advection, stretching and 
compression of the corresponding magnetic field components near 
the mid-plane. The stretching terms ( B · ∇) U x and ( B · ∇) U y clearly 
dominate, producing a mean radial field 〈 B x 〉 h > 0 during the weakly 
nonlinear stage, 0 . 6 � t � 0 . 8 Gyr , which decreases only slowly at 
later times (because of diffusion and buoyancy) while being gradually 
stretched by the differential rotation S < 0 into a ne gativ e azimuthal 
field 〈 B y 〉 h , eventually leading to the reversal of the initially positive 
〈 B y 〉 h . This picture is very different from that for Model �00N , 
where the stretching terms in both components rapidly vanish after 
a ne gativ e e xcursion during the early nonlinear phase (see Figs 5 a, 
b and 7 ). Under the solid-body rotation, a positive radial field does 
emerge near z = 0 in the early nonlinear stage but, without the 
velocity shear, this does not lead to the reversal of the azimuthal field 
(Figs 5 c and d). 

We have analysed various parts of the averaged stretching term 

〈 ( B · ∇) U x 〉 h in the x -component of equation ( 3 ) to understand which 
of them produces a positive radial component of the mean field. We 

Figure 6. The evolution of the three terms on the right-hand side of the 
induction equation ( 3 ) v olume-a veraged near the mid-plane ( z < 0 . 4 kpc ): 
(a) the radial ( x ) and (b) the azimuthal ( y ) components of the stretching term 

( B · ∇ ) U (solid), advection −( U · ∇ ) B (dotted) and compression −B( ∇ · U ) 
(dash-dotted), in model �30S . 
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Figure 7. As in Fig. 6 , but for model �00N . 

Figure 8. The vertical variation of the horizontally averaged stretching 
terms in equation ( 4 ) in Model �30S at t = 0 . 7 Gyr near the mid-plane: 
〈 b x ∂ u x /∂ x〉 h (solid), 〈 b y ∂ u x /∂ y〉 h (dashed), and 〈 b z ∂ u x /∂ z〉 h (dotted). 

note that 〈 U x 〉 h = 0 and then 〈 ( B · ∇) U x 〉 h = 〈 ( b · ∇) u x 〉 h . Thus, 

〈 ( B · ∇) U x 〉 h = 

〈
b x 

∂u x 

∂x 

〉
h 

+ 

〈
b y 

∂u x 

∂y 

〉
h 

+ 

〈
b z 

∂u x 

∂z 

〉
h 

. (4) 

Fig. 8 shows that the first two terms on the right-hand side of 
this equation are less significant than the third term, and that 
〈 b z ∂ u x /∂z〉 h > 0 at | z| � 0 . 2 kpc . The term 〈 b x ∂ u x /∂x〉 h also con- 
tributes to the generation of a positive 〈 B x 〉 h at all z. 

The positive correlation between b z and ∂ u x / ∂ z, the main driver in 
the generation of the positive 〈 B x 〉 h , arises because of: (i) the Coriolis 
force; and (ii) the emergence of a local minimum of 〈 B y 〉 h at the mid- 
plane produced by the buoyancy. To demonstrate this, we express u x 
using the y -component of the momentum equation ( 1 ) with S = −�, 
differentiate the result with respect to z, multiply it by b z and average 
to obtain 

ρ�

〈
b z 

∂u x 

∂z 

〉
h 

= 

1 
4 π

〈 

b 2 z 
∂ 2 B y 

∂z 2 

〉 

h 
+ 

1 
8 π

〈 

∂b 2 z 
∂z 

∂B y 

∂z 

〉 

h 

+ 

〈
b z 

∂� 

∂z 
− b z 

∂ρ

∂z 
�u x 

〉
h 

, (5) 

where we have neglected the fluctuations in ρ when averaging on 
the left-hand side (which is justifiable since the random gas speed is 

Figure 9. The vertical profiles of the horizontally averaged azimuthal field, 
〈 B y 〉 h , at = 0 . 5 Gyr (solid), t = 0 . 7 Gyr (dashed), and 1 . 5 Gyr (dotted) in 
Models (a) �30N and (b) �30S . Panel (c) shows the variation with z of 
the correlations on the right-hand-side of equation ( 5 ) for Model �30S at 
t = 0 . 7 Gyr : 〈 ( b z ) 2 ∂ 2 B y /∂ z 

