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Abstract
Multi-label classification is becoming increasingly ubiquitous, but not much attention has
been paid to interpretability. In this paper, we develop a multi-label classifier that can be
represented as a concise set of simple “if-then” rules, and thus, it offers better interpretability
compared to black-box models. Notably, our method is able to find a small set of relevant
patterns that lead to accurate multi-label classification, while existing rule-based classifiers
are myopic and wasteful in searching rules, requiring a large number of rules to achieve high
accuracy. In particular, we formulate the problem of choosing multi-label rules to maximize
a target function, which considers not only discrimination ability with respect to labels, but
also diversity. Accounting for diversity helps to avoid redundancy, and thus, to control the
number of rules in the solution set. To tackle the said maximization problem, we propose
a 2-approximation algorithm, which circumvents the exponential-size search space of rules
using a novel technique to sample highly discriminative and diverse rules. In addition to
our theoretical analysis, we provide a thorough experimental evaluation and a case study,
which indicate that our approach offers a trade-off between predictive performance and
interpretability that is unmatched in previous work.

Keywords Multi-label classification · Rule-based classification · Rule sampling ·
Interpretable machine learning

1 Introduction

Machine-learning algorithms are nowadays being used in almost every domain. While such
algorithms are known to perform well in many tasks, they are often used as “black-boxes,”
i.e., the decision processes involved are too complex for humans to interpret. Black-box
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machine-learning algorithms only offer a partial representation of the reality, and more-
over, their performance is assessed using metrics that only capture particular aspects of the
real world. The lack of interpretability considerably limits the level of trust humans put in
black-box machine-learning algorithms and thus poses a barrier for the wide adoption of
machine-learning techniques in real-world applications. In many applications, particularly
when machine learning is used to aid in high-stake decision making, interest lies not only in
having accurate predictions, but also in extracting information from the learned model that
can be analyzed by human expert to produce valuable insight. In an attempt to overcome this
barrier, interpretable and explainable machine learning has recently emerged as increasingly
prominent topics, and in this context, classification problems hold a central position. In the
standard classification setting, the goal is to learn a classifier that accurately maps data points
to two or more mutually exclusive classes.

In this paper, we focus on a different setting, namelymulti-label classification. In contrast
to the standard single-label setting, in multi-label classification, a point can be associated
with more than one class at the same time. Due to the increasing complexity of modern data,
multi-label classification is becoming more and more popular in recent years, and it has been
extensively studied. Nonetheless, the main focus is still on improving predictive performance
[1]. Significantly less attention has been paid to interpretability.

Classification rules, due to their simple structures, are gaining popularity in interpretable
multi-label classification literature. In rule-based approaches, the goal is to learn a set of rules
that captures the most prominent associative patterns on the features and labels in the data.
A rule usually takes the form “({a set of predicates} → {a set of labels})”.

For a given data point, a rule would usually predict the associated labels to be present, if
all the predicates in the rule evaluate to true.

Due to the structural simplicity of rules, classifiers based on a set of rules are generally
considered more interpretable than other types of classifiers, such as neural networks or even
decision trees.

The research question that we bring forward is whether we can design rule-based multi-
label classificationmethods that are both accurate and interpretable.Boomer [2, 3], a recently
proposed rule-basedmulti-label classifier based on gradient boosting, gives promising results
in accuracy. However, despite being a rule-based approach, its interpretability is limited
because it often produces rules sets that are both too large and redundant. Such limitations
pose increased cognitive load for humans, making it hard to interpret and use.

In this work, we propose corset, a rule-based method that significantly improves over
the state-of-the-art Boomer. The improvement is due to (1) reducing rule redundancy, which
is achieved by incorporating a term in our objective that penalizes for rule overlap, and (2)
explicitly limiting the complexity of rules via a suite of novel sampling schemes. As a result,
our method produces a concise set of interpretable rules. An illustration of the concept of our
approach is given in Fig. 1.
Example.To illustrate the improvement of corset over Boomer, we consider as an example
the bibtex dataset, where each data point represents a scientific article, with bag of words
as features and topics as labels. We first consider predictive performance as a function of the
number of rules. In Fig. 2, we show the (micro-averaged) balanced F1 scores, a popular mea-
sure for multi-label classification used throughout this paper, for both corset and Boomer.
Due to the conciseness of its learned rule set, corset achieves a score close to 0.36 with
about 100 rules, whereasBoomer needs over 800 rules to achieve similar performance. Note
that corset’s performance starts to drop after about 100 rules, as there are no more good
rules to learn. The drop indicates over-fitting, which can be addressed by standard methods,
e.g., cross-validation.
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Fig. 1 Illustration of the concept of our approach for multi-label rule selection. A toy dataset is visualized as a
feature matrix and a label matrix. Four rules are shown as colored regions. Regions covered by the same rule
are connected by a dashed arrow. The rules in green are chosen because of accuracy, generality, and diversity.
The rules in red are discarded

Fig. 2 Micro F1, as a function of
number of rules for corset vs.
Boomer in the bibtex dataset

In addition, Fig. 3 demonstrates the conciseness of the rules found by corset vs. the
ones found by Boomer. Here, we show a subset of rules as a bipartite graph, where nodes
at the top represent labels and nodes at the bottom represent the predicates (features). Rules
are represented by colors, and two nodes are connected if they are part of the same rule.
corset uses fewer rules than Boomer and rules tend to contain fewer predicates, resulting
in a sparser graph.

Finally in Fig. 4, we reveal the underlying block structure in the subset of the featurematrix
F and label matrix L of bibtex induced by the same set of rules generated by corset shown
in Fig. 3. The rows and columns of the two matrices are re-ordered using a bi-clustering
algorithm [4]. Specifically, each row in F (and L) corresponds to a training point, which is
included in F and L if it is covered by at least one rule. An entry in F and L is plotted white
if the corresponding value in the matrix is 0. An entry is plotted non-white if its value is 1.
Further, the color is gray if the corresponding feature (label) is not selected in the rule set.
Otherwise, the color of a block depends on the rule that covers it.
Contributions. Concretely, in this work we make the following contributions.

• Weframe the problemof learning concise rule sets as an optimization problem.The objec-
tive function to be maximized over the space of possible rule sets is a linear combination
of a quality function and a diversity function. The optimization problem is NP-hard and
our proposed algorithm, corset, given a set of rule candidates, achieves an approxima-
tion ratio of 2, that is, it finds a rule set that is guaranteed to have value of the objective
function which is at least half the value of the best possible rule set(s).

• The performance of corset depends on the quality of the rule candidates. To find good
rules efficiently, we design a suite of fast sampling algorithms with probabilistic guar-
antees as well as an effective heuristic. The sampling algorithms allow to eschew the
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Fig. 3 An example set of rules returned by our algorithm (top) and Boomer (bottom) on the bibtex dataset.
We depict all rules for the set of labels { SNA, socialnets, social, networks, analysis}

combinatorial nature of the search space of rules and work with a considerably smaller
space that is relevant to our objective.

• Our experiments show that corset achieves competitive predictive performance com-
pared to state-of-the-art rule-based multi-label classifiers, while offering significantly
better interpretability.

The rest of this paper is organized as follows: Section2 discusses related work. Section3
formalizes the problem we consider. Section4 illustrates corset, omitting the details of the
rule-sampling algorithms it relies on, which are described in Sects. 5 and 6. Section7 analyzes
the complexity of corset. Afterwards, Sect. 8 presents a thorough experimental evaluation
of corset. Lastly, Sect. 9 demonstrates the practical applicability of our methods through a
case study.

2 Related work

Multi-label classification. In multi-label classification, the goal is to learn a function that
maps input points to one ormore predefined categories. For instance, a song can be associated
with multiple music genres. A plethora of algorithms have been proposed for this problem;
interested readers may refer to a survey [1]. The simplest approaches for multi-label classi-
fication are the so-called transformation methods, which convert the original problem into
multiple single-label classification problems. The main drawback of these approaches is that
they fail to capture label correlations. To overcome this issue, label power-set approaches
map each distinct set of labels to a unique meta-label, which serves as target label for a
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Fig. 4 Block structures of a feature sub-matrix (left) and a label sub-matrix (right) revealed by corset rules
for the set of labels { SNA, socialnets, social, networks, analysis}

single-label classifier. Clearly, these approaches do not scale with the number of labels, and
the pruned problem transformation method [5] has been proposed as a remedy. Another
line of research focuses on designing ad hoc multi-label classification methods by extending
existing single-label algorithms. Examples include adaption from support vector machines
[6], k-nearest neighbor classifiers [7], and perceptrons [8].
Interpretable machine learning. There is no agreed formal definition of interpretability,
but it can be loosely defined as the degree to which a human can understand the cause of
a decision [9]. Broadly speaking, interpretability in machine learning can be achieved by
imposing constraints or penalties to guarantee that the process behind the decision of the
algorithm is understandable to humans.

A related topic is explainable machine learning, where the goal is to provide “expla-
nations” to the predictions of black-box models. Although interpretable and explainable
machine learning pursue the same general goal and are sometimes lumped together in the
literature, whenever possible, interpretable models should be used rather than “explained”
black-box models for high-stake decision making, because explanations for black boxes can
be problematic, misleading, and error-prone [10]. By contrast, interpretable models, due to
their inherent simplicity, are particularly simple to interpret and troubleshoot. Thus, in high-
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stake domains, where it is crucial to understand the underlying mechanism leading to a given
prediction, it is advisable to prioritize using interpretable models over explained ones.
Rule-based approaches to single-label classification. Research in interpretable machine
learning has boomed in the last years. Rule-based (or associative) approaches have shown
promising potential, because decisions are driven by a simple set of “if-then” rules. Liu et al.
[11] are among the first to investigate association rule mining for single-label classification
tasks, followed by extensions such as MCAR [12] and ADA [13]. These approaches are
conceptually similar, but differ in their methodologies for rule learning, ranking, pruning,
and prediction.
Concise single-label rule sets. Our work pursues for the first time the goal of designing a
multi-label associative classifier for achieving a given classification performance with the
smallest possible number of rules. A similar objective has been recently considered in the
context of single-label classification. In particular, Zhang et al. [14] frame the problem of
learning a set of classification rules as an optimization problem with an objective function
combining rule quality and diversity. A 2-approximation algorithm is then proposed to solve
this problem, which relies on existing frameworks for max-sum diversification and pattern
sampling. In this paper, we investigate how to extend these ideas to the multi-label classifi-
cation setting. The problem of controlling the number of rules used for prediction has also
been studied for single-label rule boosting, where learned rules are combined additively [15].
An extension to multi-label classification represents a possible direction of future work. A
different line of work, which has also addressed rule set conciseness [16, 17], relies on encod-
ing single-label rule learning problems as SAT programs and solving them via SAT solvers.
Finally, Wang et al. [18] propose to control the number of learned rules using a Bayesian
approach.

