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A B S T R A C T 

The growing number of exoplanet discoveries and advances in machine learning techniques have opened new avenues for 
exploring and understanding the characteristics of worlds beyond our Solar system. In this study, we employ efficient machine 
learning approaches to analyse a data set comprising 762 confirmed exoplanets and eight Solar system planets, aiming to 

characterize their fundamental quantities. By applying different unsupervised clustering algorithms, we classify the data into 

two main classes: ‘small’ and ‘giant’ planets, with cut-of f v alues at R p = 8.13 R ⊕ and M p = 52.48 M ⊕. This classification reveals 
an intriguing distinction: giant planets have lower densities, suggesting higher H–He mass fractions, while small planets are 
denser, composed mainly of heavier elements. We apply various regression models to uncover correlations between physical 
parameters and their predictive power for exoplanet radius. Our analysis highlights that planetary mass, orbital period, and 

stellar mass play crucial roles in predicting exoplanet radius. Among the models e v aluated, the Support Vector Regression 

consistently outperforms others, demonstrating its promise for obtaining accurate planetary radius estimates. Furthermore, we 
derive parametric equations using the M5P and Markov Chain Monte Carlo methods. Notably, our study reveals a noteworthy 

result: small planets exhibit a positive linear mass–radius relation, aligning with previous findings. Conversely, for giant planets, 
we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights 
into the relationship between giant planet formation and stellar characteristics. 

Key w ords: softw are: data analysis – planets and satellites: composition – planets and satellites: dynamical evolution and 

stability – planets and satellites: formation – planets and satellites: fundamental parameters – planets and satellites: general. 

1  I N T RO D U C T I O N  

Our comprehension of new worlds beyond the Solar system, known 
as exoplanets, their population, and diversity come largely from the 
latest generation of modern satellites. The Kepler space mission, the 
Transiting Exoplanet Survey Satellite , the JWST , and many ground- 
based observatories make important contributions to detecting and 
characterizing exoplanets (Pepper et al. 2007 ; Borucki et al. 2010 ; 
Beichman et al. 2014 ). The data generated by these state-of-the-art 
instruments are now available to everyone. Researchers skilled in 
data science, data analytics, or machine learning (ML) and neural 
network techniques study and analyse these data to predict, identify, 
characterize, and classify the exoplanets (Alibert & Venturini 2019 ; 
MacDonald 2019 ; Barboza, Ulmer-Moll & Faria 2020 ; Tasker, 
Laneuville & Guttenberg 2020 ; Armstrong, Gamper & Damoulas 
2021 ; Leleu et al. 2021a , b ; Mousavi-Sadr, Gozaliasl & Jassur 2021 ; 
Schlecker et al. 2021 ; Van Eylen et al. 2021 ; Maltagliati 2023 ; Mishra 
et al. 2023b ). In addition, the observational data are not only used to 
study exoplanets but they are also applied to peruse entire planetary 
science. As many planets are found around other stars, they have 

� E-mail: mahdiyar.mousavi@gmail.com (MMS); 
ghassem.gozaliasl@helsinki.fi (GG) 

provided us with an opportunity to understand the main ways of 
planet formation and evolution and to put our Solar system in a 
broader context (Kipping 2018 ; Armitage 2020 ; Gilbert & F abryck y 
2020 ; Mishra et al. 2023a ). 

At this paper’s writing, more than 5000 e xoplanets hav e been 
disco v ered, and thousands of candidates are yet to be confirmed. 
Transit and radial velocity are two fundamental methods to disco v er 
exoplanets and determine their main parameters. The transit method 
re gularly observ es the small fraction of the star’s light blocked by a 
transiting planet. Observing this light decrement makes it possible 
to calculate the planet’s radius. On the other hand, using the radial 
velocity method, the slight movement of a star caused by an orbiting 
planet is measured, and the planet’s mass is obtained. Ho we ver, not all 
disco v ered planets hav e measured mass and radius as two important 
physical properties (Seager 2010 ; Deeg & Alonso 2018 ). 