2 〉 h (solid), 〈 1 2 ∂ ( b z ) 
2 /∂ z ∂ B y /∂ z〉 h (dashed), and 

〈 b z ∂ �/∂ z〉 h (dotted). 

subsonic) and � combines all other terms: 

� = −ρ
D u y 

D t 
− ∂P 

∂y 
− 1 

8 π

∂b 2 

∂y 
+ 

1 

4 π

(
b x 

∂b y 

∂x 
+ b y 

∂b y 

∂y 

)
, (6) 

where we neglect the viscosity (represented by the viscous stress 
tensor τ ) and b 2 = b 2 x + b 2 y + b 2 z . Figs 9 (a) and (b) show vertical 
profiles of 〈 B y 〉 h in Models �30N (where no reversal occurs) 
and �30S , while Fig. 9 (c) clarifies the form of various terms in 
equation ( 5 ). The positive correlation 〈 b z ∂ u x /∂ z〉 h emerges because 
of the first term on the right-hand side as soon as magnetic buoyancy 
produces a local minimum of 〈 B y 〉 h at z = 0 (see Fig. 9 b), so that 
∂ 2 B y / ∂z 2 is systematically positive at z = 0. Such a minimum does 
not develop in the case of solid-body rotation (Fig. 9 a) where no 
reversal of 〈 B y 〉 h happens. As shown in Fig. 9 (c), the second and 
third terms in equation ( 5 ) are smaller in magnitude than the first 
term near z = 0 and partially compensate each other. The correlation 
〈 b z ∂ u x /∂ z〉 h is dominant and positive near z = 0, driving a reversal in 
the large-scale magnetic field near the mid-plane which then spreads 
to larger | z| as shown in Figs 6 (e) and (f) because of the magnetic 
buoyancy. We stress that the minimum of 〈 B y 〉 h at z = 0 can only 
arise at the nonlinear stage of the instability, because only then do 
the fluctuations b y not average to zero. 
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We have verified that the reversal is not sensitive to the direction of 
the imposed magnetic field B 0 ( z) ̂  y ; i.e. it occurs in exactly the same 
manner for B 0 ( z) > 0 and B 0 ( z) < 0. Our simulations extend to 4 Gyr 
in duration (see Fig. 5 ). This is already a significant fraction of the 
galactic lifetime; therefore, we did not extend them further to find 
out if further reversals would occur at later times. However, periodic 
reversals occur in a similar model where the unstable magnetic field 
is generated by an imposed mean-field dynamo action (Qazi et al., 
in preparation). It appears that the emergence of the local minimum 

of 〈 B y 〉 h at z = 0 and its ensuing reversal is related to the mean-field 
dynamo action (which our imposed field emulates). The dynamo is 
driven by the mean helicity of the gas flow, and both Models �30N 
and �30S support this mechanism (as discussed belo w). Ho we ver, 
the dynamo in Model �30N , which has solid-body rotation (so 
is an α2 -dynamo), is too weak, whereas the differential rotation 
of Model �30S enhances the dynamo enough (making it an αω- 
dynamo) to produce the reversal. In the next section, we compute 
and discuss the mean helicity of the gas flow and other evidence for 
the mean-field dynamo action in Model �30S . 

6  HELICITY  A N D  DY NA MO  AC T I O N  

In Models �30N , �30S , and �60S , the Coriolis force causes the 
gas motions to become helical, and the resulting α-effect produces a 
large-scale radial magnetic field 〈 B x 〉 h (e.g. section 7.1 of Shukurov & 

Subramanian 2021 ). Differential rotation (in Models �30S and 
�60S ) enhances the dynamo significantly, and we have discovered 
that this leads to a reversal in the azimuthal magnetic field direction 
discussed in Section 5 . Both types of the turbulent dynamo ( α2 

dynamo in �30N and αω in �30S and �60S ) are driven by 
the mean kinetic helicity of the gas flow χk = ˜ u · ( ∇ × ˜ u ) , and 

the current helicity of the magnetic fluctuations χm 

= 

˜ b · ( ∇ × ˜ b ) 
opposes the dynamo instability leading to a reduction of the α- 
coefficient until a steady state is achieved (e.g. section 7.11 of 
Shukurov & Subramanian 2021 ). Here overbar denotes a suitable 
averaging, and we use the horizontal averages in our discussion, so ˜ u 

and ˜ b are understood as the deviations from the horizontal averages 
〈 B 〉 h and 〈 U 〉 h , such that 