In addition to the number of rules, different definitions of interpretability have been
explored in association rule mining and single-label rule-based classification. For instance,
rule set interpretability has been quantified by the numbers of conditions used by the rules
[17] and by the minimum description length principle [19].
Rule-based approaches tomulti-label classification. In general, adaptation from the single-
label to themulti-label setting is not trivial andwhile single-label associative classification has
been studied extensively, relatively few attempts have been made for associative multi-label
classification. In an early work, Thabtah et al. [20] propose a label ranking-based assignment
method. More recently, new approaches have been developed, and SeCo [21] and Boomer
[2] are state of the art in the current literature of rule-based multi-label classification. The
main limitation of the existing works, addressed in our paper, is that they use a very large set
of highly redundant rules, which hinders interpretability. We compare our method against
SeCo [21] and Boomer [2] in Sect. 8.
Pattern sampling. Association pattern discovery, which aims at discovering relevant asso-
ciation patterns between items in large datasets, is challenging due to the prohibitive size of
the pattern space. This challenge is inherited by rule-based classifiers.

Deterministic approaches to association pattern discovery are based on exhaustive enu-
meration of the pattern space [22–24]. Furthermore, such approaches typically impose hard
thresholds on some frequency-based measure (such as support and confidence) to distinguish
interesting patterns from irrelevant ones.

Despite the remarkable progress made over the past years [22–24], deterministic
approaches to association pattern discovery still incur several limitations [25–27]. First, the
required enumeration (or partial enumeration) of the search space makes it hard to control
the running time and consumed memory. Second, finding an appropriate threshold can be
a non-intuitive and even cumbersome task. Third, these approaches generally do not allow
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enough flexibility in the choice of the interestingness measure and often return enormous
amounts of redundant patterns that describe the same local phenomenon.

To overcome the aforementioned limitations, efficient sampling methods have been pro-
posed for various pattern mining tasks [25, 26]. These methods sample directly from the
output space of patterns, circumventing the enumeration of the search space, they do not
require setting an hard threshold, they are robust with respect to redundancy in the output
patterns, and they allow great efficiency and flexibility in choosing the target distribution to
sample patterns from.

In the multi-label classification setting, however, existing pattern samplers do not deliver
satisfactory performance (Sects. 6 and 8). In this work, we extend existing methods to
efficiently find high-quality candidate multi-label rules, as discussed in detail in Sect. 5
and 6.

3 Problem statement

At a high level, our objective is to capture the relevant patterns in the data that best discriminate
sets of labels and are as concise as possible. Next we formally define the problem.

3.1 Preliminaries

We denote sets and multisets by uppercase letters, e.g., X . For a finite X , we denote byP (X)

its power set. We consider a binary dataset D (all values are either 0 or 1) over a feature set
F and a label set L. The dataset D is a set of data records, D1, . . . , Dn . A data record or
instance D = (F, L) consists of a set of features F ⊆ F and a set of labels L ⊆ L. We
denote by FD and LD the feature set and label set of D, respectively. Furthermore, we denote
by |F | and |L| the dimensions of the feature and label space, respectively, and we denote by
|D| the total number of data records. We use ‖F‖ and ‖L‖ to refer to the total number of
feature and label occurrences over all data records.

In multi-label classification, the goal is to learn a function mapping as accurately as
possible the features FD to one ormore labels LD .We usemappings consisting of conjunctive
rules. A conjunctive rule R = (B → H) is composed of a non-empty feature set B (called
body) and a non-empty label set H (called head). The body B can be viewed as a predicate
B : {0, 1}|F | → {true, false}, which states whether an instance contains all the features in B.
If the predicate evaluates to true for some instance, the head H of R specifies that labels H
should be predicted as present.

We say that a body B matches a data record D if B ⊆ FD . Similarly, a head H matches
D if H ⊆ LD . We also say that a rule R covers a data record D if BR ⊆ FD and similarly R
matches a data record D if both BR and HR match D. For a datasetD, we denote the support
set of X ∈ {B, H , R} by:

D [X ] = {D ∈ D | X matches D} .

The space of all possible ruleswe consider is U = P (F)×P (L), i.e., the Cartesian product
of the power set of the feature set and the power set of the label set.

As explained in the remainder of this section, our ultimate goal is to find the most succinct
set of rules to model the main dependencies in the data that are relevant for multi-label
classification. Rule sets are denoted byR. They are in disjunctive normal form, i.e., they are
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“OR of ANDs”, so that a label is predicted for a data record D if it belongs to the head H of
at least one of the rules R ∈ R covering D.

Before introducing the details of the proposed problem formulation, we remark that more
complex and structured rule-based models, such as rule lists or decision trees, have emerged
as popular alternatives to rule set models [10]. In addition, negative rules, which predict the
absence of labels rather than their presence, have also been investigated [28].

The choice of using simple rule sets in disjunctive normal form is a consequence of the
fundamental principle underlying this work, that is, the design of a multi-label classifier that
prioritizes interpretability while also offering accurate classification. Unlike rule lists and
decision trees which introduce hierarchical structures among the rules, thereby complicating
the process of interpretation, rule sets are easier to interpret due to the absence of hierarchy.
Similarly, we do not consider negative rules because they may lead to labels simultaneously
predicted as present and absent, which also hampers interpretability.

3.2 Problem formulation

We want to discover rules that are accurate and general, but also sufficiently different from
each other. To capture this trade-off, we design an objective function that consists of a quality
term q : U → R measuring the accuracy and generality of a single rule, and a diversity term
d : U × U → R measuring the distance between pairs of rules.
Quality term. Given a rule R and a set of rules R, the quality q(R;R) of R with respect to
R is the product of two values: the uncovered area area(R;R), capturing the generality of
R with respect to R, and its adjusted accuracy a(R),

q(R;R) = area(R;R) · a(R). (1)

Next we describe these two functions. To capture generality, we first define the coverage of
R as:

cov(R) = {(i, k) | R matches Di ∈ D and k ∈ H} . (2)

In other words, the coverage of a rule is the set of label occurrences it matches in a dataset.
To incorporate what is already covered by a set of selected rules R, we define uncovered
area of R with respect to R as

area(R;R) = |cov(R) \
⋃

R∈R
cov(R) |, (3)

that is, the size of covered label occurrences by R after excluding those already covered by
at least one rule in R. Thus, a rule R is considered general with respect to R if area(R;R)

is large.
Before introducing the adjusted-accuracy function, we need some additional notation.

Data records whose labels contain H are said to be positive with respect to H , whilst the
remaining ones are negative. More formally, a head H bi-partitions a dataset D into two
disjoint sets: a set of positive data records D+

H = {D ∈ D | H ⊆ LD} and a set of negative

data recordsD−
H = {D ∈ D | H � LD}. Given a rule R, let PD[R] = |D[R]|

|D[B]| be the precision
of R and PD = |D[H ]|

|D| is the base rate of H in D. We denote the corresponding binomial

distributions as Bin
(
PD[R]

)
and Bin(PD), respectively. Then, the adjusted accuracy of R is

defined as:

a (R) = I (R) · DKL
(
Bin

(
PD[R]

) || Bin(PD)
)
, (4)
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where I (R) is 1 if PD[R] > PD and 0 otherwise, and DKL(· || ·) is the KL divergence
between two probability distributions. The underlying intuition is that if the precision of a
rule is below its base rate, it is useless and receives a zero score. If instead the precision of a
rule is larger than the base rate, the higher the precision is, the larger the score.
Diversity term. We measure the distance between two rules by how much their coverages
overlap. Formally, given two rules R1 and R2, their distance is defined as

d (R1, R2) = 1 − |cov(R1) ∩ cov(R2) |
|cov(R1) ∪ cov(R2) | , (5)

which is the Jaccard distance between cov(R1) and cov(R2).
Total quality and diversity. We extend the quality function and diversity function to rule
sets, since we want to learn a set of rules. The extension of diversity is straightforward. Given
a rule set R, we define its total diversity as:

d (R) =
∑

Ri ,R j∈R,i �= j

d(Ri , R j ), (6)

i.e., the sum of all pairwise diversity values in R.
The extension of the quality function from single rules to rule sets requires careful judg-

ment. The total quality of a rule set R is defined as:

q (R) =
∑

Ri∈R
q

(
Ri ;R1,...i−1

)
. (7)

Thus, this definition implicitly defines an order on the rules.
We argue that an order is required to make the total quality function meaningful. Consider

an alternative definition: q ′ (R) = ∑
R∈R q (R;R\{R}), which does not assume any order

on R. Recall that q(R;R\{R}) = area(R;R\{R}) · a(R), where area(R;R\{R}) counts
the label occurrences uniquely covered by R. The issue with the definition of q ′ is that the
area term in q ′ only considers the label occurrences that are uniquely covered by a single
rule and neglects those that are covered more than once. In contrast, it is more desirable to
consider the union of the label occurrences covered by all rules inR. Our proposed definition
in Eq. (7) fulfills this desideratum.
Problemdefinition.We frame the learning problem as a combinatorial optimization problem
with budget constraint, where we set a budget on the maximum number of rules to discover,
and rules should be selected to maximize a linear combination of the total quality and total
diversity.

