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Building-GNN  
Exploring a co-design framework for generating controllable 3D building prototypes 
by graph and recurrent neural networks 

Ximing Zhong1, Immanuel Koh2, Fricker Pia3 
1,3Aalto University 2Singapore University of Technology and Design 
1ximing.zhong@aalto.fi 

This paper discusses a novel deep learning (DL）framework named Building-GNN, 
which combines the Graph Neural Network (GNN) and the Recurrent neural network 
(RNN) to address the challenge of generating a controllable 3D voxel building model. The 
aim is to enable architects and AI to jointly explore the shape and internal spatial 
planning of 3D building models, forming a co-design paradigm. While the 3D results of 
previous DL methods, such as 3DGAN, are challenging to control in detail and meet the 
constraints and preferences of architects' inputs, Building-GNN allows for reasoning 
about the complex constraint relationships between each voxel. In Building-GNN, the 
GNN simulates and learns the graph structure relationship between 3D voxels, and the 
RNN captures the complex interplaying constraint relationships between voxels. The 
training set consists of 4000 rule-based generated 3D voxel models labeled with different 
degrees of masking. The quality of the 3D results is evaluated using metrics such as IoU, 
Fid, and constraint satisfaction. The results demonstrate that adding RNN enhances the 
accuracy of 3D model shape and voxel relationship prediction. Building-GNN can 
perform multi-step rational reasoning to complete the 3D model layout planning in 
different scenarios based on the architect's precise control and incomplete input. 

Keywords: Deep Learning, Graph Neural Networks, 3D Building Layout, Co-design 
Recurrent Neural Networks, Multi-step Reasoning 

INTRODUCTION 
There is a growing interest in using deep learning 
(DL) to combine human creativity with machine 
intelligence and enhance the quality of the design 
process. Licklider (1960) proposed a powerful 
human-machine design scenario in which machine 
intelligence and human intelligence are connected 
through a fast network to explore new prototypes 
together. In the architecture field, many DL 
approaches can already collaborate with architects 
on 2D spatial layouts effectively using techniques 
such as Generative Adversarial Networks (GAN) and 
Variational Auto-Encoder (VAE) (Zhang & Huang, 

2021). For example, the classical GAN networks that 
use Generator and Discriminator to play each other 
to simulate realistic 2D planar layout methods have 
been widely used in building planar design (Nauata 
et al., 2020). However, compared to the generation 
of 2D images, DL methods for 3D building shape 
exploration and spatial segmentation are still very 
challenging due to the higher dimensionality 
(Chang et al., 2021; Wu et al., 2016). The DL learning 
3D voxelized models is widely used in architectural 
modeling (Chang et al., 2021). However, previous 
attempts, such as 3D-GAN are difficult to reason out 
complex constraint graph relationships between 
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each voxel unit, and the 3D results are difficult to 
control precisely (Li et al., 2019; Oussidi & 
Elhassouny, 2018; Zhong et al., 2022), as will be 
discussed in detail in later chapters. The generated 
3D building may not conform to the constraints and 
preference input by the architect, resulting in 
significant modifications. These challenges highlight 
our research question of improving the control and 
accuracy of 3D building model generation while 
accommodating complex voxels constraints and 
architects' preferences. 

We provide a framework called Building-GNN, in 
which GNNs are utilized to learn the intricate 
relationships between different voxels. RNNs are 
employed to perform multi-step reasoning to 
enhance the prediction accuracy of voxel layout by 
learning the interactions between node states and 
complex constraints in 3D models. 

Our contribution is a new model for human-
machine co-creation in 3D Building volumetric 
design that enables architects to input local 
constraints and explore the complete 3D building 
design morphology and internal spatial division 
directly and interactively in 3D space. Compared to 
previous 3D-GAN methods, our model allows 
architects to control each voxel of the 3D model 
precisely. And building-GNN can perform multi-step 
reasoning 3D model design options. The architect 
can rapidly explore a wide range of design 
possibilities while substantially ensuring that each 
design option adheres to the input constraints and 
preferences. The RNN parameters can control the 
degree of human and AI control capability on the 
final 3D result. Thus, humans and AI can cooperate 
to make decisions and control complex layouts 
without rigidly relying on predetermined programs 
(Licklider, 1960; Fricker et al., 2007). In summary, 
Building-GNN highlights the potential of GNN to 
improve the accuracy and control of generating 3D 
building models, suggesting a promising direction 
for addressing the challenges of 3D building shape 
exploration and spatial segmentation. 