B = 〈 B 〉 h + 

˜ b , U = 〈 U 〉 h + ˜ u , 
〈 

˜ b 
〉 

h 
= 0 , 〈 ˜ u 〉 h = 0 . (7) 

Fig. 10 shows the evolution of the kinetic and current helicities 
and their variation with z obtained using the horizontal averages. As 
e xpected, both quantities hav e odd symmetry in z (e.g. section 11.3.1 
of Shukurov & Subramanian 2021 ). Both are weak throughout the 
linear phase when the instability-driven perturbations are still weak, 
but increase significantly in magnitude during the early nonlinear 
phase at about t = 0 . 5 Gyr . The kinetic helicity reaches its max- 
imum magnitude | χk | = |〈 ̃  u · ( ∇ × ˜ u 〉 h | = 851 km 

2 s −2 kpc −1 near 
the upper and lower boundaries, z = ±1 . 6 kpc , during the transitional 
phase at t = 0 . 6 Gyr . At a later time, t = 1 . 9 Gyr , the kinetic helicity 
reduces to a maximum of | χk | = 340 km 

2 s −2 kpc −1 at | z| = 1 . 6 kpc . 
At early stages of the evolution, the current helicity has local extrema 
close to the mid-plane, where the magnetic field is stronger, | χm 

| = 

|〈 ̃  b · ( ∇ × ˜ b ) 〉 h | = 89 μG 

2 kpc −1 at t = 0 . 6 Gyr , | z| = 0 . 1 kpc . The 
e xtrema mo v e a way from the mid-plane in the nonlinear stage, to 
reach | χm 

| = 7 μG 

2 kpc −1 at t = 1 . 2 Gyr , | z| = 0 . 5 kpc and | χm 

| = 

5 μG 

2 kpc −1 at t = 3 Gyr , | z| = 1 kpc . 
The vertical profiles of both kinetic and current helicities evolve in 

a rather complicated manner, with χk < 0 at z > 0 close to the mid- 
plane (although the magnitude is small), and χk > 0 at larger z in the 
case of pure magnetic buoyancy (dotted curve in Fig. 11 representing 

Figure 10. The evolution of the horizontally averaged (a) kinetic helicity 
〈 ̃ u · ( ∇ × ˜ u ) 〉 h and (b) current helicity 〈 ̃ b · ( ∇ × ˜ b 〉 h ) in Model �30S . 

Figure 11. The spatial distribution of the mean kinetic helicity χk at t = 

0 . 7 Gyr for four imposed (initial) magnetic field strengths specified by the 
parameters βm, 0 and βcr, 0 defined in equation ( 12 ) and given in the legend. 
Among the models shown in this figure, cosmic rays are present only in 
Model �30S where ( βm, 0 , βcr, 0 ) = (0.5, 0.5) (dash-dotted: this is a vertical 
cross-section of the distribution in Fig. 10 a). 

t = 0 . 7 Gyr ). In Model �30S , χk < 0 at z > 0 close to the mid-plane 
just before t = 0 . 7 Gyr . Ne gativ e χk at z > 0 is expected from the 
action of the Coriolis force on the ascending and descending volume 
elements (section 7.1 of Shukurov & Subramanian 2021 ). Ho we ver, 
χk > 0, as it occurs at larger z for all models presented in Fig. 11 , is 
unexpected (see below for a discussion). 

The α-coefficient of the nonlinear mean-field dynamo is related 
to the kinetic and current helicities as (section 7.11.2 of Shukurov & 

Subramanian 2021 ) 

α = αk + αm 

, (8) 

where, in terms of the horizontal averages, 

αk = − 1 
3 τ0 〈 ˜ u · ( ∇ × ˜ u ) 〉 h , αm 

= 

1 
3 τ0 

〈 ̃  b · ( ∇ × ˜ b ) 〉 h 
4 πρ

, (9) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/2/2972/7244702 by Aalto U
niversity Library user on 05 O

ctober 2023



2980 D. Tharakkal et al. 

MNRAS 525, 2972–2984 (2023) 

Figure 12. The time autocorrelation function of the v ertical v elocity com- 
ponent, equation ( 11 ), for 0 ≤ t ≤ 2 Gyr (with the minimum time lag of 
10 Myr ) at z = 0 (solid), 0.6 (dashed), and 1 kpc (dotted) in Model �30S . 
The correlation time τ 0 at each z is given in the legend, obtained from the fits 
of the form C ( τ ) = exp ( − τ / τ 0 ), shown with dotted curves. 