Problem 1 Given a dataset D = {Di }ni=1, a budget B ∈ Z+, a space of rules S ⊆ U , and a
parameter λ ∈ R+, find a set of B rulesR = {R1, . . . , RB} ⊆ S, to maximize the following
objective

f (R) = q (R) + λd (R) . (8)

This problem is known to be NP-hard [29]. In the next section, we present a greedy
algorithm which finds a solution to Problem 1 with an approximation factor of 2, provided
that the space of rules S can be visited in polynomial time.

4 The CORSET learning algorithm

In this section, we present a meta algorithm named corset (concise rule set) for Problem 1.
corset greedily picks one rule at a time from a pool of candidate rules, so as to maximize a

123



5666 M. Ciaperoni et al.

modified version of the marginal gain for the objective in Eq. (8), i.e.,

f ′ (R ∪ {R}) − f ′ (R) = 1

2
q (R;R) + λ

∑

R j∈R
d(R, R j ). (9)

Here, f ′ (R) is the same as f (R) in our problem formulation with the sole exception that
the quality term is multiplied by 1

2 . The difference can be ignored by adjusting λ accordingly
and is only required for the proof of Proposition 1.

The candidate rules corset picks from are generated by a procedure called GenCand-
Rules. The effectiveness of GenCandRules heavily affects the predictive performance of
the classifier. The goal is to sample high-quality rules in terms of generality, diversity, and
accuracy (that is, tailored to our objective). This is a challenging goal since the size of rule
space is exponential [30], and GenCandRules should therefore avoid exploring the whole
space. We defer the description of the candidate generation to Sects. 5 and 6.

For now, we focus on the description of the main algorithm. corset maintains a set of
selected rules,R, which is initially empty. At each iteration, it considers a pool of candidate
rules generated by GenCandRules. Within this pool, the rule R∗ maximizing the marginal
gain in Eq. (9) with respect to R is selected and added to R. The process stops when the
proportion of labels in L predicted by R ∪ R∗ and not by R falls below a user-specified
tolerance level τ .

To ensure the aforementioned approximation guarantee, we need to repeat the greedy
procedure a second time, over the union of the rules generated in all iterations, because using
a different candidate set at each iteration does not offer an approximation guarantee. Denote
asR′ the new rule set obtained in this second round. We return as solution the set that yields
the largest objective function value betweenR andR′, since in practiceR′ is not necessarily
better than R.

The pseudo-code of corset is shown in Algorithm 1. Note thatGenCandRules receives
as input the current rule set R, so as to generate rules different from R, as explained in the
next section.

We provide the approximation guarantee next.

Proposition 1 For a fixed pool of candidate rules, corset is a 2-approximation algorithm
for Problem 1.

Proof Problem1 is a special case of a general problemknownasmax-sumdiversification [29],
which has been studied in the context of result diversification [31]. In the general formulation,
given a set of elementsU in ametric space and a set-valued function f : 2U → R, the problem
asks for a subset S ⊆ U that maximizes an objective function f (S) + λ

∑
u,v∈S dist(u, v)

under cardinality (or more general) constraints, where dist is a pairwise distance function.
Setting f to be the quality function q in Eq. (7) and dist to be the Jaccard distance d in

Eq. (5), it follows that Problem 1 is a special case of the max-sum diversification problem.
A result due to Borodin et al. [29] shows that a simple greedy algorithm, which iteratively

picks the element maximizing the marginal gain in the objective function, guarantees an
approximation factor of 2 for the max-sum diversification problem and therefore for Prob-
lem 1, as long as f is monotone and submodular and d is a metric.

As a consequence, to show that the 2-approximation guarantee holds for corset, it is
sufficient to show that the quality term q (R) is monotone and submodular, since the Jaccard
distance d is known to be a proper metric [32].

First, q (R) is a sum of nonnegative terms. Hence, it is a monotone (and non-decreasing)
function.
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Algorithm 1 The corset algorithm.
Data: data D, tolerance τ .
Result: a set of multi-label classification rules R.

1 R, R′ ← ∅;
2 CR ← ∅, c ← ∞;
3 while c > τ do
4 C ← GenCandRules(R);
5 CR ← CR ∪ C;
6 R∗ ← argmaxR∈C

[
f ′ (R ∪ {R}) − f ′ (R)

]
;

7 c ← (
∑

(D;BR∗⊆FD ,HR∗⊆LD ) |LD ∩ HR∗ \ ∪(R∈R|BR⊆FD ,HR⊆LD )HR |)/|L‖;
8 R ← R ∪ R∗;
9 end

10 for i = 1, ..|R| do
11 R∗ ← argmaxR∈CR

[
f ′ (R′ ∪ {R}

)
− f ′ (R′)]

;

R′ ← R′ ∪ R∗;
12 end
13 if f (R′) > f (R) then return R′;

else return R

Next, we show that q (R) is also submodular. To prove the submodularity of q , consider
two rule setsR′ andR′′ such thatR′ ⊆ R′′. Given a new rule R∗, the marginal gain in quality
resulting from adding R∗ to R′ is:

�′ = q
(R′ ∪ {R∗}) − q

(R′) = a
(
R∗) × |cov(R∗) \

⋃

R∈R′
cov(R) |.

Similarly, the marginal gain in quality for R′′ is:

�′′ = q
(R′′ ∪ {R∗}) − q

(R′′) = a
(
R∗) × |cov(R∗) \

⋃

R∈R′′
cov(R) |

= a
(
R∗) × |cov(R) \

⋃

R∈R′
cov(R) \

⋃

R∈R′′\R′
cov(R) |.

Since

|cov(R∗) \
⋃

R∈R′
cov(R) | ≥ |cov(R∗) \

⋃

R∈R′
cov(R) \

⋃

R∈R′′\R′
cov(R) |,

it immediately follows that �′ ≥ �′′. Therefore, the quality function q is submodular.
We conclude that corset is a 2-approximation algorithm for Problem 1. This means that,

given a space of candidate rules, corset is guaranteed to return rule sets achieving a value
of the objective in Eq. (8) that is at least half of the maximum value of the objective function
achieved by the optimal rule set(s). ��

It is important to note that the approximation guarantee does not hold with respect to the
entire rule space, but thanks to the second round of greedy selection, it holds with respect to
the entire pool of rules sampled in all the iterations of the algorithm.

Prediction.At prediction time, given the set of selected rulesR, we return the set of predicted
labels for a data record D = (FD, LD) as

⋃
R∈R|BR⊆FD

HR , that is, the union of the heads
of the rules such that FD contains all attributes in the body B, or, equivalently, such that R
covers D.
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5 Rule sampling

In the next two sections,we present themain contribution of ourwork, a suite of rule-sampling
algorithms used by GenCandRules. In this section, we first describe the technical basis of
our proposal. Then, we formulate our sampling problem and present the algorithms for it.
The devised sampling algorithms have, however, important limitations. In the next section,
we discuss such limitations and describe practical enhancements.

5.1 Background: two-stage pattern sampling

Our sampling scheme builds on the pattern-sampling algorithms proposed by Boley et al.
[25, 26]. These algorithms allow us to sample patterns according to a target distribution over
the pattern space, without the need of exhaustive enumeration. The target distribution reflects
a measure of interestingness for the patterns. Example measures include support, area, and,
if the data are labelled, discriminativity. Sampling algorithms for a variety of measures share
a two-stage structure, whilst the details depend on the measure under consideration.

The key insight brought by Boley et al. [25, 26] is that random experiments reveal
frequent events. We use sampling by support and area for illustration. Consider a dataset
D = {D1, . . . , Dn} over a finite ground set E , with D ⊆ E for each D ∈ D. Consider the
problem of sampling an itemset (pattern) F ⊆ E with probability proportional to its support
qsupp(F) = |D [F] |.

For each D ∈ D, the set of itemsets including D in their support is P (D). It can be
shown that sampling an itemset F uniformly from

⋃· D∈D P (D), where
⋃· denotes the union

operator of multi-sets, is the same as sampling F according to |D[F]|. To avoid materializing⋃· D∈D P (D), Boley et al. use a two-step procedure:

1. sample a data record D with probability proportional to the weight w(D) =∑
F∈P(D) 1 = 2|D|.

2. sample an itemset F uniformly from P (D).

To sample from the “area” distribution qarea(F) = |F ||D [F] |, the above procedure is
changed as follows: set weights w(D) = ∑

F∈P(D) F = |D|2|D|−1, and then sample F
with weight |F | from P (D).

The two-stage sampling idea can be generalized to a number of other measures. Some of
them, such as discriminativity, which we use later, require sampling tuples of data records
rather than a single one in the first stage.

Next we describe two sampling distributions and the corresponding sampling algorithms
for our objective. Thefirst distribution is a generalization of the area function (not discussed by
Boley et al. [25, 26]) and is used for head sampling. The second distribution is discriminativity
used for body sampling. For discriminativity, we propose an improved sampling algorithm,
which is faster than the original version [26].

5.2 Sampling objectives

Our rule sampling objective can be expressed using the chain rule of probabilities as a product
of two values, one reflecting the generality of a rule R = (B → H) given the current set of
rules R, and the other its discriminative power:

Pr (B, H) ∝ w(B, H ;R) = qa(B; H) · area(H ;R) . (10)
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Note that the uncovered area function in Eq. (3) generalizes to tails, i.e., area(H ;R) =
|cov(H) \⋃

H ′ ∈R cov(H
′
)| and cov(H) = {(i, k) | H matches Di ∈ D and k ∈ H}.We use

area(H ;R) because we want to extract heads that cover the largest possible area and are as
diverse as possible.

For qa, we choose the discriminativity measure studied by Boley et al. [25], which permits
sampling in polynomial time.

Given a head H ⊆ L, the discriminativity of B is defined as:

qdisc(B; H) = |D+
H [B] | |D−

H \ D−
H [B] |. (11)

The goal is to sample bodies that have as large support as possible in D+
H and as small

support as possible inD−
H . Thus, discriminativity captures the ability of a body B in discrim-

inating between the presence and absence of a given head H in data records.
To sample from the distribution in Eq. (10), we use the following steps:

1. sample H with probability proportional to area(H ;R);
2. sample B with probability proportional to qa(B; H).