There is a clear correlation between the radius and mass of a planet 
that can be described with a polytropic relation (Burrows & Liebert 
1993 ; Chabrier & Baraffe 2000 ). Many works have investigated the 
relationship between planetary parameters, particularly mass, and 
radius, and to deduce the composition and structure of exoplanets 
(Seager et al. 2007 ; Swift et al. 2012 ; Otegi, Bouchy & Helled 
2020 ). Weiss et al. ( 2013 ) divided the planets into two groups, those 
with masses greater than and lower than 150 M ⊕, and presented a 
power-law relation for the mass–radius distribution of each group. 

© 2023 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 
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Bashi et al. ( 2017 ) revised this mass breakpoint to 124 ± 7 M ⊕ and 
proposed R p ∝ M 

0.55 ± 0.02 for small planets and R p ∝ M 

0.01 ± 0.02 for 
large planets. Assuming a power-law description of the mass–radius 
relation, for the first time, a probabilistic model for planets with 
radii lower than 8 R ⊕ was presented by Wolfgang, Rogers & Ford 
( 2016 ). Chen & Kipping ( 2017 ) implemented this idea to an extended 
data set, forecasting the mass or radius of planets. Moreo v er, the y 
calculated the forecasted mass for ∼7000 Kepler Objects of Interest 
(Chen & Kipping 2018 ). 

Most previous works use a power-law model to explore the mass–
radius relation and have assumptions that are not pliable enough to 
consider principal attributes in such diagrams. Consequently, Ning, 
Wolfgang & Ghosh ( 2018 ) developed a non-parametric approach 
using a sequence of Bernstein polynomials and the sample of 
Wolfgang et al. ( 2016 ). The same method was used in a follow- 
up work to analyse the mass–radius relation of exoplanets orbiting 
M dwarfs (Kanodia et al. 2019 ). 

The correlation between physical parameters in planetary systems 
is not limited to the planet’s mass and radius. It has been demonstrated 
that the radius of a giant planet is related to other parameters such as 
the orbital semimajor axis, the planetary equilibrium temperature, 
the tidal heating rate, and the stellar irradiation and metallicity 
(Guillot et al. 2006 ; F ortne y, Marle y & Barnes 2007 ; Enoch, Collier 
Cameron & Horne 2012 ). Zucker & Mazeh ( 2002 ) reported a possible 
correlation between the mass and period of an e xoplanet. The y also 
showed that planets revolving around a binary host star might have 
an opposite correlation. Weiss & Marcy ( 2014 ) studied a restricted 
data set containing 65 exoplanets smaller than 4 R ⊕ with orbital 
periods shorter than 100 d. They showed that planets smaller than 
1.5 R ⊕ are consistent with a positive linear density-radius relation, 
but for planets larger than 1.5 R ⊕, density decreases with radius. 
Hatzes & Rauer ( 2015 ) presented the mass–density relationship in 
a logarithmic space for objects ranging from planets ( M ≈ 0.01 M J ) 
to stars ( M > 0.08M �). They divided the mass–density distribution 
into three regions based on changes in the slope of the relationship 
and introduced a new definition for giant planets. 

Bhatti et al. ( 2016 ) used a Random Forest regression model to 
e v aluate the influence of different physical parameters on planet 
radii. Applying this model to different groups of giant planets, they 
found that the planet’s mass and equilibrium temperature has the 
greatest effect on determining the radius of a hot-Saturn (0.1 < 

M p < 0.5 M J ). They also showed that the equilibrium temperature 
is more important for more massive planets. Moreover, Ulmer- 
Moll et al. ( 2019 ) (hereafter, Ulmer19 ) introduced Random Forest 
as a promising algorithm for obtaining exoplanet properties. They 
used Random Forest to predict the exoplanet radii based on several 
planetary and stellar parameters. Similar to previous results, an 
exoplanet’s mass and equilibrium temperature were the fundamental 
parameters. 

