
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Wright, Alec; Välimäki, Vesa; Juvela, Lauri
Adversarial Guitar Amplifier Modelling with Unpaired Data

Published in:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

DOI:
10.1109/ICASSP49357.2023.10094600

Published: 10/06/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Wright, A., Välimäki, V., & Juvela, L. (2023). Adversarial Guitar Amplifier Modelling with Unpaired Data. In
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 1-5). Article 10094600 (Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing). IEEE. https://doi.org/10.1109/ICASSP49357.2023.10094600

https://doi.org/10.1109/ICASSP49357.2023.10094600
https://doi.org/10.1109/ICASSP49357.2023.10094600
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ABSTRACT
We propose an audio effects processing framework that learns to em-
ulate a target electric guitar tone from a recording. We train a deep
neural network using an adversarial approach, with the goal of trans-
forming the timbre of a guitar, into the timbre of another guitar after
audio effects processing has been applied, for example, by a guitar
amplifier. The model training requires no paired data, and the re-
sulting model emulates the target timbre well whilst being capable
of real-time processing on a modern personal computer. To verify
our approach we present two experiments, one which carries out un-
paired training using paired data, allowing us to monitor training
via objective metrics, and another that uses fully unpaired data, cor-
responding to a realistic scenario where a user wants to emulate a
guitar timbre only using audio data from a recording. Our listening
test results confirm that the models are perceptually convincing.

Index Terms— Audio systems, deep learning, generative adver-
sarial networks, music, nonlinear systems, unsupervised learning.

1. INTRODUCTION

When recording musical instruments for music production, audio
effects are an essential component of the resulting timbre. This is
especially true of electric guitar, where the timbre, or as it is often
referred to by guitarists, tone, imparted by certain amplifiers and ef-
fects pedals is highly sought-after. Digital emulation of analog audio
devices such as these is known as Virtual Analog (VA) modelling [1].

A related but more challenging problem is to emulate the timbre
of an electric guitar directly from a recording. This corresponds to a
practical and very exciting task: how to imitate the guitar tone heard
on a commercial music recording using your own electric guitar?
We refer to this as modelling from unpaired data, as the unprocessed
guitar signal used to generate the target guitar tone is unavailable.

The usual paradigm of VA modelling is the emulation of certain
analog devices, however this is insufficient for this purpose for two
reasons. Firstly, the specific instrument and devices used to craft the
guitar tone on a famous recording might not be known. Even if the
required equipment is available, recreating the recording setup is a
time consuming process that requires expert knowledge.

Secondly, the desired timbre includes both the musical instru-
ment itself, as well as any processing applied to it. This means that
any emulation of a recorded guitar tone must also account for differ-
ences between the timbre of your guitar, and the timbre of the target
guitar, before effects processing is applied.

The problem thus corresponds more closely to that of timbre
transfer, but in the specific case where the input and target instru-
ment are both guitars. The problem can be divided into two sub-
problems: the guitar-to-guitar transformation, and modelling of the
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guitar signal chain. Previous work has approached guitar-to-guitar
transformation using linear filtering, for example, to process an elec-
tric guitar such that it sounds like an acoustic guitar [2].

The guitar signal chain modelling problem involves the emula-
tion of all the devices, other than the instrument itself, used to create
the recording. These might include a guitar amplifier, speaker cabi-
net, and other effects such as compression or distortion. Modelling
these types of devices has been widely studied, and broadly falls
into two approaches, “white-box”, where equations describing the
system behaviour are derived [3, 4, 5], or “black-box”, where data
collected from the system is used to fit a generic model [6, 7, 8].
Recently, deep learning methods based on neural networks have be-
come a popular choice [9]. These include architectures for modelling
a wide range of effects [10], feedforward [11], and recurrent [12]
models for guitar amplifiers and time-varying effects [13], as well as
models using DSP components such as linear filters [14, 15, 16].

Whilst the aforementioned approaches are all viable for the task
of imitating a target electric guitar timbre, they all require us either
to know what devices were used during recording, or to have access
to paired data with both the target timbre and the unprocessed signal
taken directly from the guitar used during the recording. In the case
where paired training data is impossible, or unavailable, one solution
is to formulate the problem as domain transfer, similar to Image Style
Transfer, where the style of an input image is transformed to match
a target style, whilst retaining the input image content [17, 18].

A related problem in audio is Audio Style Transfer, which seeks
to transfer the style of some input audio to a target style, whilst re-
taining the content of the input audio [19]. In the speech domain,
an example of this is voice conversion, which can be achieved, for
example, using non-parallel speech data to train a Generative Adver-
sarial Network (GAN) with a cycle-consistency loss [20].