We explain each sampling step next.

5.3 Head sampling

To sample from area(H ;R), we apply a similar two-step sampling procedure as in Boley et
al. [25]: we first sample a data record D with probability proportional to its weight w(D;R)

and then sample H from D. The function area(H ;R) is a generalization of the area function
considered in Boley et al. [25]. Adapting the original algorithm to our case requires to design
a weight functionw(·;R) appropriate for our target. To definew(·;R), a few new definitions
are needed. Given a rule R and a data record D, the D -specific coverage of R is defined to
be:

covD(R) =
{
LD ∩ HR, if R covers D,

∅, otherwise.
(12)

Extending D-specific coverage to a rule set R, we have:

covD(R) =
⋃

R∈R
covD(R) . (13)

Given a label set H , its marginal coverage with respect to R is:

covD(H ;R) = (LD ∩ H) \ covD(R) , (14)

that is, the covered label occurrences in D by H , excluding those by R. As a shortcut, we
define covD(R) = covD(LD;R), i.e., the set of label occurrences in D not covered by R.

The weight of a label set H on a data record D is:

w(H , D;R) = |covD(H ;R) |. (15)

We give a small example to illustrate these definitions:
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Algorithm 2 Two-stage head sampling.
Data: a dataset D, weights w(D;R) (as in Equation (16)).
Result: a head H ⊆ L with H ∼ area(H ;R).

1 draw D ∼ w(D;R);
2 return H ∼ w(H , D;R)

D : FD = {0, 1, 2} , LD = {a, b, c}
R1 : ({0, 1} → {a})
R2 : ({1, 2} → {a, b})
R3 : ({2, 3} → {a, c})

R = {R1, R2, R3}
H = {b, c}

For R1 and R2, the sets covD(·) are {a} , {a, b}, respectively. For R3, the set covD(R3) is ∅
since R3 does not cover D. Therefore, covD(H ;R) = {c} and w(H , D;R) = 1.

The intuition of the definition of w(H , D;R) is that H has large weight on D if it
contains many label occurrences not covered byR. Therefore, the weight of any data record
D is simply the summation of the weights over all possible heads and has the following
simple form:

w(D;R) =
∑

H⊆LD

w(H , D;R)

=
∑

H⊆LD

|covD(H ;R) |

=
∑

(H1∪H2)⊆LD

s.t. H1⊆covD(R),

H2⊆covD(R),

H1∩H2=∅

|H1|

=
∑

H1⊆covD(R)

|H1|
∑

H2⊆covD(R)

1

=
(
|covD(R)| 2|covD(R)|−1

)
2|covD(R)|

= |covD(R) | 2|LD |−1. (16)

In the third equation, a head H is split into two disjoint parts, H1 and H2, such that H1

belongs to the uncovered label occurrences, whereas H2 belongs to the already covered ones.
The remaining equations follow from simple algebra.

Using these weights, we adapt the sampling algorithm of Boley et al. [25, 26] as per
Algorithm 2.

The sampling algorithm is supported by probabilistic guarantees, as formalized next.

Proposition 2 Algorithm 2 returns H ∼ area(H ;R).

Proof We prove that Algorithm 2 returns H ∼ area(H ;R).

Pr(H is drawn) =
∑

D∈D
Pr(H is drawn and D is drawn)
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=
∑

D∈D
Pr(D is drawn)Pr(H is drawn from P (LD))

=
∑

D∈D[H ]

Pr(D is drawn)Pr(H is drawn from P (LD))

∝
∑

D∈D[H ]

w(D;R) × w(H , D;R)

w(D;R)

=
∑

D∈D[H ]

w(H , D;R) =
∑

D∈D[H ]

|covD(H ;R) | = area(H ;R) .

The first and second equations follow from the law of total probability and the chain rule of
probabilities, respectively. The third equality is guaranteed because H can only be sampled
from D ∈ D [H ]. If D is not in D [H ], it has zero probability of generating H . In the fourth
equality, we have used the definitions of w(H , D;R) and w(D;R), as well as the equality:

∑

H⊆LD

w(H , D;R) = w(D;R) .

Finally, the last equality follows since area(H ;R) can be obtained by definition as the sum of
the marginal coverage |covD(H ;R) | of H on D, givenR, over all data records D ∈ D [H ].

��

5.4 Body sampling

After a head H is sampled, we sample B according to qa(B; H) = qdisc(B; H), from
Eq. (11). The two-stage sampling scheme by Boley et al. [25, 26] can be applied for this case.
In contrast to the previous cases, the weight function is defined on pairs of data records:

w(D+, D−) = 2|D+| − 2|D+∩D−| − |D+ \ D−|, (17)

where D+ ∈ D+
H and D− ∈ D−

H , and |D+| (resp. |D−|) denotes the number of features
present in D+ (resp. D−). Thus, pre-computing the weights leads to quadratic space com-
plexity in |D|, which limits the practicality of the sampling procedure.

The above limitation is addressed by Boley et al. [26] using the technique of coupling
from the past (cftp), which leads to linear space complexity. Unlike many Markov chain
Monte Carlo (mcmc) methods, cftp can guarantee that samples are generated according to
the target distribution. It operates by simulating the Markov chain backwards by sampling
from a proposal distribution, until all states coalesce to the same unique state. The main
challenge of using cftp is the design of the proposal distribution and the efficient monitoring
of coalescence condition.

The proposal distribution should be (i) efficient to sample from; and (i i) an appropriate
approximation to the target distribution to obtain fast convergence. Boley et al. [26] devise
a “general-purpose” proposal distribution, which works for all target distributions they con-
sider. For the case of discriminativity, the proposal distribution is defined as:

w(D+, D−) =
√

w1
(
D+) · w2

(
D−)

, (18)

where w1
(
D+) = 2|D+| − |D+| − 1 and w2

(
D−) = 2|F | − 2|D−| − |D−| − 1. Sampling

from w(·, ·) can be done efficiently by sampling separately from w1(·) and w2(·). However,
we argue that the choice of w(·, ·) is not a good approximation of the target, and therefore,
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Algorithm 3 Two-stage body sampling.
Data: a dataset D, a head H , weights w1(·) and w2(·).
Result: a body B ∈ F with B ∼ qa(B; H).

1 initialize i ← 1, D ←⊥;
2 while D =⊥ do
3 i ← i + 1;

4 for t = 2i , . . . , 0 do
5 draw ut ∼ u([0, 1]) and Ct ∼ w(Ct );

6 if ut ≤ w(D)w(Ct )
w(D)w(Ct )

then
7 D ← Ct ;
8 end
9 end

10 end
11 draw B1 ∼ u(P(D+ \ D−) \ ∅), B2 ∼ u(P(D+ ∩ D−));
12 return B = B1 ∪ B2

it suffers from slow convergence. We provide empirical evidence to support this claim in
Sect. 8. The reason is that when a data record is high-dimensional but sparse, as is often
the case in multi-label classification, w2

(
D−)

, and hence, w
(
D+, D−)

grow exponentially
with the number of features, making the acceptance probability extremely low and, as a
consequence, convergence is extremely slow.

To overcome the convergence issue, we use a different proposal distribution better suited
for our setting. Our proposal is the same as in Eq. (18), except thatw2 is defined as a uniform
function and the square root is removed:

w′(D+, D−) = w1
(
D+) = 2|D+| − 1 − |D+|. (19)

It is easy to sample from this modified proposal distribution because we can sample D+
weighted by w1

(
D+)

and D− uniformly at random. Further, w′ has an appealing property:

Proposition 3 w′ is a tight upper bound of the target weight distribution in w in Eq. (17).

Proof First, 2|D+| − 1 − |D+| is the value taken on by the weight function w(D+, D−) for
a tuple (D+, D−) when D+ ∩ D− = ∅.

Also when |D+ ∩ D−| = 1, we have w(D+, D−) = 2|D+| − 2 − (|D+| − 1) = 2|D+| −
1 − |D+|.

Finally, when |D+∩D+| = |I | ≥ 2, we havew(D+, D−) = 2|D+|−2|I |−(|D+|−|I |) =
2|D+| − 2|I | − |D+| + |I |. Because 2|I | ≥ |I | ∀I and 2|I | grows at a faster rate than |I |, the
target weight function w(D+, D−) achieves its maximum 2|D+| − 1 − |D+| at |I | = 0 and
|I | = 1 and takes smaller values for |I | ≥ 2. It follows thatw′(D+, D−) = 2|D+| −1−|D+|
is a tight upper bound for w(D+, D−), as claimed above. ��

Proposition 3 ensures that our proposal distribution w′ provides a better approximation of
the target, as compared to w proposed by Boley et al. [26]. Therefore, it is expected that w′
gives faster convergence than w. We empirically evaluate the convergence speed in Sect. 8.

Body sampling is summarized in Algorithm 3. We first use cftp (lines 1-9) to sample a
pair

(
D+, D−)

. Then, we sample a body in line 11.We denote u(·) as the uniform distribution
over a set. For brevity, we use a boldface letter to denote a pair (tuple) of records, e.g.,D. We
denote an empty pair by ⊥ and define w(⊥)/w(⊥) = 1.
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6 Enhancements to the sampling scheme

In this section, we first discuss important drawbacks of the pattern sampling schemes
described in Sect. 5 and then describe our enhancements to tackle these drawbacks. The
benefits of such enhancements are thoroughly demonstrated via extensive experiments pre-
sented in Sect. 8.

