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This article presents a novel data augmentation method that generates feature values for unmeasured loading levels based on
limited measured and simulated loading level data. The incorporation of offline simulated data in the augmentation framework
and the mapping of the error distribution over the loading levels greatly reduce the dependency on including a large number of
loading levels in the curve fitting process. Furthermore, the proposed method shows high potential to minimize the deviation between
measured and simulated data at the feature level. The method is applied to the induction machine to generate feature values at 25%
and 50% loading levels for healthy, one, two, and three broken rotor bars conditions. An excellent agreement is observed between
the augmented and actual feature values calculated from the measured data at 25% and 50% loading levels. The inclusion of this
augmented data in the training phase aids in resolving the generalization issue and enhancing the average classification accuracy
of the XGBoost algorithm by 9.4% and 4.4% at 25% and 50% loading levels, respectively.

Index Terms—Broken rotor bar, condition monitoring, data augmentation, induction machine, machine learning.

I. INTRODUCTION

ONDITION MONITORING of induction machines
(IMs) using machine learning (ML) models has gained
significant popularity in recent decades [1], [2]. However,
most supervised ML models require a large amount of labeled
data to achieve high prediction accuracy [3]. The single-
phase stator current signal is commonly utilized for feature
extraction and ML model training due to its availability and
low cost [4] [5]. Nevertheless, training an ML model solely
with single-phase stator current data for a limited range of
loading conditions can lead to generalization problems. In
other words, it may perform poorly on test data for a specific
loading level not included in the training dataset [6]. Collecting
data for all loading conditions from the measurement setup is
impractical due to operational constraints. To overcome this
limitation, simulation data for various loading levels can be
employed during the ML training phase [7], [8]. However,
simulation data may not accurately replicate measured data
due to uncertainties and noise. Therefore, we propose a new
technique that augments feature values at intermediate loading
levels by using four sets of measured and simulated loading
levels data for healthy and broken rotor bars (BRBs) of IMs.
In [4], [5], a curve fitting technique is presented to inter-
polate unmeasured loading levels from the discrete wavelet
transform (DWT) and matching pursuit (MP) based decom-
position of single phase stator current signal. Our approach
differs from [4], [5] in several ways. Firstly, the interpolation
is performed directly on features computed from six loading
levels of measured data in [4] [5]. However, the quality of
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the generated data depends on the interpolation accuracy,
which heavily relies on the number of loading levels used
in the fitting process. This poses a challenge when dealing
with a limited number of loading levels, as the trend of
the features over the loading levels may not be known in
advance. The novelty of our approach lies in leveraging offline
simulated data and interpolating the error between measured
and simulated features values. This reduces the dependency
on adding more loading levels in the fitting process, as the
error can be interpolated using lower degrees of polynomials.
Secondly, we combine the interpolation technique with the
probability distribution function (PDF) to account for the
variation of error between measured and simulated features
values and the variation from one window signal to another.
Thirdly, our approach avoids complex decomposition methods
such as DWT and MP for the stator current signal. Instead, we
compute time-domain features from the raw data and obtain
frequency-domain features using the fast Fourier transform
(FFT). Finally, to augment features values for intermediate
loading levels, we construct a PDF using the corrected mean
and standard deviation and draw samples from it.

II. METHODOLOGY
A. Measured Data Acquisition

Figure 1 presents the measurement setup. A 4-pole, 400 V,
50 Hz, 7.5 kW, and A-connected induction machine is used
as the test machine. The test machine features a stator outer
diameter of 220 mm and rotor inner diameter of 45 mm.
Artificial BRB faults are introduced by drilling one hole in
each rotor bar. Another induction motor with a similar rating
is controlled through an ABB industrial drive ACS600 to
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provide a constant load torque. The tested induction machine
is supplied with a voltage from the grid. The experiment is
conducted for four classes: healthy, one BRB, two BRBs, and
three BRBs. Each class consists of five loading levels: 0%,
25%, 50%, 75%, and 100%. The experiment is carried out for
60 seconds at each loading level with a sampling frequency
of 20 kHz.
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Fig. 1. Measurement setup.

B. Simulated Data Acquisition

A computationally efficient and precise magnetic equivalent
circuit (MEC) model is used to simulate four classes: healthy,
one, two, and three BRBs. The simulations are performed
at five different loading levels: 0%, 25%, 50%, 75%, and
100%, while maintaining the same sampling frequency as the
measured data. An example of the MEC model applied to
BRB faults can be found in [9]. In our mesh-based MEC
model, the stator and rotor nodes are coupled using Lagrange
multipliers, and the non-linearity of the system equations is
solved using the Newton-Raphson method. Furthermore, a
time-harmonic MEC model is developed and integrated with
a time-stepping MEC model to minimize transient effects.
To simulate different loading conditions, the load torque is
adjusted, and the speed is varied based on the equation of rotor
motion. The BRB faults are incorporated into the rotor circuit
equations by increasing the rotor resistance to an extremely
high value, and only adjacent BRB faults are considered.