As the number of disco v ered e xoplanets rapidly increases, ML 

techniques can be used to investigate correlations between planets 
and their host stars. In this study, we implement various ML algo- 
rithms to find the potential relationships between physical parameters 
in exoplanet systems. The Markov Chain Monte Carlo (MCMC) 
(see Goodman & Weare 2010 ; F oreman-Macke y et al. 2019 ) is 
used to quantify the uncertainties of the best-fitting parameters. 
In addition, different ML clustering algorithms are used to group 
the exoplanets and study their properties. We organize this paper 
as follows: In Section 2 , the sample data and methods of pre- 
processing, clustering, and modelling are introduced. Section 3 
presents the results. In Section 4 , we summarize the main results and 
conclusions. 

Figure 1. The mass–radius distribution of 770 planets colour coded by orbital 
period. This figure separates exoplanets into four groups based on detection 
methods: transit (black circles), radial velocity (red squares), transit timing 
variations (red diamond), and imaging (red triangle). The red stars show the 
Solar system’s planets. Four sample mass–radius relations are also shown: 
cold-hydrogen (blue dashed line), Earth-like rocky (green dash–dotted line), 
pure-iron (black dotted line), and pure rocky (solid crimson line) planets 
(Marcus et al. 2010 ; Becker et al. 2014 ). 

2  DATA  A N D  M E T H O D S  

2.1 Data set 

We use the NASA Exoplanet Archive 1 and the Extrasolar Planets En- 
cyclopedia 2 to extract the data of exoplanets. 3 These two catalogues 
are comprehensi ve, up-to-date, and av ailable to the public, and also 
provide access to rele v ant publications (Schneider 2011 ; Akeson 
et al. 2013 ). There are 762 confirmed exoplanets with reported 
physical parameters, including the orbital period ( P ) and eccentricity 
( e ), planetary mass ( M p ) and radius ( R p ), and the stellar mass ( M s ), 
radius ( R s ), metallicity (Fe/H), and ef fecti ve temperature ( T eff ). Note 
that exoplanets with only a minimum mass are not considered. 
Among these 762 exoplanets, six have been discovered by the 
radial velocity method, and each of the imaging and transit timing 
variation methods has identified only one exoplanet. In general, most 
e xoplanets hav e been disco v ered by observing the slight decrease in 
brightness of the host star caused by the transit of a planet in front of it. 
Using NASA’s Planetary Fact Sheet, 4 we add the eight Solar system 

planets to the sample. Overall, the data set contains 770 planets. 
Fig. 1 shows the radius of planets plotted as a function of mass 
and colour coded by orbital period. It is separated into four groups 
based on detection methods: transit, radial velocity, transit timing 
variation, and imaging. Distributions of cold-hydrogen, Earth-like 
rocky (32.5 per cent Fe + 67.5 per cent MgSiO3), pure-iron (100 
per cent Fe), and pure-rock (100 per cent MgSiO3) planets are also 
illustrated (Marcus et al. 2010 ; Becker et al. 2014 ). We should note 
that, like other observational data sets, our sample is also affected 
by detection biases. A data set containing planets whose radius and 
mass have been measured suffers from the detection limits of both 
radial velocity and transit methods. Thus, it is impossible to draw a 

1 https://e xoplanetarchiv e.ipac.caltech.edu/
2 http:// exoplanet.eu/ 
3 The data was last extracted on March 22, 2022. 
4 https:// nssdc.gsfc.nasa.gov/ planetary/ factsheet/ 
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reliable conclusion about the occurrence of planets using our data 
set. 

2.2 Data pr e-pr ocessing 

We aim to predict the planetary radius as the target variable, 
using other physical parameters as features. As the parameters have 
different ranges, we transfer them to a logarithmic space. In data 
analysis, the ultimate results might be affected by some unreliable 
measurements in the sample. In ML and statistics, there are diverse 
methods to detect these unusual observations in a data set. We 
choose the Local Outlier Factor (LOF) method to identify and 
remo v e observations with abnormal distances from other values. 
The technique is often used with multidimensional data sets, like 
our eight-dimensional one, which has different densities and types 
of outliers. The LOF uses two hyperparameters: neighbourhood size 
( k ), which defines the neighbourhood for local density calculation, 
and contamination ( c ), which specifies the proportion of outliers in 
the data set (Breunig et al. 2000 ; Chandola, Banerjee & Kumar 2009 ). 
By choosing k = 20 and c = 0.05, the LOF method is run twice: 
once for all parameters including P , e , M p , R p , M s , R s , Fe/H, and T eff , 
then for planetary mass and radius, which are known to be highly 
correlated. Altogether, the LOF detects 76 data points as outliers. 
Appendix A describes the process of identifying outliers in detail. 

