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Abstract: In this work, we demonstrated a kind of flexibly monolithic saturable absorber (SA) with
GaAs nanowires (NWs) on polyimide (PI) plastic substrate for broadband optical modulation at
1.0 and 1.5 µm, separately. The monolithic SA sample was prepared by the metalorganic vapor
phase epitaxy (MOVPE) method. The crystal structure and element analysis were examined carefully
by high-resolution scanning transmission electron microscopy (HRSTEM) and energy-dispersive
X-ray spectroscopy (EDX). We observed a high-density distribution of NWs on the flexible substrate
by scanning electron microscopy (SEM). In addition, linear and nonlinear optical properties of the
sample were examined by testing the photoluminescence and absorption properties, which showed
its potential application as an optical switch due to the pure semiconducting properties. After the
characterizations, we experimentally demonstrated this monolithic SA for laser modulation at 1.0 and
1.5 µm, which yielded the minimum optical pulse widths of 1.531 and 6.232 µs, respectively. Our
work demonstrated such a kind of monolithic flexible NW substrate-integrated device used for
broadband optical modulation, which not only eased the integration process of NWs onto the fiber
endface, but also proved the potential of easily integrating with more semiconducting nanomaterials
(e.g., graphene, MoS2, . . .) to realize monolithic active flexible photonic systems, such as a microscale
phase modulator, delay-line, and so on, paving an easy avenue for the development of both active
and flexible photonic devices.

Keywords: GaAs nanowires; saturable absorber; nonlinear optical modulation; flexible photonics

1. Introduction

With the continuous development of information networks, miniaturization, integra-
tion, high performance, and low power consumption have become inevitable requirements
for semiconductor optoelectronic devices [1,2]. Within the past two decades, semiconductor
nanowires (NWs) have become a hot research topic in the information field, with their
extremely small radial dimensions, easy-to-achieve heterogeneous compatible structural
features, and novel electrical and optical properties. Semiconductor NWs exhibit many
unique physical properties, such as significant surface [3] and size effects [4], while being
free to transport electrons, holes, and photons in the length direction [5]. At the same time,
semiconductor NWs also show new effects that are different from those of bulk materials,
such as quantum tunneling [6] and quantum interference effects [7]. Therefore, semicon-
ductor NWs are considered ideal building blocks for the development of high-performance
photonic and optoelectronic devices, such as solar photovoltaic devices [8–10], photode-
tectors [11–16], optical circuits for all-optical nanoprocessors [17], NW waveguides and
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lasers [18–21], NW transistors [22], and single-photon detectors [23], etc. Normally, NWs
consist of binary or multiple semiconductor compounds, such as III-V and II-IV elements,
and the structures have become more abundant with the development of growth and
preparation processes, while mostly showing the crystal structures of zincblende, wurtzites,
or the combination of both for some defect effects. With the advantages of a direct band gap
and high electron mobility, III-V compound semiconductor NWs have broad application
prospects in micro- and nano-photonic devices with low power consumption, high speed,
and ease of integration [24].

The birth of the world’s first ruby laser in 1960 [25] meant that a high-energy coherent
light source was available, allowing direct experimental studies of the nonlinear optical
effects of the medium. In 1961, second harmonic generation (SHG) was first found in the
lab using a ruby laser by Franken [26]. Thus, various nonlinear optical phenomena can
be studied, such as two-photon absorption (TPA) [27], frequency doubling [28], saturable
absorption [29,30], four-wave mixing [31], and excited Raman scattering [32], using various
nonlinear optical materials, especially with the development of layered materials providing
a fruitful material platform to use to engineer the nonlinear optical phenomena. Semicon-
ductor NWs, as a class of one-dimensional nanomaterials, can be reformed as different
radial and axial heterostructures [33–35], which affects their intrinsic electron mobility and
photon transition time, corresponding to the modulation of light–matter response time.
Thus, they facilitate the extension of the operating bandwidth to a long wavelength range
(e.g., mid-infrared range), which is an ideal material for optical modulation, especially in
ultrafast photonic devices.

GaAs is a kind of widely used semiconductor material used for the application of
infrared light generation and detection with the main properties of a direct bandgap at
1.42 eV and high electron mobility. GaAs NWs were studied deeply for their application
as solar array cells [8] and photodetectors [12,15], and provide great opportunities for
integrated photonic and optoelectronic devices. Until now, the majority of GaAs NWs
were grown on rigid substrates like GaAs, silicon, quartz, and glass, limiting their potential
applications for the highly required integrated and flexible devices, especially the integra-
tion with fiber systems. Thus, it is important to study such monolithic devices with easy
fabrication methods but wherein they are highly integrated for the development of novel
flexible photonic devices.