and τ 0 is the characteristic (correlation) time of the random flow. 
The rele v ant time-scale τ 0 dif fers from the time-scale of the linear 

instability 2 π /( u 0 k y ), where u 0 and k y are the characteristic speed 
and azimuthal wavenumber of the most unstable mode shown in 
Figs 2 (b) and 3 (e) and (f), respectively. Instead, τ 0 is determined by 
nonlinear effects and has to be measured separately. We calculate 
the correlation time using the time autocorrelation function C ( τ ) of 
u z (the v ertical v elocity u z is a representativ e component since it is 
directly related to the instability), 

τ0 = 

∫ ∞ 

0 
C( τ ) d τ , (10) 

with the normalized autocorrelation function calculated as 

C( τ ) = 

1 

T 
〈

˜ u 

2 
z 

〉
h 

〈∫ T 

0 
˜ u z ( t, x ) ̃  u z ( t + τ, x ) d t 

〉
h 

, (11) 

where T is the duration of the time series used to compute C ( τ ). For a 
given z, the integral in equation ( 11 ) is calculated for each ( x , y ) and 
the result is averaged over ( x , y ). Thus defined, the autocorrelation 
function and the corresponding correlation time depend on z. 

Fig. 12 shows the time autocorrelation of u z at three values of z, 
and the form C ( τ ) = exp ( − τ / τ 0 ) provides a good fit, with the fitted 
values of τ 0 given in the legend: they vary between 18 Myr at z = 0 
and 40 Myr at z = 1 . 5 kpc . We use the fitted C ( τ ) to estimate τ 0 as 
this provides a more accurate result than the direct integration as in 
definition ( 10 ). 

We use τ0 = 30 Myr in equations ( 9 ), and the results are shown in 
Fig. 13 . The largest in magnitude values | αk | ≈ 7 km s −1 are reached 
during the transition phase around t = 0 . 6 Gyr near | z| = 1 . 5 kpc , 
whereas | αm 

| is at its maximum around 3 km s −1 during the nonlinear 
phase at t = 3 . 6 Gyr . 

The spatial structure of αk is relatively simple during the early 
nonlinear phase but becomes more complicated later. Closer to the 
mid-plane and at later stages of the evolution, αk > 0 at z > 0 (and αk 

< 0 at z < 0) as expected, and the region where αk is pre-dominantly 
positive (albeit small in magnitude) extends to larger | z| with time 
(see Fig. 14 representing vertical sections of Fig. 13 a). 

As expected, the sign of the current helicity is opposite to that of 
αk at almost all z and t , so that the back-reaction of the magnetic field 
on the flow weakens the dynamo action leading to a (statistically) 
steady state at t � 3 Gyr . 

The ne gativ e sign of αk at z > 0 (corresponding to the positive 
kinetic helicity χk ) appears to be a specific feature of a system driven 
by magnetic buoyancy or another magnetically driven instability 
such as the magnetorotational instability (MRI). Hanasz & Lesch 

Figure 13. The evolution of (a) αk and (b) αm 

, given in equations ( 9 ), in 
Model �30S . 

Figure 14. The variation of the normalized αk with z in the early ( t = 

0 . 7 Gyr , solid) and late ( t = 2 . 6 Gyr , dotted, t = 3 . 6 Gyr , dashed) nonlinear 
stages in Model �30S . 

( 1998 ) argue, using a model of reconnecting magnetic flux ropes, 
that ne gativ e αk at z > 0 can occur in magnetic buoyanc y-driv en 
mean-field dynamos. In his analysis of the mean electromotive force 
produced by the magnetic buoyancy instability in its linear stage, 
Thelen ( 2000a , his fig. 4) finds α < 0 in the unstable region of 
the Northern hemisphere in spherical geometry (corresponding to 
z > 0 in our case), although the ‘anomalous’ sign of αk remained 
unnoticed (Thelen 2000b ). Ho we ver, Brandenburg & Schmitt ( 1998 ) 
find αk > 0 at z > 0 in their analysis of the α-effect due to magnetic 
b uoyancy. Brandenb urg & Sokoloff ( 2002 ) find αk < 0 at z > 0 in 
simulations of the MRI-driven dynamos (their section 2 and αyy in 
figs 5, 7, 9 and 11). Kinetic helicity (and the corresponding αk ) of 
this ‘anomalous’ sign is also found in the simulations of MRI-driven 
dynamos of Dhang et al. (in preparation) (Subramanian, pri v ate 
communication). The origin and properties of the kinetic helicity 
of random flows driven by magnetic buoyancy and MRI deserves 
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further attention. Our results indicate not only that the kinetic helicity 
has the anomalous sign but also that it can change in space and time. 