GAN FOR 3D VOXEL MODEL GENERATION 
Various approaches have been proposed to 
generate 3D voxel models using DL techniques. 
Some researchers have attempted to extract 2D 
features from 3D models and reconstruct 3D voxel 
models using encoding-decoding techniques. For 
instance, Zhong et al. (2022) generated 3D volumes 
by using GauGAN to learn the height information 
recorded in the graph color channel, while Zhang & 
Huang (2021) used styleGan to learn and generate 
continuous profile features, which were then 
reconstructed into 3D models. However, these 
encoding-decoding methods do not fully capture 
the 3D details of the building model, such as the 
detailed 3D model features in the middle of two 
consecutive profiles, which are ignored in Zhang's 
method (Zhang & Huang, 2021). 

To completely learn the 3D model, Wu et al. 
(2016) proposed a 3D-GAN that can learn and 
generate a 3D voxel model similar to the dataset by 
sampling from a uniform noise distribution. Li et al. 
(2019) built a conditional GAN that can better guide 
the results of the 3D-GAN. Arshad & Beksi (2020) 
enhanced the structure of cGAN for predicting 3D 
point clouds with semantics. However, even with 
conditional GAN models, architects do not have 
complete interactive control over each voxel, and 
extensive manual modifications are still required to 
meet specific constraints and preferences. This 
results in a uni-directional, stepwise process, which 
does not allow AI and architects to jointly explore the 
final 3D model in a bidirectional co-design network, 
as proposed by Licklider (1960). To accurately 
extrapolate a complete 3D solution based on 
architects' voxel input, it is necessary to enhance the 
learning of complex graph structural relationships 
and constraints between individual voxel objects. 

GNN AND RNN FOR IMPROVING 3D 
BUILDING GENERATION. 
GNNs are a class of DL networks used to process 
graph representation data with nodes and edges 
representing entities and their relationships. They 
can effectively aggregate information from adjacent 
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nodes in graph structures and predict node 
properties and complex relationships. In 
architectural design, GNNs are often applied to 
space layout problems based on graph 
representations. For example, Nauata et al. (2020) 
encoded the planar units and their adjacent 
relationships as graphs and then used GNN and GAN 
to generate 2D plan layouts. Chang et al. (2021) 
demonstrated the potential of GNNs to improve the 
control ability of 3D GANs by using GNNs to predict 
spatial node classification and then using these 
predictions as input conditions for a 3D GAN to 
generate 3D buildings that better match the 
architect's input. However, the final GAN result can 
deviate from the spatial node classification 
generated by GNNs. Additionally, while GNNs are 
good at learning the relationships between nodes 
and connected edges, they are inaccurate in 
reasoning the long-term dependencies between 
global nodes (Palm et al., 2018). In the discussed 3D 
building model design, the long-term dependencies 
between units mean that changes in each unit will 

affect and constrain the global network of all units, 
not just the direct connections. 
Recurrent Neural Network (RNN) is a DL model 
suitable for processing sequential data to capture 
long-term dependencies in sequences. Palm et al. 
(2018) applied RNNs to reason about node 
relationships in graph-based relational networks and 
developed a high-accuracy DL model for complex 
constrained relationship reasoning tasks. Zhao et al. 
(2020) used GNN and GRU (a type of RNN) to predict 
traffic flows on street graph road networks at 
different time intervals and achieved high accuracy 
by capturing long-term dependencies with GRU. 
This evidence highlights the integration of RNNs into 
GNN frameworks has the potential to improve the 
accuracy of reasoning complex relationships 
between voxels in 3D models. This facilitates the 
development of a co-design network where 
architects can precisely modify each voxel, and AI 
can reason the global 3D voxel model, allowing 
them to work together to explore the final 3D model.  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1 
The co-design 
framework that 
leverages 
GNN+GRU to learn 
and predict 3D 
models 

Volume 2 – Digital Design Reconsidered – eCAADe 41 | 433



FRAMEWORK 
The building-GNN framework in this paper 
comprises three main components: data generation, 
the GNN and GRU network, and an interactive co-
design module, as depicted in Figure 1. 