Choosing appropriate features plays a vital role in building an 
efficient ML model. Adding extra variables or those highly correlated 
with each other may reduce the o v erall predictiv e ability of the model 
and lead to wrong results. Feature selection (hereafter FS) methods 
rank features based on their usefulness and ef fecti veness in making 
predictions. The FS methods can be divided into three groups: filter, 
wrapper, and embedded methods (Guyon et al. 2008 ; Chandrashekar 
& Sahin 2014 ; Jovi ́c, Brki ́c & Bogunovi ́c 2015 ; Brownlee 2016a ). 
In filter methods, features are filtered independently of any induction 
algorithm and based on some performance e v aluation metrics calcu- 
lated directly from the data (S ́anchez-Maro ̃ no, Alonso-Betanzos & 

Tombilla-Sanrom ́an 2007 ; Cherrington et al. 2019 ). In contrast, the 
selection process in wrapper methods is based on the performance 
of a specific ML algorithm operating with a subset of features (Ferri 
et al. 1994 ; Kohavi & John 1997 ; Hall & Smith 1999 ). Embedded 
methods combine the qualities of both filter and wrapper methods. 
They perform the FS in the training process and are usually specific 
to given learning machines (Lal et al. 2006 ; Bol ́on-Canedo, S ́anchez- 
Maro ̃ no & Alonso-Betanzos 2013 ). We use five FS methods to 
identify the most important features in our data set: Spearman’s 
rank correlation test as a filter method, the Backward Elimination 
and Forward Selection as two wrapper methods, and the CART 

(classification and regression trees) and XGBoost (extreme gradient 
boosting) as two Embedded methods. 

2.3 Clustering 

Clustering as an unsupervised ML task involves grouping each 
data point with a specific type. In theory, data points belonging 
to a particular group should have similar properties (Xu & Wunsch 
2005 ; Kaufman & Rousseeuw 2009 ; Soni Madhulatha 2012 ). Data 
clustering algorithms can be divided into hierarchical and partitional 
groups. Hierarchical algorithms find clusters using previously es- 
tablished clusters, while partitional algorithms find all clusters at 
once (Kononenko & Kukar 2007 ; Soni Madhulatha 2012 ). We aim 

to group planets into distinct, non-o v erlapping clusters, similar to 
e xclusiv e clustering (Jain & Dubes 1988 ). We use 10 ML clustering 
algorithms to include a wide range of clustering methods and examine 

their performance in exoplanet data. Since many diverse exoplanets 
have been discovered, implementing clustering algorithms can find 
potential exoplanet groups to investigate their characteristics. The 
algorithms are available in the SCIKIT-LEARN software ML library 
(Pedregosa et al. 2011 ) and are as follo ws: Af finity Propagation, 
BIRCH (balanced iterative reducing and clustering using hierar- 
chies), DBSCAN (density-based spatial clustering of applications 
with noise), Gaussian Mixture Model, Hierarchical Clustering, K- 
Means, Mean Shift, Mini-Batch K-Means, OPTICS (ordering points 
to identify the clustering structure), and Spectral Clustering (Davies 
& Bouldin 1979 ; Ester et al. 1996 ; Zhang, Ramakrishnan & Livny 
1996 ; Ankerst et al. 1999 ; Halkidi, Batistakis & Vazirgiannis 2001 ; 
Comaniciu & Meer 2002 ; Frey & Dueck 2007 ; Von Luxburg 2007 ; 
Schubert et al. 2017 ). 