The current helicity (Fig. 10 b) and the corresponding contribution 
to the α-effect (Fig. 13 b) have the opposite signs to, and closely 
follow both the spatial distribution and evolution of, χk and αk , 
respectively (although the magnetic quantities have smoother spatial 
distributions than the corresponding kinetic ones). This confirms 
that the action of the Lorentz force on the flow weakens the dynamo 
action as expressed by equation ( 8 ). Together with the removal of 
the large-scale magnetic field by the Parker instability, this leads to 
the eventual evolution of the system to the statistically steady state. 

Although the gas flows that become helical are driven by the 
instability, no simple and obvious relation of the mean helicity to 
the parameters that control the strength of the instability is apparent. 
Fig. 11 shows how the vertical profile of the kinetic helicity χk 

changes with the magnetic and cosmic ray pressures in the initial 
(imposed) state, specified in terms of their ratios to the thermal 
pressure at z = 0, 

βm0 = 

B 0 (0) 2 

8 πc 2 s ρ0 (0) 
and βcr0 = 

( γcr − 1) εcr0 (0) 

c 2 s ρ0 (0) 
, (12) 

where γ cr = 4/3. To a v oid complications associated with the cosmic 
rays in the system behaviour, only one model of the four illustrated 
in Fig. 11 contains cosmic rays (Model �30S discussed elsewhere 
in the text). The mid-plane strengths of the imposed magnetic field 
B 0 (0) corresponding to βm0 = 0.5, 1, and 1.5 are 5, 7, and 9 μG , 
respectively. When ( βm0 , βcr0 ) = (0.5, 0), the magnetic field is too 
weak to be unstable and the system remains in the state of magneto- 
hydrostatic equilibrium, χk = 0. Adding cosmic rays, ( βm0 , βcr0 ) = 

(0.5, 0.5) (Model �30S ) destabilizes the system producing helical 
flows discussed abo v e. Adding magnetic rather than cosmic ray 
pressure, ( βm0 , βcr0 ) = (1, 0), also makes the system unstable, and the 
resulting mean helicity at larger | z| is greater than for ( βm0 , βcr0 ) = 

(0.5, 0.5). A still stronger magnetic field, ( βm0 , βcr0 ) = (1.5, 0) leads 
to comparable χk the previous two cases in | z| � 1 kpc , except near 
the mid-plane. Altogether, it is difficult to identify a clear pattern in 
the dependence of the magnitude and spatial distribution of the mean 
helicity of the gas flow driven by the Parker instability; this invites 
further analysis, both analytical and numerical. 

The dimensionless measure of the mean-field dynamo activity in 
a differentially rotating gas layer is provided by the dynamo number 
(section 11.2 of Shukurov & Subramanian 2021 ) 

D = 

αSh 

3 

β2 
, (13) 

where h is the layer scale height, S is the velocity shear rate ( S = −�

in our case), α is given in equation ( 8 ) and 

β = 

1 
3 τ0 

〈
˜ u 

2 
〉

h 
+ η (14) 

is the magnetic dif fusi vity. The first term in this expression is 
the turbulent dif fusi vity and η is the explicit magnetic dif fusi vity 
from equation ( 2 ) or ( 3 ). As we use the horizontal averages in 
these relations, D is a function of z and varies with time together 
with h , α, and β; thus defined, D might be better called the local 
dynamo number, a measure of the dynamo efficiency at a given 
z and t . In Model �30S , η = 0 . 03 kpc km s −1 while the turbulent 
dif fusi vity v aries, at t = 1 Gyr , from 0 . 03 kpc km s −1 at z = 0 
to 0 . 5 kpc km s −1 at z = 1 kpc (a nominal turbulent dif fusi vity in 
the ISM, where turbulence is mainly driven by supernovae, is 
1 kpc km s −1 ). The dynamo amplifies a large-scale magnetic field 
provided | D | > D c , where D c is a certain critical dynamo number 
(see below). 

Figure 15. The evolution and vertical variation of the dynamo number of 
equation ( 13 ) in Model �30S . 

Table 2. The cross-correlation coefficient r of the fluctuations in various 
energy densities in the statistically steady state of Model �30S at t = 2 . 6 Gyr 
presented as a , b , where a and b refer to z = 0.5 and 1 kpc , respectively. 