In this work, we successfully prepared a monolithic device with GaAs NWs integrated
on the flexible polyimide (PI) substrate and demonstrated its application for the generation
of optical pulses at both 1.0 and 1.5 µm wavelengths. The nonlinear optical absorption
properties of NW-integrated flexible devices were investigated by a balanced twin detector
method using the laser source at the wavelength of 1560 nm. Then, this monolithic device
was applied to the laser cavity to examine the light modulation properties. The minimum
pulse width of 6.232 µs at 1.5 µm was obtained under the pump power of 85 mW, whereas
the pulse width of 1.0 µm was 1.531 µs at 260 mW. Interestingly, after high-power injection,
the monolithic device stood well, implying the properties of a high damage threshold. Our
results illustrated a kind of NW-integrated monolithic and flexible saturable absorber (SA)
for the potential application as nonlinear optical modulators with high-damage threshold
in the field of ultrafast photonic devices.

2. Preparation and Characterization of the Sample with GaAs NWs Integrated on the
PI (GNiPI) Substrate
2.1. Preparation of GNiPI

Self-catalyzed GaAs NWs were grown directly on polyimide tape (Polyonics, West-
moreland, NH, USA, XT-621, 25 µm thick) inside a horizontal flow atmospheric pressure
metalorganic vapor phase epitaxy (MOVPE) system. Trimethylgallium (TMGa), tertiary-
butylarsine (TBAs), trimethylindium (TMIn), and tertiarybutylphosphine (TBP) were used
as precursors. Firstly, the Ga particles were deposited in situ at 480 ◦C using a TMGa flow
of 30.6 µmol/min for 60 s. Next, GaAs NWs growth was started by introducing the TBAs
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flow (61.20 µmol/min) while maintaining the TMGa flow for 3600 s with the nominal V/III
ratio of 2. GaAs NWs were doped in situ by introducing a diethylzinc (DEZn) flow at
0.85 µmol/min during growth. As a last step, GaAs NWs were passivated with an InP
shell at 530 ◦C for 3 s with a nominal V/III ratio of 176 [36]. After growth, the samples were
cooled down under TBP flow [37].

2.2. Optical Characterizations of GNiPI

To examine the optical properties of our prepared GNiPI, we first studied the optical
and mechanical properties of this substrate-integrated GaAs NW. Figure 1a shows the
scanning electronic microscopy (SEM: Zeiss Supra 40, Oberkochen, Germany) image of the
as-grown GaAs NWs on the PI substrate, which illustrates high-density NW distribution
on the substrate suitable for large optical absorption. The inset figure is the optical image
of our device, which was used in our lateral pulse laser generation systems. It can be
seen that the device was easily bent while the NWs kept standing well on the surface,
demonstrating good enough mechanical properties for applications in flexible photonic
and optoelectronic devices.
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Figure 1. Optical and electron microscopy characterization of GNiPI. (a) SEM image of the NWs on
the PI substrate surface, and the inset is the optical image of our sample. (b) HRSTEM diffraction
image. (c) HRSTEM defects image. (d) EDX pattern.

The structural analysis was performed by high-resolution scanning transmission
electron microscopy (HRSTEM: JEOL 2200FS, Akishima shi, Japan) and energy-dispersive
X-ray spectroscopy (EDX: Oxford, UK, INCA Penta FETx3 spectrometer) to check the crystal
structure of our as-grown NW sample. As shown in Figure 1b, the crystalline structure of
GaAs was confirmed to be a zinc blende structure under several NW diffraction pattern
examinations. Figure 1c shows the wrinkle defects along the zone axis of the GaAs NWs,
affecting their optical absorption properties more or less. During the HRSTEM examination,
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the EDX spectrum was checked, as shown in Figure 1d. It was clearly found that the NWs
consisted of Ga and As elements, while Fe and Cu elements originated from the HRSTEM
grid and stage.