 
Research Objectives: (1) To automatically generate 
various 3D building voxel models labeled with 
scaled voxel masks using a rule-driven approach. (2) 
To achieve high accuracy in predicting 3D shapes 
and internal voxel divisions in test sets using the 
GNN+GRU spatial network, with accuracy increasing 
as GRU iterations increase. (3) To enable interactive 
control of each spatial voxel while demonstrating 
good generalization capabilities to predict the 
boundaries of unlearned surface shapes. (4) To allow 
the GNN network to continuously move in the XYZ 
direction to expand the 3D voxel model to larger 
scales.  

Dataset generation 
We employed an architect-parameterization 
approach inspired by Chang et al. (2021) to generate 
simplified voxel models of single-ring style office 
buildings, as shown in Figure 1(a). To introduce 
variety and plausibility to the dataset, we invited 15 
architects to create multiple 3D model variants by 
modifying dimensional parameters and layout 
control lines. A movable sampler is used to sample  

3D models at different angles and positions to 
improve the stitching of GNN-generated results. The 
3D model variants and coding system are illustrated 
in Figure 2. The dataset consists of complete 3D 
models and partially masked models for GNN 
learning, with 4000 cases for training and 1000 for 
testing. We randomly masked 40% of the voxels and 
assumed that architect input of 60% content 
predicts 40% of the GNN results. The Results section 
will provide a detailed analysis of the size and 
masked proportion effects. 

Customized 3D graph network  
The customized 3D graph network used in this study 
represents each voxel position 𝑖 ∈ ሾ0,728ሿ  as a node 
in Figure 3(b), with the attribute 𝑀௜ indicating the 
semantic function of the voxel (ranging from 0 to 9, 
where 0 represents an empty voxel). Each node's 
neural network graph structure is denoted as 𝐺௜ . 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 

 
 
 

Figure 2 
The dataset 
sampling and 
coding process. 

Figure 3 
Graph structure 
and message 
passing network of 
Building-GNN. 
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To customize the voxel size of the GNN network 
based on the 3D model size requirements, we 
followed Palm et al. (2018 and used a 9*9 custom 
network that accurately predicts the constraints 
between units. For our experiments, we adopted the 
9*9*9 voxel size, which is the same as the sampler 
size. As shown in Figure 3(b), each node in the graph 
structure is connected to its 333 neighboring voxel 
nodes, and all nodes in the XYZ direction of a given 
node are connected as neighbors. When a node is 
located on the network's edge or corner, it searches 
and connects to the closest 33*3 neighboring nodes 
inside the network, as illustrated in Figure 3(b). The 
message propagation network for the entire 3D 
network is defined as 𝑈ሾ0,729ሿ𝐺௜ , with 729 nodes 
and 32076 edges, as shown in Figure 3(a). This 
design enables messages to be propagated in all 
directions of XYZ, allowing for better learning of the 
constraints in XYZ direction and enabling the GNN 
network to fit larger scale models by moving in the 
XYZ direction. 

Combing GRU and message-passing 
network  
The Message Passing Network (MPN) is constructed 
as follows:  

1. The message input network consists of three 
fully connected layers. For each source-target 
node pair ሺ𝑖, 𝑗ሻ, their state features are 
concatenated and input into an MLP network to 
obtain a message vector 𝑚௜,௝ . For each node 𝑖, 
the received messages from its neighbors are 
aggregated to obtain a message aggregation 
vector 𝑚_𝑠𝑢𝑚௜ , as shown in Figure 3 (c). 