For musical applications the problem is frequently referred to as
timbre transfer [21, 22] or tone transfer [23]. This can be achieved
by applying image style transfer techniques to a time-frequency rep-
resentation of the input audio, and then re-synthesising the audio in
the waveform domain [21], or by learning a high level representa-
tion of the input and using that as input to a synthesizer [24]. Recent
work has also proposed style transfer of audio effects, to impart the
production style of one recording onto another [25].

In this paper, we present a method to process a signal recorded
directly from an electric guitar, or input timbre, such that its tim-
bre matches that of a guitar from a recording, or target timbre. We
solve this domain transfer problem using an unsupervised approach,
in which a black-box feedforward convolutional model is trained ad-
versarially using unpaired data. The distinction between supervised
and unsupervised modelling is shown in Fig. 1.

The rest of this paper is structured as follows. Sec. 2 dis-
cusses the modelling approach, training objective and data. Sec. 3
describes two experiments conducted to validate the proposed ap-
proach. Sec. 4 discusses the results and Sec. 5 concludes the paper.
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this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.
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Fig. 1. (a) Supervised black-box modelling is based on paired audio
data {xi, yi}Ni=0, where the target audio yi is obtained by processing
the input audio xi with the target device. When paired data is un-
available, we propose to use (b) unpaired data, made up of examples
of a source timbre {xi}Ni=0 ∈ X and examples of a target timbre
{yj}Mj=0 ∈ Y , where neither the content nor the timbre contained in
xi match those contained in yj .

2. METHOD

The proposed method uses an adversarial training approach. We de-
fine domains in the space of guitar timbre, where a domain is defined
by the sounds produced by a particular combination of a guitar, pick-
ups, amplifier, and any other audio effects. Note that the domain is
defined purely by the guitar timbre, and not the content of the guitar
playing. If we define domains, X and Y , and we sample audio data,
x, where x ∈ X , and y, where y ∈ Y , our objective is to learn a
mapping, G, that converts audio from domain X to domain Y :

G(x) = ŷ. (1)

The ultimate objective is to transform the tone such that ŷ is percep-
tually indistinguishable from y. To train G we use a discriminator
model D trained to identify examples from the target timbre domain.

Previous work on adversarial domain-to-domain translation [18,
20] has applied a cycle-consistency criterion to avoid a specific form
of mode collapse, which results in G simply ignoring the content of
the input x and synthesising unrelated content from the target do-
main. However, in our present experiments the generator model G
did not exhibit this problem, likely due to the constrained expressive
capability of the feedforward convolutional neural network used,
which learns to directly apply a transformation to the input signal
in the time domain.

2.1. Generator

The generator model G used in this work is a feedforward variant of
the WaveNet architecture [26]. A non-causal feedforward WaveNet
variant was first proposed for speech denoising [27]. A causal ver-
sion was later applied to guitar amplifier modelling [11], and this ar-
chitecture is used as the generator throughout this work. The model
has two main components, a stack of dilated causal convolutional
layers, and a linear post-processor. The post-processor is a fully
connected layer that takes the outputs of each of the convolutional
layers as input.

All generator models used in this work consist of two stacks of
nine dilated convolutions, with each stack starting at a dilation of one
and increasing by a factor of two with each subsequent convolutional
layer. Each convolutional layer has a kernel size of three, and uses

Table 1. Convolutional layer parameters for proposed spectral do-
main discriminator.

Layer # 1 2 3 4 5 6 7
Kernel Size 10 21 21 21 21 5 3
Out Channels 32 128 512 1024 1024 1024 1
Groups 1 8 32 64 64 1 1

the same gated activation function as the original WaveNet [26]. The
receptive field of this model is 2045 samples, or about 46.4 ms at a
44.1-kHz sample rate. It should also be noted that previous work
has shown that a C++ implementation of this model is capable of
running in real-time on a modern desktop computer [28].

2.2. Discriminator

The input to the proposed discriminator D is a time-frequency rep-
resentation of the audio, as proposed in [29]. The discriminator con-
sists of a stack of 1D convolutional layers, and the frequency bins
of the time-frequency representation are provided as channels to the
first layer of the discriminator. Subsequent layers use grouped con-
volutions to reduce computational cost. The hyperparameters for
each layer are shown in Table 1. All layers use weight normaliza-
tion, and all layers except the final output layer are followed by a
Leaky ReLU activation function with negative slope of 0.2. Four
different time-frequency representations were trialled, either a mag-
nitude spectrogram, a magnitude mel-spectrogram, a log magnitude
spectrogram, or a log magnitude mel-spectrogram. For all mel-
spectrograms, 160 mel bands were used, the maximum frequency
was set to Nyquist and the minimum frequency was set to 0 Hz.