BIRCH, Gaussian Mixture Model, Hierarchical Clustering, K- 
Means, Mini-Batch K-Means, and Spectral Clustering are algorithms 
that do not learn the number of clusters ( K ) from data. Therefore, we 
first perform the Elbow and Silhouette methods to find the optimal 
number of clusters. The Elbow method runs the K-Means clustering 
algorithm for K values. Then, for each K , it computes the sum of 
squared distances (SSD) between data points and their assigned 
cluster centroids and uses them to propose an optimal number of 
clusters. The Silhouette method determines the degree of separation 
between clusters by choosing a range of K values and calculating a 
coefficient for each K . The silhouette coefficient for a particular data 
point is calculated by ( b i − a i )/ max ( a i , b i ). Here, a i represents the 
average distance from all data points in the same cluster, whereas b i is 
the average distance from data points that belong to the closest cluster. 
Provided that the sample is on or near the decision boundary between 
two neighbouring clusters, the silhouette coefficient becomes 0. 
A coefficient close to + 1 indicates that the sample is far from 

neighbouring clusters. A ne gativ e coef ficient v alue indicates that 
samples may have been assigned to the wrong cluster (Rousseeuw 

1987 ; Soni Madhulatha 2012 ). 

2.4 Modelling 

In ML, different algorithms allow machines to learn information 
from a given data set, uncover relationships, and make predictions 
(Brownlee 2016a , b ). In our case, we apply ML models to predict 
planet radii when other parameters are given. It is also possible to 
see ho w ef ficiently each parameter uses these models. The algorithms 
used to perform regression tasks are as follows: Decision Tree, K- 
Nearest Neighbors, Linear Regression, Multilayer Perceptron, M5P, 
and Support Vector Regression (SVR) (Hinton 1990 ; Quinlan 1992 , 
1993 ; Hastie et al. 2009 ; Chang & Lin 2011 ). Bootstrap Aggregation 
and Random Forest are also used as ensemble algorithms that 
combine the predictions from multiple models (Breiman 1996 , 2001 ). 
These algorithms are available in the Weka tool environment (Witten 
et al. 2005 ; Hall et al. 2009 ). 

Linear Regression and M5P are two algorithms that can extract 
parametric equations. Linear Regression algorithm fits a linear model 
to the entire data. M5P performs a multiple linear regression model. 
This tree-based algorithm allocates linear regressions at the terminal 
nodes. It divides the entire data set into several smaller subsets 
and fits a linear model to each subset (Quinlan 1992 ). They both, 
consequently, result in a basic linear equation like equation ( 1 ), 

Y = C + 

N ∑ 

i= 1 

A i X i (1) 
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where A and C are fitting parameters, Y is the dependent variable, 
X is the independent variable, and N represents the total number 
of independent variables. In our case, Y is the planet’s radius, and 
X represents other physical parameters. For these two algorithms, 
we use the MCMC to quantify the uncertainties of the best-fitting 
parameters (Goodman & Weare 2010 ; F oreman-Macke y et al. 2019 ). 

To e v aluate the quality of the predicted radius ( R pre ) compared to 
the observed radius ( R obs ) and to compare the efficiency of the mod- 
els, root means square error (RMSE), mean absolute error (MAE), 
and coefficient of determination ( ρ2 ) are calculated. Equations ( 2 )–
( 4 ) define RMSE, MAE, and ρ2 , respectively, 

RMSE = 

√ √ √ √ 

n ∑ 

i= 1 

( R obs − R pre ) 2 

n 
, (2) 

MAE = 

1 

n 

n ∑ 

i= 1 

| R obs − R pre | , (3) 

ρ2 = 1 −
∑ n 

i= 1 ( R obs − R pre ) 2 ∑ n 

i= 1 ( R obs − R mean ) 2 
, (4) 

where R mean is the mean of the R obs values and n represents the total 
number of samples. Lower values of RMSE and MAE and higher 
values of ρ2 indicate better accuracy of the models. It should be 
noted that hyperparameters specific to each model are tuned to have 
the best performance. Also, a 10-fold cross-validation procedure, as 
a data resampling method, is used to e v aluate the performance of 
models. Furthermore, each algorithm is e x ecuted for original and 
logarithmic data sets to understand the effect of data re-scaling. 