6.1 Limitations of the two-stage pattern-sampling framework

While theoretically sound, in our setting, the two-stage sampling framework [25, 26] suffers
from two limitations, as can be verified empirically. First, we observe thatmost of the sampled
rules are very specific, with very low support. Second, rule interpretability is not explicitly
considered.
Heavy-hitter problem for head sampling. Consider the head sampling part. Notice that the
weight of a data record D in Eq. (16) is exponential in LD . If there is a data record D ∈ D
whose |LD| is moderately larger than the rest, its weight dominates, making it very likely
to be sampled in the first sampling step. We refer to this issue as the heavy-hitter problem.
For instance in bibtex, the largest label set of a data record D∗ contains 28 labels, while the
second largest contains 16. The probability of D∗ being sampled is 99.97%. A head sampled
from D∗ has an expected length of 14.5. Empirically, heads of about this length match only
a few data records. Thus, most of the sampled heads have low support, hampering the goal
of sampling general rules.
Heavy-hitter problem for body sampling. A similar issue arises in body sampling. The
weight function in Eq. (17) grows exponentially with |D+|, so that cftp most likely returns
the positive data records with the highest number of present features. Therefore, sampled
bodies tend to be very long and have small support (often 1). Thus, they may have high
discriminativity but cannot generalize to unseen data.
Head interpretability. Interpretability of heads is a central focus in our work. Nonetheless,
in the original pattern-sampling algorithms [25, 26] all elements in P(L) are considered
possible heads, regardless of whether they are interpretable or not.

The original head-sampling algorithms described in Sect. 5.3 sample new heads based on
global correlations. Some heads are sampled simply because the labels in them co-occur
frequently rather than because the labels are strongly correlated. Such heads may contain
overall prominent labels, but they may be hard to interpret.

The root of the above limitations is the enormous sample space under consideration, which
contains a large amount of undesirable bodies and heads with small support and heads with
limited interpretability. Next, we describe a strategy to eliminate undesirable bodies and
heads, thus effectively addressing the above limitations of the original two-stage pattern-
sampling framework.

6.2 Head sampling under interpretable label space

We propose to restrict the label sample space to a much smaller sample space S− ⊆ P(L)

designed to contain only interpretable label sets so as to mitigate the heavy-hitter problem.
We call S− the interpretable label space. Before describing the construction of S−, we
notice that pattern sampling under any subspace of P(L) is a slight generalization of the
original sampling setting. Most importantly, the original sampling algorithms can be adapted
to different sample spaces, such as S−, while preserving probabilistic guarantees.
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Algorithm 4 Head sampling under S− according to uncovered area.

Data: a dataset D, sample space S−, and a rule set R.
Result: a head H ∈ S− with H ∼ area(H ;R).

1 let I [D] ← {
S ∈ S− | S ⊆ LD

}
for each D ∈ D;

2 let w (D) ← ∑
S∈I [D] |S \ covD (R) | for each D ∈ D;

3 draw D ∼ w (D);
4 draw H ∈ I [D] ∼ |H |;
5 return H

In Algorithm 4, we describe a procedure for sampling by uncovered area under S−. The
algorithm can be easily adapted for other sampling objectives including discriminativity.
Compared to sampling under P(L), we require the extra step of determining the set I [D] of
patterns in S− contained by D ∈ D and computing the weight for D accordingly.
ConstructingS−. To construct the interpretable label space, we first define interpretability in
our setting. Humans are used to think in an associative manner [33]. The underlying cognitive
process is called associative activation, which can be described as “ideas that have been
evoked trigger many other ideas, in a spreading cascade of activity in your brain” [34, p. 51].
To accommodate such tendency, we argue that a label set is interpretable if the corresponding
labels are sufficiently associated. The problem of constructing S− is then framed as finding
sufficiently associated label sets. We rely on a graph-based approach whereby we construct
a suitable label graph and extract its dense subgraphs. Specifically, we construct a directed
weighted graph G = (V , E, p). Each node represents a label. A node pair (u, v) is an edge in
E ifD [{u}]∩D [{v}] �= ∅. The corresponding weight is defined as p(u, v) = |D[{u}]∩D[{v}]|

|D[{u}]| ,

which can be interpreted as the conditional probability that label v occurs given that label u
occurs.

The need of edge direction arises because in real-world multi-label datasets, the asso-
ciation between labels can be asymmetric. For instance in bibtex, general labels, such as
statistical physics, and specific ones, such as simulation, co-exist. The asymmetry implies
that a single value assigned to a pair of labels cannot fully capture their interaction. The spe-
cific label simulation is likely to co-occur with statistical physics in most of its occurrences,
while the contrary is not true.

Probabilistic interpretation of the edge weights suggests that G can be viewed as a prob-
abilistic graph [35]. From such point of view, the problem of finding sufficiently associated
label sets can be seen as finding highly probable cliques in G [36], whose probability of form-
ing is above a pre-specified threshold. To solve this problem, we adapt a recursive depth-first
search (DFS) procedure similar to the one proposed by Mukherjee et al. [36].
Efficient preprocessing. Execution of line 1 in Algorithm 4 can be done efficiently by
framing the problem appropriately. In this problem, we are given a set of subsets S− and
we are asked to find, for each D ∈ D, the subsets in S− that are contained in LD . A naive
solution checks the containment relations for all pairs of LD and S−, and in practice can
take hours for many datasets. However, the problem is an instance of the the set containment
problem, extensively studied by the database community. Among several efficient solutions
proposed for this problem, we resort to one well-established algorithm, PRETTI [37], built
upon the idea of inverted index and prefix trees. The running time is effectively brought down
to a few seconds.
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6.3 Improved body sampling

To alleviate the heavy-hitter problemduring body sampling,we consider two approaches. The
first approach is based on reduced sample space, but may have scalability issues. The second
is a greedy heuristic, which explicitly maximizes a modified version of discriminativity.
1. Using reduced sample space.We adapt a similar idea as in head sampling (Sect. 6.2) and
use a reduced sample space S− for body sampling. However, in practice, while in real multi-
label classification tasks the label matrix is always sparse, the feature matrix can be dense.
In this case, a scalability issue arises since the DFS procedure may take exponential time.
For sufficiently sparse graphs, this is not a concern, whereas in denser graphs, constructing
S− becomes a key scalability bottleneck.
2. A greedy heuristic. To address the above scalability issue, we propose a greedy heuristic,
which drops the probabilistic guarantee, but is highly effective in practice. We use cftp as
in Algorithm 3 to sample a tuple

(
D+, D−)

. Then, we greedily select features in D+ \ D−
to maximize a modified version of discriminativity: for any B, we define the measure

φ(B) = |D [B] ∩ D+
H | − γ |D [B] ∩ D−

H |, (20)

where γ weighs the importance of positive and negative support, so smaller values of γ lead
to more general but more error-prone bodies. Further, we use early stopping (controlled by
ε) when |D [H ] | is too small.

The algorithm is described in Algorithm 5. It iteratively picks a feature h ∈ FD+ ∪ FD− ,
which maximizes the marginal gain of φ. The best feature h∗ is added to B and the support is
updated accordingly. Finally, a linear sweep over B finds the body with the highest objective
value (in Eq. (20)). In practice, we use a pre-computed inverted index to allow for efficient
intersection of supports. Variations of Algorithm 5 have also been investigated in which the
input is deterministic, the difference in line 4 is normalized by D[{h}] and the support is
replaced by the portion of support not belonging to the support of previously chosen rules.
Summary. The second approach scales better for dense feature matrices than the first
approach. However, the first approach has the following advantages: (1) body sampling
has probabilistic guarantees, (2) it is much faster to run when the feature matrices are sparse,
(3) bodies in the reduced sample space S− are composed of highly correlated attributes and
hence are easy to interpret. In the sequel, we use corset-surs to denote the version where
the first approach is used for body sampling, and corset-gh when the second approach is
used.

7 Complexity analysis

Time complexity. Let Tf be the time complexity of evaluating the quality and diversity
function. Tf is bounded by |D|(|F |+ |L|). Let S−

L be the interpretable sample space for head
sampling and S−

F be the reduced sample space for body sampling. The pre-processing times
TL
S and TF

S to construct S−
L and S−

F are exponential in the worst case. It follows that the time
complexity of corset isO(B|CR |Tf +TL

S +TF
S ). IfF is sufficiently sparse, the exponential

complexity is not a concern in practice. WhenF is dense, it is appropriate to use corset-gh,
for which the time complexity is O(B|CR |Tf + TL

S ).
Space complexity. Space SR = O(|D| + |F | + |L|) is required to keep a single rule, as
we store body, head, and support. Let SS denote the space complexity of sampling. In both
head and (owing to cftp) body sampling, we only need to store a single weight value for
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Algorithm 5 A greedy heuristic for body sampling.

Data:a dataset D, sets D+
H , D−

H , parameters γ and ε.
Result: a body B ∈ F .

1 let F
′ ← FD+ \ FD− ;

2 initialize B ← an empty list, Qdisc ← an empty list;

3 while |B| < |F ′ | do
4 h∗ ← argmax

h∈F ′ [φ(H ∪ {h}) − φ(H)];

5 add h∗ to B;
6 add φ(B) to Qdisc;

7 F
′ ← F

′ \ h∗;
8 if |D[B]| < ε |D+

H | then
9 break

10 end
11 end
12 i∗ ← argmaxi=1,...,|B| Qdisc[i];
13 return B[1 : i∗]

each data record. Building S−
L and S−

F requires space O(|F |2) and O(|L|2), respectively.
Furthermore, storing samples from S−

L (S−
F ) takes spaceO(|D||S−

L |) (O(|D||S−
F |)). Despite

this theoretical complexity, the graphs are very sparse in practice. Combining the above, we
have that SS =O(|L|2 + |F |2 + |D||S−

L | + |D||S−
F |) and the space complexity of corset

is O(||F || + ||L|| + |CR |SR + SS). When corset-gh is used, the greedy body sampler only
takes space O(|F |), and hence, SS reduces to SS+ = O(|L|2 + |D||S−

L | + |F |) so that the
space complexity of corset-gh is O(||F || + ||L|| + |CR |SR + SS+).

8 Experimental evaluation

The main goals in this section are twofold: (i) we empirically verify that the sampling
algorithms used by corset outperform prior approaches in a variety of settings; (i i) and
corset (and in particular its two implementations corset-surs and corset-gh) delivers a
concise set of ruleswhile still providing competitive performance inmulti-label classification.
We first present the experimental settings and then the results.’