Additionally, a multi-scale version of the spectral domain dis-
criminator was trialled which included three sub-discriminators,
each operating on time-frequency representations obtained using
different window sizes. In the case of the single spectral-domain dis-
criminator, a window size of N = 1024 was used, as for the multi-
scale spectral discriminator, window sizes of [512, 1024, 2048] were
used. In all cases, the hop size was set to N/4.

2.3. Training Objective

The generator and discriminator of the GAN were trained using the
hinge loss objective [30], identical to that which was used in Mel-
GAN [31], as follows:

L(D) = Ey[max(0, 1−D(y))] + Ex[max(0, 1 +D(G(x)))] (2)

and
L(G) = Ex[−D(G(x))], (3)

respectively, where x is a guitar audio waveform used as input to the
generator and y is a guitar audio waveform taken from the target set.
The training scheme is shown in Fig. 2. During training, both the
input and target guitar datasets are split into two-second segments
before processing by G or D. The models were trained using the
Adam optimizer [32] with a batch size of 5.

2.4. Data

The data used throughout this work was taken from a guitar dataset
originally proposed for the task of automatic transcription [33]. We
use the fourth subset of the dataset, which consists of 64 short musi-
cal pieces played at fast and slow tempi. The pieces were recorded
on two different electric guitars, a Career SG and an Ibanez 2820.
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Fig. 2. Training setup for (a) the Generator and (b) Discriminator.
Generator inputs, taken from the input domain X , are processed to
emulate the timbre, but not content, of the target domain Y .

We processed the recordings to remove leading and trailing silence,
as well as the 2 bar count in at the beginning of each piece. Addi-
tionally, it was noted that clipping is present in some of the samples
in the Career SG dataset, so examples where excessive clipping was
observed were removed.

After the pre-processing, there was approximately 40 min of au-
dio from the Ibanez 2820 guitar, and 30 min from the Career-SG.
To create the datasets used during our experiments, the guitar audio
was processed by a guitar amplifier plugin. To test the robustness
of our modelling approach, a separate dataset was created for three
different plugin settings, hereafter referred to as ‘Clean’, ‘Light Dis-
tortion’, and ‘Heavy Distortion’. The amount of harmonic distortion
introduced increases from a relatively small amount in the ‘Clean’
setting, to an extremely distorted guitar tone found in the ‘Heavy
Distortion’ case.

3. EXPERIMENTS

Our proposed modelling approach was tested on two different prob-
lems. In the first scenario the signal contained in both the input and
target datasets is recorded from the same guitar. In this case, the spe-
cific instrument in each dataset is identical, and the modelling task
is to recreate the effects processing applied to the input signal. Al-
though not realistic, this scenario is relevant because it allows the use
of supervised metrics to evaluate our unsupervised training method.

In the second (more realistic) scenario, the input dataset is the
unprocessed audio recorded from one guitar, and the target dataset
is audio that has been recorded from a different guitar, after audio
effects processing has been applied to it. In this case, the modelling
task implicitly includes transforming the tone of one guitar into an-
other, as well as recreating the effects processing applied to that gui-
tar. The two experiments are depicted in Fig. 3.

3.1. Experiment 1: Single Guitar

The dataset was split to ensure that the input and target datasets do
not contain any of the same guitar content, by dividing it into two-
second segments, with subsequent segments being sent alternately
to either the input or target training dataset. This ensures that the
spectral content of the unprocessed guitar in both datasets is similar,
but that the actual content is different.

Unsupervised models trained with the spectral domain discrim-
inator configurations introduced in Sec. 2 were tested, as well as an
unsupervised baseline that used the MelGAN discriminator [31]. As
a supervised baseline, the same generator model was trained in a su-
pervised manner, to minimise the Error-to-Signal ratio loss function,
EESR, with high-pass filter pre-emphasis [11].

As in this case the guitar is the same in both datasets, as shown
in Fig. 3(a), a ground truth, or reference, for how the input guitar
should sound after the effects processing is applied is available. This
allows a validation loss to be calculated over a held-out validation
set, that consists of paired input/output guitar audio.