2.3. Linear Optical Properties

Photoluminescence (PL) spectra corresponded to the bandgap of GaAs NWs, with
analyses performed under room temperature as in our previous work [37], as shown in
Figure 2. The PL spectrum in Figure 2b showed a typical PL peak of undoped GaAs material
corresponding to the electron–hole recombination, and the center wavelength was located
at 860 nm. Figure 2a shows the PI spectrum of the PI substrate without NWs, verifying
that the emission was from the GaAs NWs after extracting the emission properties from
the PI substrate. In order to apply it to the near-infrared band, we measured its nonlinear
absorption properties.
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2.4. Nonlinear Optical Response of GNiPI

SA is the core modulation element of passively Q-switched and mode-locked lasers
and is characterized by an optical absorption coefficient that decreases with increasing
light intensity and eventually saturates. The saturable absorption properties are mainly
caused by the Pauli-blocking effect, wherein electrons in the valence band are excited to the
conduction band by absorbing incident photons. When the intensity of the incident light
is low, most of the photons are absorbed by the material, resulting in low transmittance.
When the intensity of the incident beam is relatively high, a large number of electrons
are excited into the conduction band, and the energy levels in the conduction band are
rapidly occupied and eventually saturated due to the Pauli-blocking effect, which cannot
accept more incident electrons. At this point, most of the incident light is not absorbed,
resulting in high transmittance. The basic mechanisms for Q switching and mode locking
can be easily understood by considering the SA as a passive optical modulator, in which
the absorption/loss is intensity dependent. Therefore, it is essential to study the nonlin-
ear absorption properties of the new materials, especially such a GNiPI monolithic SA,
including both the nanomaterial and the substrate.

The nonlinear absorption characteristic of GNiPI SA was measured by a balanced
twin detector [38], as shown in Figure 3a. The selected ultrafast laser had a pulse width
of 100 fs with a central wavelength of 1560 nm and a pulse repetition rate of 80 MHz. A
variable optical attenuator (VOA) was used to adjust the intensity of the incident light.
A 50:50 optical coupler (OC) was used to distribute the intensity of the probe light and
the reference light equally. The optical transmission of the SA under different input light
power was then recorded by power meters PM1 and PM2 (Thorlabs PM100D). The obtained
experimental results are represented by the blue balls shown in Figure 3b, and the fitted
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curve is represented by the solid red line. The experimental data were fitted using the
following equation [39]:

T(I) = 1 − αs(
1 + I

Isat

) − αns
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Figure 3. Characterization of the nonlinear optical absorption properties of GNiPI. (a) Schematic
diagram of GNiPI saturation absorption measurement system. (b) Intensity-dependent nonlinear
transmittance for GNiPI at 1.5 µm.

Here, T(I), Isat, αs, and αns denoted the transmittance, saturable intensity, modulation
depth, and nonsaturation loss, respectively. Isat was the optical intensity required to
achieve half the modulation depth, which determined the characteristics of passively Q-
switched and mode-locked lasers. The modulation depth ∆T and saturable intensity Isat
can be obtained by the theoretical calculation from the experimental data. The theoretical
calculation showed the ∆T was 5.2% for GNiPI and Isat was 0.86 KW/cm2, and then the
αns of 85.2% was obtained from the fitting. Hence, it can be determined that GNiPI SA had
high-enough saturable absorption properties for the pulsed laser generation.

3. Experimental Setup

The schematic diagram of the proposed Q-switched laser operation based on the
GNiPI SA is presented in Figure 4. For 1.5 µm laser operation, a ~1 m long Er-doped fiber
(EDF, 12.18 dB/m core absorption at 979 nm, 20.13 dB/m core absorption at 1530 nm)
served as the gain medium and was pumped by a 976 nm diode laser (LD: Connet VLSS-
976-M-830-1.5-FA). The pump light was injected into the cavity by using a 980/1550 nm
wavelength division multiplexer (WDM). A polarization-insensitive isolator (PI-ISO) was
placed after the gain medium to ensure the unidirectional operation of the ring cavity. The
optical coupler (OC) with a 5% output ratio was selected to extract the light out of the cavity.
The GNiPI SA was incorporated into the ring cavity between the PI-ISO and polarization
controller (PC). The whole cavity length was ~10 m. The operating wavelengths of WDM,
PI-ISO, and OC were all selected at 1550 nm for the EDFL.



Micromachines 2023, 14, 1702 6 of 11

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 11 
 

 

wavelength division multiplexer (WDM). A polarization-insensitive isolator (PI-ISO) was 

placed after the gain medium to ensure the unidirectional operation of the ring cavity. The 

optical coupler (OC) with a 5% output ratio was selected to extract the light out of the 

cavity. The GNiPI SA was incorporated into the ring cavity between the PI-ISO and 

polarization controller (PC). The whole cavity length was ~10 m. The operating 

wavelengths of WDM, PI-ISO, and OC were all selected at 1550 nm for the EDFL. 