8.1 Experimental setup

Wedescribe the data, the baselinemethods and the parameter settings used in the experiments.
The design choices specific to the experiments comparing different sampling approaches are
deferred to the dedicated section (Sect. 8.2).
Datasets. We use both synthetic and real-world datasets.

We use synthetic datasets to better understand the behavior of the methods with respect to
different parameters. Data are obtained from a set of generating rules, and as a consequence,
a notion of ground truth is available. For simplicity, bodies and heads are assumed to be
composed of 3 attributes and labels, respectively. Moreover, different bodies do not share
attributes, while heads may share labels. For each generating rule, we sample its support
either (i) uniformly at random, or (i i) from a skewed distribution where a small subset of
rules covers a large portion of the data, mimicking the typical behavior of real-world data.
Supports of different rulesmay thus have arbitrary intersection. To obtain the synthetic dataset
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from the generating rules, we initialize the feature matrix and the label matrix to contain all
zeros. Then, for each generating rule, once its support is sampled, we set to 1 its attributes and
labels over its support. The case of skewed support (i i) is expected to reflect more accurately
real-world data, where there are typically a small set of very general rules and a larger number
of specific rules.

Further, noise is injected by flipping each entry in the feature and label matrices with a
fixed probability.

For real-world data, we use 9 heterogeneous benchmark datasets for multi-label classifi-
cation.1 Summary statistics of the datasets are shown in Table 1. Categorical and numerical
features are converted to binary form. For simplicity, we convert numerical features into
binary ones by setting to 0 all values lower than a given percentile p (90-th percentile by
default) and by setting to 1 the rest of the values. A more refined pre-processing is advisable
to improve performance.

Next, we provide a brief description of each of the datasets utilized in our experiments.
The mediamill [38] dataset is used for generic (broadcast news) video indexing. The Yelp
[39] dataset contains reviews of clients for various businesses that are used to classify the
quality of the businesses. The corel-5k [40] dataset is a benchmark for image classification.
The bibtex [41] dataset, introduced in Sect. 1, is composed of bibtex entries associated
with publications, and the goal is to assign a list of tags to each publication. The enron [42]
dataset consists of a collection of email messages that were categorized into topic categories.
The medical [43] dataset is used to predict a number of diseases, given clinical free text,
and it is described more in depth in Sect. 9. The birds [44] dataset is used to predict the set
of birds species that are present from a ten-second audio clip. The emotions [45] dataset
classifies music into emotions that it provokes. The CAL500 [46] dataset consists of songs
and the classifier maps each song to a number of semantic concepts.
Metrics. To measure the quality of a classifier, we primarily use the popular balanced micro
F1 score, which micro-averages precision and recall. In addition, for real data, we report the
balancedmacro F1 score, whichmacro-averages precision and recall, aswell as theHamming
accuracy (or Hamming score), defined as the fraction of label occurrences that are correctly
predicted.

To monitor rule diversity, we report the average pairwise intersection size between the
coverage of different rules. To assess interpretability, we rely primarily on the number of rules
R, but we also consider the number of conditions in each rule, and the degree of association
of the rule heads.
Baselines. We compare our classifier with three baselines.
SeCo [47] is a rule-based classifier, which extracts new rules iteratively and discards the
associated covered examples from the training data if enough of their labels are predicted
by already learned rules. To learn rules, SeCo starts from the most general body and then it
proceeds by adding conditions. Given a rule body, SeCo searches for the best possible head
according to a metric, while pruning the search space by exploiting properties of the metric,
and introducing bias towards heads with multiple labels.
Boomer [2, 15] utilizes the gradient-boosting framework to learn ensembles of single-label
or multi-label classification rules that are combined additively to minimize the empirical risk
with respect to a suitable loss function.
svm- br [48, 49] is a linear support vector machine classifier based on the binary relevance
approach, whereby each label is treated independently. svm- br, unlike corset, Boomer
and SeCo is not a rule-based model and does not offer opportunities for interpretation.

1 http://mulan.sourceforge.net, https://www.uco.es/kdis/mllresources/.
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Table 1 Summary statistics of the datasets used in the experimental evaluation

Dataset Instances Attributes Labels Cardinality Distinct

mediamill 43907 120 101 4.38 6555

Yelp 10810 671 5 1.64 32

corel-5k 5000 499 374 3.52 3175

bibtex 7395 1836 159 2.40 2856

enron 1702 1001 53 3.38 753

medical 978 1449 45 1.24 94

birds 645 260 19 1.01 133

emotions 593 72 6 1.87 27

CAL500 502 68 174 26.04 502

The last two columns refer to the average number of labels per example, and the total number of distinct label
sets

Therefore, in our experimental evaluation, svm- br is used as a representative black-box
machine-learning algorithm. The goal of the comparison between corset and svm- br is to
demonstrate that simple rule-based models, if appropriately learned, can be competitive with
popular black-box machine-learning algorithms. In other words, we seek to demonstrate that
if there is a price to pay in performance for pursuing interpretability, that price is consistently
small, and hence the pursuit of interpretability is justified.

While we consider multiple baselines to compare corset against, Boomer is the most
important one because it achieves the state-of-the-art performance in rule-based multi-label
classification.

However, Boomer and corset are significantly different in nature. As an ensemble
method, Boomer gains its good performance by learning a large number of weak (i.e.,
poorly optimized) rules, which are aggregated for prediction. Boomer only optimizes for
classification performance and does not favor ensembles composed of a small number of
rules.

On the other hand, to achieve high interpretability, corset is the first multi-label rule-
based classifier which optimizes both classification performance and rule set conciseness.
corset does not aggregate weak rules in an ensemble like Boomer. Instead, corset builds
a small set of carefully selected rules and predicts using the union of the predictions of the
selected rules.

As a consequence of the illustrated differences between corset and Boomer, Boomer
generally requires a larger number of rules than corset to achieve a similar level of classi-
fication performance, as we demonstrate through our experiments.

For the synthetic datasets, we focus on comparing our approach with Boomer for increas-
ing number of rules, whereas for the real-world datasets we consider all baselines.
Parameter setting. For the experiments with synthetic data, we explore the scalability of our
algorithmwith respect to the number of attributes and labels, aswell as robustnesswith respect
to noise. We vary the level of noise (the proportion of flipped entries in the feature matrix
and the label matrix), and the number of attributes and labels by a geometric progression of
ratio 1.5. When not varied, the number of attributes and labels is fixed to 100, and the noise
level to 0.01. When the noise is varied there are 10 ground truth rules, otherwise the number
of generating rules increases with the size of the data and it is given by �min(|F |,|L|)

3 �.
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For the experiments with real-world data, we tune the hyper-parameters of Boomer and
corset via random search to minimize micro-averaged F1 on a validation set.

As concerns Boomer, we optimize the shrinkage parameter η, which controls the impact
of individual rules, over [0.1, 0.3, 0.5] and the L2 regularization parameter λ in [0.0, 1, 10.0].
A key strength of Boomer is its ability to optimize different decomposable and non-
decomposable loss functions. For hyper-parameter tuning in our experiments, we consider
all 4 loss functions provided in the available implementation,2 namely a variant of logistic
loss applied to each label individually and a variant of the logistic loss applied to all labels
simultaneously (that are continuous surrogates for the standard Hamming loss and 0/1 loss,
respectively), as well as a variant of the squared error loss and a variant of the squared hinge
loss, both applied to each label individually. Boomer additionally allows to learn rules with
heads composed of a single label or all labels. In hyper-parameter tuning, we consider both
single-label rule heads and rule heads composed of all labels.

corset does not support different loss functions as Boomer does. Instead, corset is
tailored to the optimization of the objective function inEq. (8). Subsequently, the loss function
implicitly minimized by corset is the objective function in Eq. (8) reversed in sign. For
corset, the size of each sampled pool of rules C does not need to be tuned. Larger C
improves performance at the cost of increased running time. While tuning we fix C = 150,
otherwise C is set to 500 by default. For hyper-parameter tuning, all hyper-parameters are
searched in the range of (0, 1), except λ, which is searched in (10−2, 102).

Moreover, we also investigate the impact of λ on the diversity and accuracy of the set of
chosen rules R, by varying it in a geometric progression of ratio 10.

All reported experimental results are obtained as average over 10 repetitions.
Implementation. Experiments are executed on a machine with 2×10core XeonE52680v2
2.80GHz processor and 256GBmemory. Our implementation is available online. 3 To speed
up and facilitate hyper-parameter tuning for corset, we have implemented two practical
changes. First, we run only the first round of greedy selection in Algorithm 1. The second
round guarantees the approximation factor, but often offers amodest increase in performance,
not worth the increase in running time. Second, in the experiments with real data, we pass
as input to corset the number of rules to be returned (at most 150) instead of the tolerance
parameter (c in Algorithm 1) to reduce variability and simplify hyperparameter optimization.

8.2 Sampling performance

We evaluate the performance of our sampling algorithms and compare them against a few
alternatives.
Head sampling. In this setting, we consider the task of sampling heads according to the
area function. We compare two samplers: our sampler described in Alg. 4 and the original
two-stage pattern sampler introduced by Boley et al. [25] (the baseline). They differ in the
sample space they use: the baseline sampler operates in the original label space, i.e., the
powerset of all labels, while ours uses a subspace of it, namely the interpretable label space,
introduced in Sect. 6.2.

For each configuration of dataset and sampler, we sample 1000 heads. For each sampled
head H , we evaluate its quality using the logarithm of its area and its support size, i.e.,
log (area(H)) and log (|D [H ] |). In addition, we quantify the association of the labels in
H (our proxy of interpretability) using the edge density of the subgraph induced by H .