C. Proposed Data Augmentation Framework

An overlapping sliding window is employed with a window
size of 16,000 data points from a single phase stator current.
The window is shifted by 400 data points, and the total number
of windows are 40 per loading level. For simplicity, five time-
domain (TD) statistical features: "D = mean, T' D5 = median,
TDs = standard deviation, T D, = skewness, and T D5 =
kurtosis and five frequency-domain (FD) statistical features:
FDy; = mean, FFDy = median, F'D3 = standard deviation,
FD, = skewness, and F'D5 = kurtosis are considered. The
time-domain features are computed directly from the raw
windowed signal, while the frequency-domain features are
obtained through the FFT. Each window yields one value,
resulting in 40 values per loading level for each feature.

Figure 2 illustrates the workflow of the proposed data aug-
mentation technique to generate the statistical features values

for unmeasured loading levels. Initially, the error between the
measured and simulated data for each feature is computed
using four loading levels. Subsequently, a normal distribution
is fitted to estimate the mean ¢, and standard deviation ¢, of
the error for each feature corresponding to their loading level.
Polynomial functions, namely linear, quadratic, and cubic
are used to interpolate ¢, and ¢, versus their corresponding
loading levels. These polynomial functions are utilized to
estimate the mean ¢, and standard deviation € of the error
for unmeasured loading levels. The estimated mean €, and
standard deviation €. of the unmeasured loading level is added
to the mean Fy, and standard deviation F,, of features that
are calculated from the simulated data corresponding to their
unmeasured loading level. Furthermore, a normal distribution
is fitted using the corrected mean and standard deviation
of each feature, and samples are drawn for each feature
of the unmeasured loading level. For a better illustration
purpose, a hypothetical representation of a single feature value
augmentation at 25% loading level is demonstrated in Fig.
3. The augmented feature values are validated by comparing
them with the features computed from the measured data for
the corresponding loading level.

D. Selected Supervised Machine Learning Algorithms

To perform the classification tasks, we have adopted six su-
pervised ML algorithms: K-nearest neighbors (KNN), support
vector machine (SVM) with radial basis function (RBF) ker-
nel, decision tree (DT), random forest (RF), adaptive boosting
(AdaBoost), and extreme gradient boosting (XGBoost) from
scikit-learn ML library. The inputs of these ML models consist
of five time-domain and five frequency-domain statistical
features as mentioned in II-C, while the outputs comprise four
classes: healthy, one, two, and three BRBs. These supervised
ML algorithms have been extensively utilized in the condition
monitoring of induction machines [1]-[4], [6]. In previous
studies [2], [4], it has been demonstrated that not all super-
vised ML algorithms are suitable for condition monitoring of
induction machines. This is justifiable as each supervised ML
algorithm operates based on a different fundamental principle
and may perform better for a specific problem or dataset.
Therefore, our aim is to apply these six supervised ML
algorithms and identify the most suitable one that can provide
better accuracy with the augmented data.

III. APPLICATIONS AND RESULTS

Figures 4 and 5 illustrate the interpolation of the mean and
standard deviation of error values for the first time-domain
feature T'D; and frequency-domain feature F'D; for healthy
and one BRB conditions, respectively. Although interpolation
has been performed for all five time and frequency-domain fea-
tures, only one feature is presented here. Polynomial functions,
namely linear, quadratic, and cubic, are fitted to estimate the
mean €, and standard deviation € of the error for all features
based on maximum R-squared value. Linear and quadratic
polynomial functions are fitted to the mean and standard
deviation of the error for features 7T'D; and F'D; using
four loading levels: 0%, 50%, 75%, and 100%. The mean
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Fig. 2. Proposed data augmentation framework.
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Fig. 3. A hypothetical illustration of a single feature value augmentation at
25% loading level. Symbol & indicates the addition of estimated mean €7, and
standard deviation €. of the error for each feature to mean F, and standard
deviation F, of features computed from simulated signal.

and standard deviation of the error for the unmeasured 25%
loading level is estimated from the fitted curve. The estimated
mean and standard deviation of the error at the 25% loading
level is then validated against the actual values obtained from
the difference of measured and simulated features values. It
can be observed in Figs. 4 and 5 that the estimated mean
and standard deviation of the error at the 25% loading level
are closely aligned with the actual values computed from
measured and simulated features values.
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Fig. 4. Estimated mean of error for 7'D1 and F'D1 features at 25% loading
level for healthy and 1BRB conditions. Actual refers to the difference between
measured and simulated features values.

Figure 6 illustrates the generated features values for 7D,
and F'D; for healthy and one BRB conditions. The features
computed from simulated data show a large deviation com-
pared to the measured data, which can be observed in Fig.
6. On the contrary, the generated features values through
the proposed augmentation technique remarkably minimize

Fou
—
Intermediate Loads

Polynomial | |
lnterpola(mn Intermediate

Fy, for

Corrected
as&e Mean and
for Standard
[N
™ Deviation
for
Features

Augment !

Features

Value for  Validation - End
Intermediate| !