 

Figure 4. Experimental setup of passively Q-switched EDFL cavity. 

4. Results and Discussion 

4.1. 1.5 µm Er-Doped Fiber Laser (EDFL) 

The typical experimental results of the Q-switched fiber laser based on GNiPI SA are 

shown in Figure 5. Figure 5a shows the power output properties under the conditions of 

continuous wave (CW) and Q switching, respectively. The output power under the CW 

operating state was higher than that of the Q-switched, irrespective of the input power. It 

can be easily examined that GNiPI caused a huge loss after insertion into the cavity for 

the flexible PI materials. Figure 5b illustrates the output spectral properties with the 

central wavelength of the CW located at 1560.7 nm, whereas the central wavelength of the 

Q-switching condition stayed at 1530.7 nm. The output spectrum was measured by the 

spectrometer with the model of Yokogawa 6370. There was a shift of ~30 nm under the 

insertion of the GNiPI SA caused by the interaction between the laser and the materials, 

meaning that the huge loss from the materials shifted the center resonance mode in the 

cavity. The minimum pulse duration of 6.232 µs under the pump power of 85 mW was 

obtained, illustrated in Figure 5c. The pulse train is placed as an inset to show the steady 

pulse running state. During the experiment, we found that when the pump power was 

increased to over 90 mW, the Q-switched operation started to be unstable and the Q-

switched pulse even disappeared under the pump power of 125 mW. However, when the 

pump power was slowly reduced, a stable Q-switched pulse appeared again with the 

pump power of less than 90 mW, which indicated that the disappearance of the Q-

switched phenomena under the high-power case was not due to the damage of the SA, 

but contributed to the complete bleaching and inability to act as a SA. As illustrated in 

Figure 5d, the repetition rate increased monotonically from 14.44 kHz to 26.84 kHz with 

the increase of the pump power from 30 mW to 85 mW. This was the typical passively Q-

switched phenomenon: when the pump power increased constantly, the larger gain was 

to saturate the SA, causing the repetition rate to increase while the pulse duration 

decreased. 

Figure 4. Experimental setup of passively Q-switched EDFL cavity.

4. Results and Discussion
4.1. 1.5 µm Er-Doped Fiber Laser (EDFL)

The typical experimental results of the Q-switched fiber laser based on GNiPI SA are
shown in Figure 5. Figure 5a shows the power output properties under the conditions
of continuous wave (CW) and Q switching, respectively. The output power under the
CW operating state was higher than that of the Q-switched, irrespective of the input
power. It can be easily examined that GNiPI caused a huge loss after insertion into the
cavity for the flexible PI materials. Figure 5b illustrates the output spectral properties with
the central wavelength of the CW located at 1560.7 nm, whereas the central wavelength
of the Q-switching condition stayed at 1530.7 nm. The output spectrum was measured
by the spectrometer with the model of Yokogawa 6370. There was a shift of ~30 nm
under the insertion of the GNiPI SA caused by the interaction between the laser and the
materials, meaning that the huge loss from the materials shifted the center resonance
mode in the cavity. The minimum pulse duration of 6.232 µs under the pump power of
85 mW was obtained, illustrated in Figure 5c. The pulse train is placed as an inset to show
the steady pulse running state. During the experiment, we found that when the pump
power was increased to over 90 mW, the Q-switched operation started to be unstable and
the Q-switched pulse even disappeared under the pump power of 125 mW. However,
when the pump power was slowly reduced, a stable Q-switched pulse appeared again
with the pump power of less than 90 mW, which indicated that the disappearance of the
Q-switched phenomena under the high-power case was not due to the damage of the SA,
but contributed to the complete bleaching and inability to act as a SA. As illustrated in
Figure 5d, the repetition rate increased monotonically from 14.44 kHz to 26.84 kHz with
the increase of the pump power from 30 mW to 85 mW. This was the typical passively Q-
switched phenomenon: when the pump power increased constantly, the larger gain was to
saturate the SA, causing the repetition rate to increase while the pulse duration decreased.
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Figure 5. Q-switched laser performance at 1.5 µm based on GNiP SA. (a) The variations of output
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states. Similarly, output power from the Q-switched state was scaled up by a factor of 20. (c) Single
pulse width with a pump power of 85 mW. The inset is the pulse train. (d) Q-switched repetition rate
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4.2. 1.0 µm Yb-Doped Fiber Laser (YDFL)