2 https://github.com/mrapp-ke/Boomer.
3 https://github.com/DiverseMultiLabelClassificationRules/CORSET.
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Fig. 5 Distributions of quality measures for the heads obtained by two samplers. Both samplers target at the
area function, but operate under different sample spaces: the interpretable label space (Sect. 6.2) or the original
space (used in [25]). We consider three measures: log of support size (left), log of area (middle), and edge
density of the label subgraph (right). For all measures, the larger the values, the better

Specifically, given a label graph G = (V , E, p) and a set of labels (nodes) H , denote G [H ]
as the subgraph induced by H in G. Then, the edge density of G [H ] is defined as d (G [H ]) =(∑

e∈G[H ] p (e)
)
/ (|H | × (|H | − 1)). We denote d (H) = d (G [H ]) for brevity.

In Fig. 5, we show the distributions of the metric scores, visualized using violin plots
[50]. On the one hand, our sampler produces better heads than the baseline according to all
measures, on average. On the other hand, the best head (by a certain metric) obtained by our
sampler is no worse than the baseline. Further, it can be seen that on datasets where the heavy
hitter problem is pronounced, such as bibtex, the baseline suffers the most and many heads
have zero support size.
Body sampling.We then consider sampling bodies according to the discriminativity function
and compare two samplers: the one used by corset, which samples from a reduced space
(Sect. 6.3), and a baseline [26], which instead samples from the original feature space.

For each dataset, we consider the top-50 heads ranked by area. For each head and sampler,
we sample 100 bodies and take the best one according to a specific goodness measure.

We consider two goodness measures for the bodies: the quality function q (as in Eq. (1))
used in our problem formulation and the micro-averaged F1 score.

For each configuration of dataset and head, we report the relative difference between the
best scores obtained by the samplers. For a given metric m, the bodies B obtained by our
sampler, and the baseline BB, the relative difference between B and BB according to m is
calculated as: �m (B; BB) = (m (B) − m (BB)) / (m (BB)). For brevity, we use �m instead.
To bring down the numerical scales of different datasets to a similar level, we report the
logarithmic version of �m : log (�m) = sign (�m) log (|�m | + 1).

The distributions of log (�m) are summarized in Fig. 6 using letter-value plots [51].
The two measures give different impressions: according to the F1 score, our sampler is

almost always the best choice, while for q , our sampler still outperforms the baseline, but to
a lesser extent than in the comparison based on the F1 score (e.g., on birds and corel-5k).
Effect of proposal distributions on convergence speed. We examine the proposal distri-
bution used by the CFTP subroutine (Algorithm 3) and study its effect on the convergence
speed of the Markov chain. In particular, we compare the proposal in Eq. (18) (used By
Boley et al. [26]) against the proposal in Eq. (19) (used by corset). Recall that the latter
is a tight approximation of the target distribution, while the former is not. We measure the
convergence speed of a Markov chain by N , the number of Monte Carlo samples that are
drawn until the chain coalesces.
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Fig. 6 Distributions of the relative difference for two samplers (our sampler and the baseline) evaluated on
two metrics: the quality function q (left) and the micro-averaged F1 score (right). Both samplers target at the
discriminativity function, but operate under different sample spaces. Having a relative difference value greater
(smaller) than zero indicates our sampler (the baseline) is better. Dashed vertical lines are drawn to illustrate
such boundary

Fig. 7 Effect of the proposal distribution on the number of samples until coalescence. The smaller the value,
the better

For each dataset and proposal distribution, we sample 50 random labels. Further, for each
label, 100 bodies are sampled, resulting in a total of 5000 samples. Finally, we report the
average of log(N ).

The results are summarized in Fig. 7 and show clear superiority of our proposal distribu-
tion.

8.3 Classification performance

Synthetic datasets. Results on synthetic datasets, both for data generated from rules with
uniform and skewed coverage, are shown in Fig. 8.
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Fig. 8 Synthetic datasets generated from rules with uniform (top) and skewed (bottom) coverage. Micro-
averaged F1 score against proportion of noise (left), number of attributes (middle) and labels (right). The
x-axis is in log scale

In general, when the noise level is not too large, corset tends to recover the generating
rules.

In the experiment with synthetic data, we let corset run until the stopping condition is
met, with τ = 0.01. The number of rules retrieved by corset typically coincides with the
number of generating rules, and it is always at most themaximumnumber of generating rules,
33. On the other hand, Boomer based on 10 rules consistently offers poor performance. The
classification accuracy of Boomer increases when the number of rules increases, but even
with 1000 rules, our method outperforms Boomer while using a very concise set of rules.
Unlike Boomer, corset seeks to uncover the true set of generating rules and only use those
for classification. Thus, the experiments with synthetic datasets clearly show the advantage
of our approach. Also note that the performance of corset, unlike that of Boomer, does
not significantly deteriorate when |F | increases.
Real datasets: classification performance and interpretability. Results on real datasets,
for classification performance and interpretability, are shown in Table 2, 3 and 4 where
classification performance is measured by micro-averaged F1 score (optimized in hyper-
parameter tuning), macro-averaged F1 score, and Hamming score, respectively. The tables
also show the number of rules that is our main measure of interpretability. While we show
results for three different classification performance metrics, the algorithms are tuned to
optimize the micro-averaged F1 score. Furthermore, caution is required in assessing the
Hamming scores because they tend to be biased towards more conservative classifiers that
predict less labels to be present.

If the training does not terminate within 12 hours, we report NA in the corresponding
table entry. Table 2, 3 and 4 show that Boomer requires very large sets of rules to achieve
competitive performance. Thus, interpretability of Boomer rules is questionable. Similarly,
svm- br performs well but it is not designed for interpretability. Instead, corset extracts a
small set of rules, guaranteeing ease of interpretation, and yet it is consistently competitive
with the baselines on all the datasets, according to all considered performancemetrics.corset
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Fig. 9 Average coverage overlap between pairs of rules as a function of λ (lower values indicate higher
diversity) on real datasets. Both axes are in log scale

generally requires fewer rules than rule-based alternatives to attain similar performance in
multi-label classification. Further, it is never drastically worse than Boomerwith 1000 rules
or even svm- br, suggesting that the price of interpretability, if there is one, is small when
corset is used. Finally, note that corset-gh often outperforms corset-surs but using a
larger set of rules.
Real datasets: diversity and impact of λ. A fundamental characteristic of corset is that
it allows to control the degree of diversity in the set of recovered rules via a single tunable
parameter λ. In Fig. 9, we show for a subset of datasets that the shared coverage within rules
is lower for corset than for Boomer, and moreover that increasing the value of λ is very
effective in reducing overlap between rules. As the impact of λ on overlap is not significantly
different in corset-surs and corset-gh, we only show results for the former.

In addition, since λ determines the weight assigned to the diversity term in Eq. (8), it
also affects the performance of corset. Figure 10, however, shows that the performance
of corset, as measured by the micro-averaged F1 score, does not vary monotonically with
λ, although there is evidence that very large values (e.g., λ = 1000) typically yield poor
classification. The level of rule diversity leading to optimal classification performance varies
in different datasets. Hence, in practice,λmust be carefully tuned to optimize the performance
of corset. Note that the results in Fig. 10 are obtained by fixing the number of rules to 100 for
both corset and Boomer and by choosing the best between corset-surs and corset-gh
in terms of micro-averaged F1 score.
Real datasets: body and head sizes. In addition to the number of rules considered before,
it is possible to measure the interpretability of a model by the sizes of the bodies of its rules
(i.e., the number of predicates of each rule in a rule set).

The number of rules within a rule set may be limited; however, if the body of the rules con-
tains a substantial number of conditions, the interpretability of the rule set may be impaired.
We show that this is not the case for corset.
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Fig. 10 Micro-averaged F1 score as a function of λ (lower values indicate higher diversity) on real datasets.
The x-axis is in log scale

Fig. 11 Distributions of the number of attributes in the bodies of the rules extracted by corset-surs, corset-
gh, and Boomer with 1000 rules. Smaller values indicate fewer attributes. The x-axis is in log scale

The number of attributes in bodies may vary considerably depending on whether corset-
surs or corset-gh is used. Figure 11 shows the distributions of body sizes over the rule
sets obtained by corset-surs, corset-gh and Boomer (with 1000 rules). We consider the
bodies of the rules whose results are summarized in Table 2. Clearly, the rules obtained by
corset-surs have consistently a small number of attributes (always ≤ 10). In general, the
distribution of the sizes of the bodies of Boomer is comparable to that of corset-surs and
corset-gh. Nonetheless, Boomer produces a significant number of extremely long bodies
in all datasets.

Although corset-surs does not explicitly limit body sizes, the limited sizes are by-
products of the reduced sample space constructed prior to sampling.As illustrated in Sect. 6.3,
samples in the reduced space correspond to highly probable cliques in the feature graph. By
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Fig. 12 Distributions of the
number of labels in the heads of
the rules extracted by
corset-surs and corset-gh.
Smaller values indicate smaller
heads. The x-axis is in log scale

the way that “probable” is defined, such cliques typically have a small number of nodes
(attributes).

Similarly, corset-gh forms bodies greedily selecting attributes to maximize a modified
version of discriminativity while controlling the balance between generality and precision
with a user-specified parameter γ . Small values of γ favor generality, allowing for more
mistakes and leading to bodies with a limited number of conditions, whereas larger values of
γ generate more specific rules with a larger number of attributes. In Fig. 11, we show results
for γ = 0.5. For this value of γ , bodies sampled by corset-gh tend to have more attributes
than those sampled by corset-surs. Nevertheless, remarkably large bodies are present only
in the mediamill dataset, whereas Boomer relies on rules with large bodies in all datasets.

Shorter heads do not necessarily correspond to more interpretable heads. However, small
heads are typically easy to interpret. For completeness, in Fig. 12, we additionally show,
with the same parameter settings, results concerning the distribution of the heads in the rules
chosen by corset-surs and corset-gh.Boomer is not included in the comparison because
Boomer allows the user to decide whether to learn rules having heads composed of either a
single label or all labels.

The distributions of the head lengths in the different datasets suggest that corset consis-
tently learns rules with heads composed of a limited number of labels. Similarly to the case
of body sampling, this experimental finding is largely a consequence of the construction of
the interpretable label space prior to sampling, whereby long and hard-to-interpret heads are
discarded.
Real datasets: running time. The main goal pursued in this work is to achieve a good
balance between interpretability and classification quality. corset carefully chooses each
rule to be used for prediction, which requires a significant amount of time.