2. A GRU module is employed to update the state 
of each node 𝑠௜

ሺ௧ሻ. The formula is as follows: 
𝑠௜
ሺ௧ሻ ൌ 𝐺𝑅𝑈൫ሾ𝑥𝑖,𝑚_𝑠𝑢𝑚௜ሿ，𝑠௜

௧ିଵ൯, t ∈ ሾ1, Tሿሻ 
After each node 𝑖  receives its message 
aggregation vector  𝑚_𝑠𝑢𝑚௜ , it is concatenated 
with its current state feature vector𝑥௜ , and the 
combination is fed into the GRU network along 
with the previous 𝑠௜

ሺ௧ିଵሻ. The states of each 
graph node are linearly combined to compute 

the output of the corresponding node at the 
current iteration. T denotes the number of state 
iterations.  

3.  The output network contains a fully connected 
layer whose output is a voxel's semantic 
classification by inputting 𝑠௜

ሺ௧ሻ . 

Training: Adam optimizer with a learning rate of 
0.001, branch=64. Number of iterations for GRU, T=6. 
The cross-entropy loss should be the average of the 
6-step classification loss calculated at each iteration 
of GNN. 

Interactive 3D design interface 
The interface is implemented using the GH-Python 
framework in the Rhino modeling platform. The 
architect can enter some constraints and preferred 
volumes, which are automatically converted into a 
numerical matrix. The building-GNN can reason the 
complete 3D voxel model in real-time based on the 
architect's input, as illustrated in Figure 1(d). The 
architect can then engage in a feedback loop with 
the AI, where the architect iterates on the results of 
building-GNN's reasoning to modify them according 
to their understanding of the site's design 
requirements. 

Evaluation of results 
 
Experiment 1: We aim to test our model's reason 
capabilities for complex internal unit relationship 
layouts and 3D shapes. To do this, we randomly 
masked different levels of voxels on a Ground Truth 
(GT) parametric model and then compared the 
generated 3D model with the GT. We measured the 
accuracy using voxel accuracy (Vacc), Intersection-
over-Union (IoU) score, and Frechet Inception 
Distance (FID) score, which considers the internal 
voxel semantics and ranges from 0 to 1. The IoU 
score is the primary evaluation metric, capturing the 
similarities and differences between the predicted 
and GT(Mo et al., 2019). The FID score is widely used 
to test for diversity and similarity (Nauata et al., 2020; 
Chang et al., 2021). The Vacc is used to help evaluate 
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the accuracy of the independent voxel between the 
generated model and GT. 

 
Experiment 2: We tested the generalization 

ability of our model by generating 500 solutions with 
15 professional architects to evaluate whether the 
GNN can generate reasonable 3D models for 
previously unseen design inputs. We also assess the 
architects' controllability by quantifying the extent 
to which the GNN satisfied boundary constraints for 
different spatial volumes entered by the architect. 
We calculated the Input Constraint Satisfaction (ICS) 
metric based on the IoU score between the 
architect's input and the GNN's output voxel models 
within various voxel semantic boundaries. 

RESULTS AND DISCUSSION 
In this section, we evaluate the results of our 
building-GNN framework from various aspects and 
explore the model's shortcomings. 

Quality of GNN-generated 3D voxel model 
results 

The cross-entropy loss function converged to 
0.27 after 16 iterations on a dataset of 4000 samples. 
The prediction accuracy improves with increasing 
iterations of the GRU update state, with different 
initial ratio voxel input conditions, each including 
200 cases, as shown in Figure 4. 

Compared to a single GNN model, our method 
accurately reasons the 3D model shape and predicts 
the internal voxel layout. As shown in Figure 5, our 
model can reasonably predict the complete 3D 
layout for different boundaries and input conditions, 
even for circular boundaries not included in the 
training set. However, the model's prediction 
accuracy decreased to 68.8% when faced with 20% 
fewer voxel inputs than shown in Figure 4. This is 
because our training set only included voxel inputs 
that are 60%, and the model did not learn cases with 
few voxel inputs. We need to adjust the mask ratio 
based on future 3D prediction needs. 