ε′ 
th ε′ 

cr ε′ 
m 

ε′ 
k 

ε′ 
th 1,1 0.2, −0.03 −0.02, −0.2 −0.14, 0.12 

ε′ 
cr 1,1 −0.4, −0.8 0.2,0.05 

ε′ 
m 

1,1 −0.29, −0.1 
ε′ 

k 1,1 

Fig. 15 shows how the dynamo number varies with t and z. During 
the transient phase, 〈 ̃  u 

2 〉 h is relatively low while | α| is at its maximum. 
The resulting dynamo number is as large as | D | 
 10 4 . As the system 

evolves into the nonlinear state, the turbulent dif fusi vity increases and 
the dynamo number reduces in magnitude. At t = 0 . 6 Gyr , D varies 
from 4 near the mid-plane to 6 × 10 3 at z = 1 kpc . At later times, 
D is larger near the mid-plane and reduces further in magnitude: at 
t = 0 . 9 Gyr , D = 300 near the mid-plane and 9 at z = 1 kpc . 

As shown by Ruzmaikin, Sokoloff & Turchaninov ( 1980 ), the 
αω-dynamo in flat geometry generates oscillatory magnetic fields 
for D > 0, quadrupolar for D � 180, and dipolar for D � 550. 
The behaviour of the large-scale magnetic field in Model �30S is 
consistent with these results: it is quadrupolar and oscillatory. 

7  RELATI VE  DI STRI BU TI ONS  O F  COSMIC  

R AY S  A N D  MAGNETI C  FIELD  

Similar to our analysis in Tharakkal et al. ( 2022a ), we present 
in Table 2 the Pearson cross-correlation coefficient between the 
fluctuations in energy densities for different components in model 
�30S at z = 0.5 and 1 kpc for the late nonlinear stage at t = 2 . 6 Gyr , 
derived as 

ε′ 
m 

= 

B 

2 − 〈
B 

2 
〉

h 

8 π
, ε′ 

cr = εcr − 〈 εcr 〉 h , 
ε′ 

th = c 2 s ( ρ − 〈 ρ〉 h ) , ε′ 
k = 

1 
2 ρ ˜ u 

2 − 〈
1 
2 ρ ˜ u 

2 
〉

h 
. 

(15) 

The only significant entry in the table is the anti-correlation between 
the magnetic and cosmic ray energy fluctuations at z = 1 kpc where 
their contribution to the total pressure is noticeable (see Section 8 ). 
There are no signs of energy equipartition between cosmic rays and 
magnetic fields at kiloparsec scales; nor are there indications of 
equipartition at the turbulent scales, for either cosmic ray protons 
(Seta et al. 2018 ) or electrons (Tharakkal et al. 2022b ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/2/2972/7244702 by Aalto U
niversity Library user on 05 O

ctober 2023



2982 D. Tharakkal et al. 

MNRAS 525, 2972–2984 (2023) 

Figure 16. The evolution and variation with z of the horizontally averaged 
v ertical v elocity 〈 u z 〉 h in Models (a) �30N and (b) �30S . 

8  V E RT I C A L  FLOW S  A N D  F O R C E  BA L A N C E  

Rotation affects significantly the vertical gas flow driven by the 
instability. As discussed by Tharakkal et al. ( 2022a ) (and also in 
Model �00N ), a systematic gas outflow is transient without rotation 
and only occurs during the early nonlinear stage. Fig. 16 shows 
the horizontally av eraged v ertical v elocity 〈 u z 〉 h in Models �30N 
(solid-body rotation) and �30S (differential rotation). In both 
cases, systematic vertical flows occur at | z| � 1 kpc . The solid-body 
rotation (Fig. 16 a) does not change much the structure of the flow 

in comparison with the non-rotating system, with a transient outflow 

during the early nonlinear stage and a weak inflow at later times. In 
Model �30N , the maximum outflow speed is |〈 u z 〉 h | = 9 km s −1 at 
t = 0 . 7 Gyr , followed by the inflow at the speed |〈 u z 〉 h | = 7 km s −1 

at t > 1 . 4 Gyr . Ho we ver, dif ferential rotation not only changes 
dramatically the magnetic field structure and evolution (Fig. 5 ), but 
also supports a prolonged period of a systematic gas outflow at 
0 . 6 � t � 3 Gyr , which eventually evolves into a weak gas inflow at 
large | z| (Fig. 16 b). The maximum outflow speed in Model �30S is 
|〈 u z 〉 h | = 7 km s −1 at t = 0 . 6 Gyr at large | z| , while the later inflow 

speed is |〈 u z 〉 h | = 1 km s −1 at t � 3 Gyr . 
The pattern of the vertical flows shown in Fig. 16 (b) is not 

dissimilar to the structure of the magnetic field shown in Figs 5 (e) 
and (f) and the dynamo number (Fig. 15 ) – especially at later stages, 
t � 3 Gyr – suggesting that the magnetic field contributes noticeably 
to the vertical flow in Model �30S . 