Guitar 1 Guitar 1 Guitar 2

Experiment 1: Single Guitar Experiment 2: Mismatched Guitar

(a) (b)

Fig. 3. (a) In the Single Guitar experiment, the input and output
audio are produced using the same guitar, but with unpaired data,
whereas (b) in the Mismatched Guitar experiment, the input and out-
put audio are generated with different guitars.

For validation loss metrics, we use both the linear and log scaled
multi-scale magnitude spectrogram loss described in [24], which we
refer to as Ems and Elms respectively. In addition to this, we also
present the L1 distance between the output and target mel magnitude
spectrograms, again using both linear and log scaling, which we will
refer to as Emel and Elmel respectively.

Additionally, a MUSHRA [34] style listening test was carried
out. Participants were presented with audio clips that were processed
by the target plugin, as well as the various neural network models.
An anchor was also included, which was created by processing the
input with a tanh nonlinearity, as well as a hidden reference. Par-
ticipants were asked to rate each test condition out of 100, based on
perceived similarity to the reference.

Results are shown in Table 2. In each case the training was run
for 400k iterations, and the validation loss was used to select the best
performing model. For the spectral domain discriminators, the vali-
dation loss used to determine the best performing model was chosen
depending on the form of the input provided to the model, for exam-
ple, if the input to the discriminator was a log-mel spectrogram, then
the training iteration where the lowest validation Elmel was achieved
was selected as the best performing model. In each case, our exper-
iments included both multi-scale and single-scale spectral domain
discriminators, however, for brevity, only the results for the best per-
forming of the two are included in Table 2.

3.2. Experiment 2: Mismatched Guitar

For the scenario in Experiment 2, the guitar used to create each
dataset is different, as shown in Fig. 3(b). This means that objec-
tive metrics are unavailable. As such, we conducted a listening test,
in which participants were presented with a reference, consisting
of a few seconds of guitar playing from the target timbre domain.
The participants were then asked to rate a number of test conditions,
which consisted of the next few seconds of the same piece of music,
but performed on the guitar from the input timbre domain. The test
conditions all consisted of processed versions of the same guitar au-
dio. It was impossible to include a hidden reference in the test, as it
does not exist.

Two baselines were created, both having access to some ground
truth information. The first baseline was created by processing the
input guitar with the same effects plugin that was used to create the
target guitar timbre, this baseline is referred to as the “plugin-only”
timbre. This corresponds to a simplified solution in which the guitar-
to-guitar transformation is not included, but the signal chain applied
to the guitar is identical to that used to produce the reference.

The second baseline, referred to as the “EQ+plugin”, was cre-
ated by applying a linear equalization (EQ) matching to the unpro-
cessed input guitar tone, with the EQ target being the target guitar



Table 2. Objective and subjective results for the Single Guitar ex-
periment. For validations losses, bold indicates best performing un-
supervised model. For the listening test result bold indicates best
performing of all models and 95% confidence intervals are shown.

Validation Loss Listening
Model Ems Elms Emel Elmel EESR Test

Target Tone: Clean
Supervised 5.12 0.76 0.57 0.12 0.003 81±4.1
MelGAN 37.5 1.47 2.75 0.17 2.38 71±4.8

Spectral Domain
Input # Disc.
Spect. 1 39.2 3.27 3.39 0.39 2.55 32±4.7
Mel 1 40.0 1.51 2.88 0.28 1.27 46±4.4

Log Spect. 3 44.1 0.81 3.76 0.18 2.71 82±4.5
Log Mel 3 46.9 0.93 4.07 0.19 1.04 83±3.9

Target Tone: Light Distortion
Supervised 2.57 0.81 0.28 0.09 0.001 93±3.0
MelGAN 25.2 2.18 1.32 0.18 2.51 73±5.4

Spectral Domain
Input # Disc.
Spect. 1 32.5 4.26 2.39 0.45 1.49 35±4.0
Mel 1 34.4 4.12 2.57 0.48 2.43 34±4.0

Log Spect. 1 45.3 1.11 4.51 0.23 2.18 81±4.8
Log Mel 3 38.1 1.17 3.36 0.21 2.50 88.7±3.9

Target Tone: Heavy Distortion
Supervised 6.33 2.53 0.60 0.19 0.03 57±4.6
MelGAN 22.4 2.49 1.81 0.22 2.04 92±2.8

Spectral Domain
Input # Disc.
Spect. 1 28.9 4.14 2.70 0.37 2.33 54±5.7
Mel 1 25.5 7.15 2.36 0.60 0.86 28±3.4

Log Spect. 1 32.1 2.52 3.25 0.29 3.17 81±4.8
Log Mel 3 24.5 2.55 2.21 0.23 2.37 85±3.8

before effects processing was applied. This EQ-matched version of
the input guitar was then processed by the effects plugin used to cre-
ate the reference timbre. Notice that this processing is impossible to
achieve in a practical setting, but is used here in lieu of an ideal ref-
erence. A low-quality anchor was also included in the listening test,
which consisted of the input guitar processed by a tanh nonlinearity.