Loads /|

Random
Sampling

Fit Normal
Distribution
Loads

—Fitted O Actual VEstimated " Validation
%107

O 1.5 O
o 0]
2 1
ut O
o
1 0.5
0 s 50 100 0 50 100
%107 %107
2 4 o)
a o]
= 1 o 2 L,
W° o o v (0]
0 0 O
0 50 100 0 50 100
Load (%) Load (%)
(a) Healthy (b) IBRB

Fig. 5. Estimated standard deviation of error for 77D and F'D; features
at 25% loading level for healthy and 1BRB conditions. Actual refers to the
difference between measured and simulated features values.

such deviation and exhibit excellent agreement with the actual
features values calculated from the measured data.
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Fig. 6. Augmented values for 7'Dq and F'D; features at 25% loading level
for healthy and 1BRB conditions.

We have examined four cases which are described in Table
L. In Case-1, all five loading levels of the measured data are
utilized for both training and testing. The data is randomly
divided into training and testing sets, with a 70% to 30%
ratio. In Case-II, ML models are trained using four loading
levels by intentionally excluding one loading level to evaluate
generalization. In Case-IIl, the missing loading level data
is directly included in the training dataset from the MEC
simulation. The performance of the proposed data augmen-
tation technique is evaluated in Case-IV, where the excluded
loading level data from the training dataset is compensated
with generated data using the augmentation technique. It is
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important to note that the test data always includes the specific
loading level of the measured data that has been purposely
dropped from the training dataset in Case-II, Case-III, and
Case-IV. Hyperparameters of each ML algorithm are tuned
using a random search with 5-fold cross-validation. The tuning
is performed on the training dataset in Case-I, which includes
all five loading levels of the measured data. The same tuned
ML models are then applied to Case-II, Case-III, and Case-IV
for the fair evaluation.

Figure 7 illustrates the average classification accuracy of
ML algorithms on the test data for Case-I, Case-II, Case-
III, and Case-IV. Most ML algorithms achieve 100% average
accuracy, except for AdaBoost in Case-I. In the Fig. 7(a) and
7(b), the features values of 25% and 50% loading levels are ex-
cluded from the training dataset in Case-II, respectively. These
missing loading levels features values are incorporated from
the MEC simulation model in Case-III. In Case-IV, augmented
data is used to replace the simulated data at the 25% and 50%
loading levels in the training dataset. In Case-II, the average
classification accuracy drops significantly due to the absence
of data at the 25% and 50% loading levels, as seen in Fig. 7(a)
and Fig. 7(b), highlighting a generalization problem. Moving
on to Case-III, the addition of MEC simulated data enhances
the accuracy of ML classifiers in Fig. 7(a). However, there is a
notable decrease in accuracy in Fig. 7(b). This discrepancy can
be attributed to the variations between simulated and measured
data across different loading levels, as illustrated in Fig. 6, and
larger differences can lead to poorer classification accuracy.

TABLE I
DESCRIPTION OF STUDIED FOUR CASES

Case study Train data Test data
Case-1 5600 data 2400 data
70% of 5 loads/class 30% of 5 loads/class
(measured) (measured)
Case-II 6400 data 1600 data
4 loads/class (measured) 1 load/class (measured)
Case-III 6400 data + 1600 data 1600 data
4 loads/class (measured) 1 load/class (measured)
+ 1 load/class (simulated)
Case-1V 6400 data + 1600 data 1600 data
4 loads/class (measured) 1 load/class (measured)
+ 1 load/class (augmented)
Il Case-l I Case-ll I Case-IIT EE Case-IV
100 100
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Fig. 7. Average classification accuracy on test data set for four studied cases;
(a) 25% loading level data is studied (b) 50% loading level data is studied.

In Case-IV, the addition of augmented feature values for
the 25% loading level notably enhances the classification
accuracy of most ML classifiers, with the exception of DT,
as illustrated in Fig. 7(a). However, when augmented data for
the 50% loading level is introduced to the training dataset,
it only improves the accuracy of the XGBoost classifier.

The improvement in accuracy for other ML classifiers is
less evident, as observed in Fig. 7(b). Notably, the XGBoost
algorithm consistently demonstrates enhanced classification
performance when augmented data for both 25% and 50%
loading levels are integrated into the training dataset, compared
to the scenarios presented in Case-II and Case-III. Neverthe-
less, the incorporation of augmented data in Case-IV does not
yield the same level of accuracy observed in Case-I for the
25% and 50% loading levels. This discrepancy implies that a
distinction still exists between the distribution of augmented
and measured data. Consequently, it can be deduced that
among the selected ML algorithms within this augmentation
framework, the XGBoost algorithm proves to be the most
suitable option.

IV. CONCLUSION

This article introduces a data augmentation technique for
generating feature values at unmeasured loading levels. The
generated feature values demonstrate a good agreement with
measured data, addressing the generalization problem of the
XGBoost algorithms. Our proposed method can be universally
applied to generate feature values for various signals and
faults in electrical machines. Future studies will investigate
the robustness of this method against high-level noise, the
inclusion of various loading levels in the interpolation process,
and the extrapolation capacity.
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