To understand what drives the vertical flows, we present in 
Fig. 17 the vertical forces acting during various evolutionary stages 
of Model �30S . It is instructive to compare them with those 
in non-rotating systems discussed by Tharakkal et al. ( 2022a ). 
Without rotation, as in Model �00N (see also fig. 12 of Tharakkal 
et al. 2022a ), both magnetic and cosmic ray pressures are reduced 
significantly as the system evolves into the nonlinear state, and 

the vertical gas flows are driven by the thermal pressure gradient. 
This changes in Model �30S , where magnetic field, and to a lesser 
extent cosmic rays, make a stronger contribution to the force balance. 
Moreo v er, the gravity force and the thermal pressure gradient balance 
each other almost completely in the nonlinear state, so that the 
weaker magnetic and cosmic ray pressures appear to be capable of 
controlling the v ertical v elocity pattern, especially at | z| � 0 . 5 kpc . 
This is illustrated in Fig. 18 , which shows that the vertical variations 
of the net vertical force per unit mass are indeed similar in detail to 
those of the magnetic pressure gradient. 

The magnetic and cosmic ray pressure gradients are weak because 
both non-thermal components of the simulated ISM are much less 
stratified than the thermal gas. Ho we ver, their energy densities are 
large and they dominate over the thermal gas at | z| � 0 . 5 –1 kpc . 
Fig. 19 shows the vertical profiles of the horizontally averaged ratios 
of the magnetic and cosmic ray pressures to the thermal pressure, 
βm 

and βcr respectively, defined as in equation ( 12 ) but for the 
evolving quantities. Although each non-thermal pressure component 
is subdominant near the mid-plane at all stages of the evolution, each 
of them exceeds the thermal pressure at larger altitudes as soon as the 
instability becomes nonlinear, t � 0 . 6 Gyr . It is useful to compare 
Fig. 19 with fig. 18 of Tharakkal et al. ( 2022a ): rotation somewhat 
reduces the magnitudes of βm 

and βcr at large | z| but leads to the 
dominance of the non-thermal pressure components at smaller values 
of | z| than in a non-rotating system, and leads to a larger contribution 
from cosmic rays. 

9  DI SCUSSI ON  A N D  C O N C L U S I O N S  

Differential rotation affects the nonlinear state of the Parker insta- 
bility more strongly than its linear properties. Without rotation, the 
system loses most of its magnetic field and cosmic rays as it evolves 
towards the steady state. A solid-body rotation does not change the 
nonlinear state significantly. Ho we ver, dif ferential rotation allows the 
system to retain better both the magnetic field and cosmic rays. The 
reason for that is the dynamo action (present also under the solid- 
body rotation but significantly enhanced by the differential rotation) 
which produces strong (about 2 –3 μG ) large-scale magnetic field 
both near the mid-plane and at large altitudes. As a result, cosmic 
rays (go v erned by anisotropic diffusion) spend longer times within 
the system. 

The systematic vertical gas flows are also affected by the rotation, 
which prolongs the transient outflow at a speed |〈 u z 〉 h | = 7 km s −1 to 
the time interval 0 . 6 � t � 3 Gyr . It appears that the magnetic field 
contributes significantly to driving the outflow. Meanwhile, cosmic 
rays do not play any significant role in driving the outflow at the 
scales explored here, | z| ≤ 1 . 5 kpc : because of the large dif fusi vity 
of cosmic rays, the vertical gradient of their pressure is very 
small. 

Another dramatic effect of the dynamo action is that it leads 
to a reversal of the large-scale magnetic field, in what appears 
to be a sign of nonlinear oscillations of the large-scale magnetic 
field. Neither the Parker instability nor the dynamo are oscillatory 
by themselv es. F oglizzo & Tagger ( 1994 ) report the emergence 
of oscillatory behaviour in the linear phase of the instability with 
rotation. Ho we ver, we do not see any oscillatory behaviour in the 
linear phase and the reversal of the magnetic field results from 

the dynamo driven by buoyancy and differential rotation. We have 
identified the rather subtle mechanism of the reversal and argue that 
it is an essentially nonlinear phenomenon. 