The test conditions consisted of three unsupervised models, se-
lected based on the results of the first experiment. These were trained
using the MelGAN discriminator, or the spectral domain discrimina-
tor with either log spectrogram or log mel-spectogram input. In both
cases, the multi-scale version of the spectral domain discriminator
was used. The models were trained for 250k iterations. The results
of the listening test are shown in Fig. 4.

The listening tests for both experiments were completed by
twelve participants. Three participants identified as female and nine
as male. The participants all had experience completing listening
tests, and their mean age was 30.8 years. For the first listening test,
four participants were removed in post screening as they rated the
hidden reference less than 90 in more than 15% of the trials.

4. DISCUSSION

The objective results for Experiment 1, shown in Table 2, indicate
that the feedforward WaveNet model trained in a supervised fashion
performs better than the unsupervised models on all the proposed
metrics. Generally, of the unsupervised models, those trained with
the MelGAN discriminator tend to perform better in the objective
loss metrics. However, the results from the listening tests for Ex-
periment 1, also shown in Table 2, indicate that there is no clear best

(a)

EQ+Plugin
Plugin Only

MelGAN
Spect. Crit

Mel Crit
Anchor

 78.4 ±4.1
 70.4 ±4.4

 14.6 ±3.3
 73.2 ±4.3

 78.5 ±4.5
 2.6 ±1.4

(b)

EQ+Plugin
Plugin Only

MelGAN
Spect. Crit

Mel Crit
Anchor

 71.9 ±4.8
 75.5 ±4.0

 46.0 ±5.8
 76.9 ±3.9
 76.2 ±4.4

 0.7 ±0.8
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(c)

EQ+Plugin
Plugin Only

MelGAN
Spect. Crit

Mel Crit
Anchor

 80.8 ±3.6
 76.0 ±4.0

 83.5 ±3.5
 65.2 ±4.8

 74.9 ±4.5
 1.1 ±0.9

Fig. 4. MUSHRA scores with 95% confidence intervals for the (a)
Clean, (b) Light Distortion and (c) Heavy Distortion guitar tone set-
tings that were modelled in Experiment 2.

performing model between the supervised and unsupervised training
approach. The results do clearly show, however, that models trained
using a spectral domain discriminator with linear scaled spectrogram
as input perform poorly. The supervised model of the ‘Heavy Distor-
tion’ tone also reveals a misalignment between the time-domain ESR
loss metric and perception. For all target tones, at least one unsuper-
vised model achieved a score of 80 or higher, indicating a perceptual
match between Good and Excellent on the MUSHRA scale.

The results of the listening test for Experiment 2, shown in
Fig. 4, indicate that the unsupervised models are competitive with
our proposed baselines. For the ‘Clean’ and ‘Light Distortion’ case,
the MelGAN model performs poorly. One possible explanation for
this is that during training for the first experiment it was observed
that the MelGAN produced some oscillation and instability as train-
ing went on, as the spectral discriminator models tended to quickly
plateau and then remain stable. As no validation loss was available
to monitor the training for the mismatched guitar case, it was not
possible to select the best performing model after training.

The experimental results show that the proposed framework is
capable of producing perceptually convincing models of nonlinear
effects processing using unpaired data. The limitations of the pro-
posed method are that for each desired input target pair, a new gen-
erator model must be trained. The amount of training time required
for a model to achieve a perceptually convincing result was not in-
vestigated extensively, but typically took between 4 and 10 hours of
training on a GPU. Further work is also required to test the method
when applied to real-world use cases, for example when a smaller
amount of data from the target guitar timbre is available.

5. CONCLUSION

This work shows for the first time how the guitar timbre heard on
a music recording can be imitated by another guitar, using an unsu-
pervised method based on a GAN framework. We formulated the
problem as domain transfer, and proposed a spectral domain dis-
criminator. We validated our method through two listening tests and
showed that the models produced are perceptually convincing. Au-
dio samples are available at our demonstration page1.

1
https://ljuvela.github.io/adversarial-amp-modeling-demo
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