To further evaluate our model, we randomly 
masked 20%-80% of the voxels in a thousand test 
models using a Gaussian distribution sampling 

method and used GNN to predict the solution. The 
FID, IoU, and Acc values for the test set are shown in 
Table 1. The FID values confirmed that the diversity 
of the GNN-generated 3D models decreased while 
the similarity increased, indicating that our model 
gradually learned the 3D shape and internal spatial 
division logic of the cases in the dataset. The final IoU 
accuracy of the model reached 0.883, indicating a 
high degree of accuracy in predicting the 3D voxel 
layout. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3D result of the collaboration between 
architects and Building-GNN 
The results presented in Figure 6 demonstrate that 
Building-GNN can effectively collaborate with 
architects and reason about 3D models in the face of 
different design input conditions, such as core 
cylinder count, architect input complexity, boundary 
shapes, and other factors. Our key findings include 
the following: 

 
Voxel layout relations in the results: Even with 
local and ambiguous input volumes, building-GNN 
effectively identifies the spatial division of the voxel  

 
 
 
 
 
 
 
Table 1 
3D model result 
quality assessment 
of 1000 test set 
cases evaluated by 
ACC, FID, IoU 

 Vacc  FID IoU 
GNN 0.6075 1.98 0.28 
GNN+GRU    
1 
2 
3 
4 
5 
6 

0.75 
0.781 
0.831 
0.837 
0.835 
0.852 

0.623 
0.151 
0.182 
0.161 
0.083 
0.072 

0.678 
0.810 
0.826 
0.839 
0.857 
0.883 

Figure 4 
Comparison of IoU 
evaluation 
parameters for 
different scales of 
masked voxel input 
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Figure 5 
Comparison of the 
3D model 
predictions of 
single GNN and our 
model with 
different GRU 
iterations 

Figure 6 
3D spatial divisions 
and shapes 
resulting from joint 
exploration by GNN 
and architects 
under varied design 
Input constraints 
and conditions.  

Volume 2 – Digital Design Reconsidered – eCAADe 41 | 437



model and it's 3D shape. The internal voxel 
partitioning in the results are similar to the training 
dataset when facing different complex input 
scenarios, such as those shown in Figure 6, including 
(2), (5), and (8). The floor plans in Figures 6 (7)-(9) 
demonstrate our method's ability to reason complex 
layout constraints between voxels and complete 3D 
models. 

 
Generalization Ability: Despite our dataset 
consisting only of building models with simple 
polygonal single-loop corridor patterns, Building-
GNN exhibits good generalization ability under more 
complex constraints and conditions. The model can 
generate 3D models subjected to specific design 
constraints, such as a spherical constraint shown in 
Figure 6 (7), and link multiple core cylinders in a 
trapezoidal building with horizontal corridors, as 
depicted in Figure 6 (9). The building-GNN can 
produce more diverse results with various design 
constraints than the training set.  

 
Traffic spaces: Building-GNN generates traffic 
spaces that connect different volumes and make 
each room accessible, as exemplified in Figure 6 (2)-
(8). The vertical traffic space can be customized by 
height while maintaining strict vertical alignment, as 
shown in Figure 6 (6). It can also automatically 
supplement horizontal corridors to form circular 
corridors, as illustrated in Figure 6(2). 

 
Spatial complements and modifications: 
Building-GNN exhibits compliance with model 
boundaries in all scenarios and effectively learns the 
relationship between empty voxels and boundaries, 
as indicated in Figure 6 (8). Building-GNN can 
precisely fill in boundaries set by architects based on 
the surrounding spatial complements and 
extensions, as illustrated in Scheme (3) (6). Moreover, 
it can handle the articulation between different 
volumes to ensure accessibility. These results 
demonstrate how building-GNN excels at modifying 
the voxel relationship details between volumes 

input by architects to produce more reasonable 
layouts.  

 
We quantify the architect's control ability over the 
final 3D results with different GRU parameters, as 
shown in Table 2. According to the ICS metrics in 
Table 2, on average, building-GNN's results comply 
with the architect's inputs about 94% in the final 
design. The architect maintains precise control over 
each voxel to explore with GNN for the final 3D 
model. The building-GNN modifies the horizontal 
traffic space of the architect's inputs the most, with 
ICS scores decreasing from 0.8 to 0.61, to ensure 
accessibility of the space, aligning with our 
observation of the results in Figure 6. 