Here, there is a possibility that our system also has MRI arising due 
to differential rotation. However, we start with a strong magnetic field 
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Figure 17. The vertical profiles of the horizontally averaged vertical forces in Model �30S normalized to the maximum magnitude of the gravitational force 
(dashed, repeated in all panels for reference): thermal (solid), cosmic ray (dotted) and magnetic (dash-dotted) pressure gradients. The contribution of the magnetic 
tension is much weaker, so it is not shown. Each panel represents a different evolutionary stage: (a) t = 0 . 3 Gyr (linear instability), (b) 0 . 6 Gyr (transitional), 
(c) 1 . 6 Gyr (nonlinear state when the magnetic field has just reversed near z = 0), and (d) 3 . 6 Gyr (late nonlinear stage). 

resulting in an Alfv ́en speed comparable to the sound speed of the gas. 
Ho we ver, we start with a strong magnetic field resulting in an Alfv ́en 
speed comparable to the sound speed of the gas. The instability 
condition for MRI follows the relation (Shukurov & Subramanian 

Figure 18. (a) The total vertical force per unit mass and (b) the resulting 
v ertical v elocity at times t = 0.6 (solid), 1.6 (dotted), 2.6 (dashed), and 3 . 6 Gyr 
(dash-dotted). 

2021 ) 

k 2 V 

2 
A = 

k 2 B 

2 
0 

4 πρ
< −2 x 

d �

d x 
. (16) 

From this relation, the long wavelengths for MRI will be significantly 
excited when the Alfv ́en speed is considerably less than the initial 
value. This condition is only satisfied for our model when the 
magnetic field strength reduces in the nonlinear state of the Parker 
instability. Hence, the time-scales o v er which MRI might dev elop 
are much greater than those for the buoyancy instability, so that MRI 
will not affect the linear development. 

The reversal of the large-scale magnetic field is also reflected in 
its spatial distribution. The reversal starts near the mid-plane and 
then the reversed magnetic field spreads to larger altitudes (see 
Figs 5 e–f). As a result, the direction of the large-scale magnetic 
field reverses along z at any given time. An arguably similar pattern 
of regions with the sign of the Faraday depth alternating along the 
direction perpendicular to the disc plane is observed in the edge-on 
galaxy NGC 4631 (Mora-Partiarroyo et al. 2019 ). The comparison of 
Figs 5 (e) and (f) and 5 (c) and (d) shows that the Parker instability in a 
dynamo active system can produce rather complicated magnetic field 
structures. Our use of horizontal averages in Fig. 5 and elsewhere in 
the text conceals strong localized vertical magnetic fields typical of 
the magnetic buoyancy (see, e.g. Fig. 1 ), also observed in NGC 4631. 
Because of the low gas density at kpc-scale distances from the 
galactic mid-plane, observations of the Faraday rotation produced 
there are difficult; the observations of Mora-Partiarroyo et al. ( 2019 ) 
are the first of this kind, and future observation should show how 

widespread are such complex patterns. Further observational and 
theoretical studies of large-scale magnetic fields outside the discs of 
spiral galaxies promise new, unexpected insights into the dynamics 
of the interstellar gas and its magnetic fields. 

An unusual feature of our results, which needs further effort to be 
understood, is that the mean kinetic helicity of the flows driven 
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Figure 19. The distribution in z of the horizontally averaged ratios of (a) magnetic and (b) cosmic ray pressures to the thermal pressure in Model �30S , βm 

and βcr , respectively, at various times specified in the legend: the linear state, t = 0 . 3 Gyr (solid), transitional period, t = 0 . 6 Gyr (dotted), nonlinear state at 
t = 1 . 6 Gyr when the magnetic field reversal occurs (dashed), and a late nonlinear state, t = 2 . 6 Gyr (dash-dotted). 

by the Parker and magnetic buoyancy instabilities is positive in 
the upper half-space, z > 0, and thus has the sign opposite to 
that in conventional stratified, rotating, non-magnetized systems. 
We note that positive kinetic helicity also occurs in some earlier 
studies of the mean-field dynamo action and α-effect in magnetically 
dri ven systems. Ho we ver, this remarkable circumstance, which can 
have profound – and poorly understood – consequences for our 
understanding of the nature of large-scale magnetic fields outside 
galactic discs, has attracted relatively little attention. 
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