Fast training is not a primary concern of our work.
Nonetheless, it is important to show that the execution of corset terminates within a

reasonable amount of time in all the considered datasets. Table 5 reports the training time of
corset and its competitors.

The time incurred in obtaining predictions for new data records is generally modest for all
algorithms, thus prediction times are not included in the measurements reported in Table 5.

corset always finishes training in less than 12minutes.Boomer and svm- br are faster to
train than corset inmost cases. Their better efficiency can be attributed to the implementation
language (C/C++ against Python and Cython for corset) and, most importantly, to the
continuous nature of the optimization problems they solve.

On the other hand, SeCo is drastically slower than all the other algorithms.
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Table 5 Execution time (in seconds) of corset-surs, corset-gh, SeCo, Boomer with increasing number
of rules and svm- br

Dataset corset-surs corset-gh SeCo Boomer (10) Boomer (100) Boomer (1000) svm- br

mediamill 640.081 713.28 NA 1.62 15.17 146.020 46.070

Yelp 398.22 92.74 NA 0.46 2.97 19.51 1.70

corel-5k 46.27 45.66 NA 0.62 6.44 60.20 2.32

bibtex 470.46 120.61 NA 0.64 5.56 56.22 7.71

enron 35.52 89.17 NA 0.15 0.64 5.96 1.28

medical 40.88 24.89 2011.83 0.29 1.50 9.78 2.64

birds 55.66 9.85 9163.79 0.18 0.21 1.24 0.19

emotions 5.44 10.51 2557.92 0.092 0.10 1.18 0.065

CAL500 572.33 634.22 NA 0.39 2.56 27.33 3.56

The reported times indicate the running time required to learn a multi-label classifier before it can be used for
predictive purposes

For corset, a considerable amount of time is spent in the pre-processing stage to construct
the interpretable label space for head sampling and, in corset-surs, the reduced sample
space for body sampling, which, as mentioned in Sect. 6.3, is a potential bottleneck.

Therefore, in practice, in case one is interested in learning multiple rule sets (e.g., corre-
sponding to different values ofλ), it is sufficient to carry out the pre-processing stage just once.
While corset-gh overcomes the scalability issues that may arise in constructing the reduced
sample space for body sampling, it requires significantly more time than corset-surs to
perform a single iteration. Subsequently, when the attribute space is sparse, the construction
of the reduced sample space is fast and corset-surs runs faster than corset-gh.

As explained in the end of Sect. 8.1, in our experimental evaluation with real data, by
default we only execute the first round of greedy selection of corset. This follows since the
gain in classification quality offered by the second round is generally not worth the increase in
running time. In particular, the running time incurred by corset with both rounds of greedy
selection is often 2 to 3 times as high as the running time incurred by corset with only one
round of greedy selection.

9 Case study

We carry out a case study using the medical [10] dataset to showcase an application of
corset in the medical domain. When machine learning models are used to assist medical
decisionmaking, interpretability of themodels is of particular importance [10], sincemedical
decisions are often high-stake and may deeply affect the lives of patients. In the context of
rule-based models, human practitioners may have to assess the rules one-by-one to ensure
that they have sufficient understanding of the models. Arguably, rule sets that are very large
and highly redundant are costly to check, thus undesirable. Concise rule sets are instead
particularly valuable. In order to effectively illustrate this point through a concrete example,
we use the medical [43] dataset, which contains fully anonymized clinical free text in
medical records, each labeled with one or more disease names. The disease names follow the
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
standard, a globally used mapping of disease names to unique codes [52].
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Because themedical practitioner wishes to evaluate the rules qualitatively using her exper-
tise it is necessary to focus on a small set of rules, for instance, composed of 10 rules.

The first 10 rules picked by corset are general (as indicated by their coverage) and easy
(often trivial) to interpret. All of them have coverage above 40, and the average coverage is
123. In contrast, the first 10 rules picked by Boomer appear to be opaque and exhibit null
coverage. In fact, corset using 10 rules achieves micro-averaged F1 score above 0.7 while
Boomer with the same number of rules yields a drastically lower micro-averaged F1 score.
In particular, as shown in Sect. 8, Boomer does not grant high-quality classification using
10 or 100 rules, but only using 1000 rules. A set of 1000 rules is impractical for medical
practitioners to inspect.

Therefore,Boomer, which does not impose constraints on model complexity, contradicts
the principles of interpretablemachine learning andmaynot be not be suitable for applications
where interpretability is an important concern.

As regards the first 10 rules learned by corset, however, it is important to note that most
of the remarkably accurate and general rules learned by corset do not necessarily generate
novel insight. For example, the first rule selected by corset is R1 = ({ f ever & cough} →
{ f ever & cough}).We argue that this is not a drawback of corset; rather it is a characteristic
of the data.

The most general and accurate rules are necessary for corset to perform well in the
multi-label classification task. For instance, R1 has an uncovered area of 238 and adjusted
accuracy of 1.06.

Even if the rules represent somewhat trivial associations between some words and some
diseases, they are beneficial in revealing the salient patterns in the data, potentially confirming
the medical practitioner’s knowledge and helping build trust in the models.

It is also possible to run corset to extract a larger rule set, containing more specific
and non-trivial rules. Further, if required, it is simple to filter out all rules capturing trivial
associations during post-processing. As a demonstration, we run corset for 30 iterations
and filter out all rules such that the attributes in the body are found as part of the labels in the
tail (e.g., R1 = ({ f ever & cough} → { f ever & cough})). In Table 6, we list the first 10
rules after the post-processing (in the order of rule selection by corset). The first rule maps
the word “myelomeningocele” to the label “spina bifida without mention of hydrocephalus".
This is a rule of broad coverage. As “myelomeningocele” is one of four types of “spina
bifida,” the rule is easy to interpret; “myelomeningocele” is likely to identify “spina bifida
without mention of hydrocephalus” and since rules for other types of “spina bifida” are not
present, we infer that this is likely to be the prevalent type of “spina bifida” in the data at
hand. As another example, the fourth rule in the table, which is also general and easy to
interpret, contains two attributes in its body and, in particular, it maps the words “lobe” and
“atelectasis” to “pulmonary collapse.” The rule suggests that when a lobe (i.e., a section) of
the lung is affected by atelectasis, there is a significant chance that the lung will collapse.
This is likely due to the fact that atelectasis can cause a decrease in the amount of oxygen
that reaches the lung tissue and can lead to the accumulation of fluid or mucus in the lung,
which can further decrease lung expansion and increase the risk of collapse. An atelectasis
may also indicate the collapse of the entire lung, but the rule under consideration suggests
that in the medical dataset the word lobe leads to a better discrimination of the subsequent
occurrence of “pulmonary collapse.”

As a final example, we consider a rule with a longer head. The eighth rule in the table
maps the word “throat” to two diseases: “fever and physiologic disturbances of temperature
regulation” and “acute pharyngitis.” The rule indicates that there is a strong correlation in
the data between the presence of symptoms in the throat and the subsequent occurrence of

123



Concise and interpretable multi-label rule sets 5691

Table 6 First 10 rules chosen by corset (body, head and coverage) after post-processing to filter out “trivial”
rules

BR HR cov(R)

Myelomeningocele Spina bifida without 43

Mention of hydrocephalus

Pyelectasis other specified disorders 43

Of kidney and ureter

Uti Urinary tract infection 23

Lobe & Atelectasis pulmonary collapse 40

Enuresis Urinary incontinence 65

left & Hydroureter Hydroureter 6

& history

Stones & Kidney Calculus of kidney 6

& History

Throat Fever and physiologic disturbances of 11

Temperature regulation & Acute pharyngitis

pneumonia & Lobe Pneumonia 4

Turner Gonadal dysgenesis & Other 4

Specified anomalies of kidney

fever and physiologic disturbances of temperature regulation and acute pharyngitis. This is
probably attributed to the fact that the pharynx in the throat is a sensitive area that can be easily
infected by pathogens and viruses, which can cause acute pharyngitis, i.e., an inflammation
of the pharynx, and fever as part of the immune response of the body. For instance, both
acute pharyngitis and fever may be caused by the widespread influenza virus. Additionally,
physiologic disturbances of temperature regulation may be due to the attempt of the body
experiencing fever to fight off the infection.

All rules in Table 6, even the ones with smallest coverage, are biologically meaningful as
they can find scientific explanations.

Some of the rules may describe associations that may look obvious for medical practition-
ers. In this case, the medical practitioner only acquires information on which diverse patterns
in the data are the most relevant for multi-label disease classification.

The medical dataset is relatively small and does not contain a large number of surprising
patterns.

More unexpected rules can be found in the medical dataset. However, they would have
limited support and lead to a decrease in classification performance, if chosen.

Regardless of the knowledge generated by the extracted rules, our in-depth examination of
the medical dataset shows an example of application of corset in a consequential domain,
demonstrating that the rule sets provided by corset aremore interpretable andmore practical
to assist in high-stake decision making than those provided by existing algorithms such as
Boomer.

123



5692 M. Ciaperoni et al.

10 Conclusion

We propose a novel rule-based classifier, corset, for multi-label classification tasks. Our
training objective explicitly penalizes rule redundancy, thereby encouraging the algorithm to
learn a concise and easy-to-interpret set of rules.

Furthermore, we design a suite of fast sampling algorithms, which can efficiently generate
rules with good accuracy and interpretability. We show through extensive experiments that
our sampling algorithms are highly effective and that corset achieves competitive perfor-
mance comparable to strong baselines, while offering better interpretability. Thus, corset
achieves an unmatched compromise between performance and interpretability in multi-label
classification, and, as demonstrated through a case study, it is particularly valuable in multi-
label classification tasks where interpretability is of primary interest.

Ourwork opens interesting questions for future research.Canwedesign training objectives
that reflect popular multi-label classification metrics, while producing concise rule sets? Can
we use the techniques in this work to address the interpretability issue of existing rule-based
classifiers?
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