Building-GNN modifies some voxels of the 
architect's inputs to meet the complex voxel 
relationships it learned from the training set. As the 
GRU iterations increase, GNN modifies the architect's 
original inputs to a greater extent, resulting in 
smaller ICS scores. During the process of leveraging 
the strengths of architects and AI, the GRU iteration 
count enables us to quantitatively control the impact 
they have on the generation of 3D results. 

 

Results of stitching GNN networks 
 We experimented with the GNN sampler network in 
horizontal and vertical directions to stitch the 3D 
model, as illustrated in Figure 7 (a). The results show 
that GNN can complete the stitching to solve a larger 
range of architect input voxels without significant 
stitching traces. We quantify and compare the 
prediction results with the accuracy of GT using a 
model with a mask equal to 40% in the test set. The 
results show that as the size of the scale increases, 
the accuracy starts to decrease, as shown in Figure  
7(b). This is probably because some GNN grids do 

Table 2 
The input 
constraint 
satisfaction (ICS) 
scores under 
different GRU 
parameters for 
diverse categories 
of spatial volumes 
input by architects. 

GNN+GRU 1   2 3 4 5 6 
All volumes 1.00 1.00 0.98 0.96 0.96 0.94 
Traffic space 0.80 0.68 0.67 0.64 0.63 0.61 
Vertical Cores 1.00 1.00 0.95 0.93 0.92 0.93 
Public space 1.00 0.92 0.88 0.85 0.86 0.84 
Other room 1.00 0.89 0.87 0.81 0.76 0.73 
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not have input voxel trails within them, thus 
producing erroneous judgments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Limitations and future work 
Our approach differs from previous 3D-GAN models 
in that it relies on the proportion of input voxel clues 
provided by the architect to predict accuracy due to 
the fixed 40% mask in our dataset. To address a 
variety of design scenarios, we plan to develop a 
systematic mask algorithm to train AI. Our 
framework can also integrate 3D-GAN to generate 
concept volumes that can be imported into 

building-GNN for voxel relationship inference and 
modification, providing architects with quick and 
creative options to complete 3D model designs. 
Although our method has demonstrated the 
effectiveness of our neural networks in handling 
complex 3D reasoning, training our models on large 
3D datasets of different building types is still 
necessary to improve their performance in actual 
design projects. Furthermore, additional 
quantitative experiments are needed to determine 
the appropriate sample size, mask scale, and 
parameter settings to improve model accuracy. 
Additionally, our approach cannot predict wall 
positions for an exact building floor plan layout. To 
generate detailed 3D indoor layouts using GNN, we 
can integrate additional features into GNN nodes, 
such as materials, window numbers, internal wall 
layouts, and furniture information. 

CONCLUSION 
Our research results demonstrate the efficacy of our 
co-design framework in accurately reasoning 3D 
voxel models while providing architects with control 
over the design process. This study makes a novel 
contribution to a human-machine framework in 3D 
architectural design, enabling architects to input 
local constraints and explore the entire 3D 
architectural shape and internal spatial partition 
directly in 3D space. It highlights the potential of 
GNN to enhance 3D generative models' accuracy 
and control in architecture. Our work reflects a 
promising direction to tackle challenges in 3D 
building shape exploration and spatial 
segmentation, allowing architects and AI to 
collaborate and flexibly create 3D models that meet 
complex site constraints and architect preferences 
within a 3D spatial network. Building-GNN serves as 
a partner that quickly completes detailed reasoning 
and provides specific prototypes to accommodate 
architect feedback. It not only utilizes AI to accelerate 
the design process but also leverages the architect's 
perception and understanding of the site, which can 
be difficult for a machine to surpass, to assist AI in 
interactively exploring 3D building layout results. 

Figure 7 
(a) Building-GNN 
splicing for 3D 
model prediction 
under expansive 
architectural input 
and site constraints. 
(b) Comparing 
prediction accuracy 
of Building-GNN 
network expansion 
across various 
scales of 3D model 
generation 
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The feedback loop process between architects and 
AI has the potential to facilitate a closer, more 
creative, and flexible design process.  
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