To test the GNiPI device’s nonlinear configured optical absorption under the wave-
length of 1 µm, the same setup as the EDFL ring cavity was employed. A kind of ~1.5 m
Yb-doped fiber (YDF, COHERENT SM-YSF-HI-HP, 250 dB/m core absorption at 975 nm,
core NA of 0.11) was employed. For the higher power output, an output coupler with a
90/10 ratio was selected to extract the laser emission. The whole cavity length was ~10 m.
Correspondingly, the WDM, PI-ISO, and OC operating wavelengths were all operated
at 1064 nm for YDFL. Figure 6a illustrates the power output properties under the CW
and Q-switching, showing the much higher output power in the CW operating state than
that of the Q-switched, irrespective of the input power. The results showed similar high
damage threshold properties, implying the potential for the application in the high-energy
pulse laser operation. Figure 6b illustrated the output spectrum under the two operation
states. It was found that the same phenomenon of resonating wavelength shifted with
and without the GNiPI SA. The central wavelength under the CW state was located at
1068.9 nm, while it shifted to 1036.9 nm under the Q-switched operation. A peak shift
of ~30 nm was found after the insertion of GNiPI SA for the same reason as the 1.5 µm
operation state. Figure 6c showed the single output pulse under the pump power of
260 mW, which was the maximum output power of our LD. The minimum pulse duration
of 1.531 µs was obtained under the highest pump power. The corresponding pulse train
was inserted as the inset figure to show the steady pulse output. The output pulse width
and repetition rate were also recorded to check the pulse properties. As shown in Figure 6d,
the pulse width decreased from 3.747 µs to 1.530 µs with the increasing of the pump power
from 145 mW to 260 mW. Compared with the pulse properties operated at 1.5 µm, the
Q-switched phenomena existed steadily under the maximum pump power, illustrating the
device property of high-damage threshold.
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4.3. Comparison with Other SA Materials

The results of the EDFL and YDFL experiments made it clear that the GNiPI was
capable of modulating the laser pulse output performance under the operating wavelength
ranging from 1.0 to 1.5 µm. In addition, we calculated the maximum single pulse energy.
To compare the pulse generation performance, we include the reported Q-switched perfor-
mance of other nanomaterials in Table 1. Due to the insertion of the flexible substrate and
the scattering effect of light, the loss of our device was relatively high, but it outstood the
properties of the high damage threshold, illustrating its potential application in the field of
flexible high-energy photonic devices.

Table 1. Optical modulation comparison between GNiPI and other nanomaterials.

Wavelength SAs Pulse
Duration

Repetition
Rate/kHz

Single Pulse
Energy/nJ Ref

1.5 µm

CNTs 7.05 µs ~16 14.1 [40]
CNPs 6.27 µs 73.30 45 [41]

Graphene 3.7 µs 65.9 16.7 [42]
γ-graphyne 1.92 µs 132.63 40.35 [43]

GNiPI 6.232 µs 26.84 0.127 This work

1 µm

CNTs 12.18 µs 24.27 143.5 [44]
Graphene ~70 ns 257 46 [45]
InP NWs 462 ns 183 - [19]

InAs NWs 411 ns 63 - [18]
Bi2Te3 NWs 303 ns 178.2 1.2 µJ [46]

GNiPI 1.531 µs 75.41 3.76 This work



Micromachines 2023, 14, 1702 9 of 11

5. Conclusions

In summary, we prepared a kind of device with GaAs NWs integrated with a flexible
plastic substrate and demonstrated it as a kind of monolithic SA for broadband laser pulse
generation. Both experimental and theoretical studies were carried out to analyze the
nonlinear optical properties of this GNiPI SA. A modulation depth of 5.2% and a saturable
intensity of 0.86 KW/cm2 at 1.5 µm were achieved after the nonlinear absorption measure-
ment. Furthermore, broadband pulse laser operations at 1.0 and 1.5 µm were demonstrated
using GNiPI as a kind of integrated SA. The minimum pulse widths of 1.531 and 6.232 µs
were obtained at the wavelengths of 1 and 1.5 µm, respectively. Interestingly, it was found
that this GNiPI SA showed a high damage threshold with long-term stability, proving that
our GNiPI device holds great potential for applications in nonlinear photonics, especially
for applications in the area of flexible high-energy devices.
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