3  RESU LTS  

Before applying the clustering and predictive methods, we use the 
LOF algorithm to identify outliers in the data set containing 770 
data points. The LOF algorithm marks 76 data points as outliers, 
resulting in a study data set of 694 planets. Appendix A describes 
finding outliers and their effect on prediction accuracy. In general, 
we find that all regression models perform poorly considering the 
outliers in the data set. Additionally, the effect of data re-scaling on 
planetary radius predictions is discussed in Appendix B . As a result, 
regression algorithms provide better results on a logarithmic scale. 

3.1 Feature importance 

It has been known that having inefficient and unnecessary features 
can cause declination in the performance of an ML model and lead 
to inaccurate results (Chandrashekar & Sahin 2014 ). We apply five 
FS methods to find and eliminate the least important planetary, 
stellar, and orbital parameters in predicting planet radii. They are 
the Spearman’s rank correlation, Backward Elimination, Forward 
Selection, CART, and XGBoost. Features are orbital period ( P ), 
eccentricity ( e ), planetary mass ( M p ), stellar mass ( M s ), stellar radius 
( R s ), metallicity (Fe/H), and ef fecti ve temperature ( T eff ), and the 
target variable is planetary radius ( R p ). 

Spearman’s rank correlation ( r s ) is a number between –1 and 
1 that measures the monotonic correlation between two variables. 
This filter method reveals parameters that are strongly correlated 
with planetary radius: M p with a coefficient of 0.780 has the highest 
correlation, followed by M s with r s = 0.590. Furthermore, T eff with 
a coefficient of 0.568 and R s with a coefficient of 0.552 are in third 
and fourth place, respectively. Orbital period with r s = −0.389 and 

eccentricity with r s = −0.151 are two features that have a negative 
correlation with R p . In addition, highly correlated stellar parameters 
( R s , M s , and T eff ) are also indicated by coefficients greater than 
0.820. We should note that the estimated p -values are less than 0.001, 
which indicates strong certainty in the results. As an exception, the 
p -value corresponding to the coefficient between Fe/H and R p ( r s 
= −0.037) is greater than 0.1, which is statistically uncertain. To 
calculate uncertainties in the value of correlation coefficients, we 
apply the Monte Carlo error analysis, considering errors in each 
measurement (Curran 2015 ). Fig. 2 illustrates the distribution of r s 
for each feature except Fe/H, which has a p -value greater than 0.1. 
By taking the standard deviation of distributions, we report the mean 
and uncertainty values in the upper right corner of each panel. As 
it is seen, the distributions of Spearman correlation coefficients for 
M p , M s , R s , and T eff are constrained to positive values. In contrast, 
the distribution for P is limited to ne gativ e values. In the case of e , 
even though the mean of the distribution is slightly ne gativ e, it is 
exceptionally wide, taking both negative and positive values. This 
more e xtensiv e distribution results from higher amounts of error in 
eccentricity measurement. 

Forward Selection and Backward Elimination are two wrapper 
FS methods. The procedure for Forward Selection starts with an 
empty set of features. Then, the best feature is determined and 
added to the set by applying a Random F orest re gressor. In each 
subsequent iteration, the best remaining feature is determined and 
added until a complete set of features is reached. In contrast, 
Backward Elimination starts with a complete set of features and, 
at each step, eliminates the worst feature remaining in the set. Using 
a 10-fold cross-validation method, ρ2 values, and corresponding 
standard errors are calculated for each step and shown in Fig. 3 , 
where the left-hand panel is Forward Selection, and the right-hand 
panel is Backward Elimination. Both methods highlight M p , P , and 
R s as three important parameters. 

Applied embedded methods include CART, which uses a decision 
tree regressor, and XGBoost, which implements a gradient boosting 
trees algorithm. These techniques score features based on their 
importance in computing the target variable. The ranking (and scores) 
obtained by the CART method are as follows: M p (0.905), P (0.031), 
R s (0.026), M s (0.012), T eff (0.011), e (0.008), and Fe/H (0.006). 
The XGBoost method ranks (and scores) features as follows: M p 

(0.851), R s (0.038), P (0.029), M s (0.025), T eff (0.024), Fe/H (0.021), 
and e (0.012). Similar importance is assigned to all features except 
planetary mass by CART and XGBoost. Finally, we conclude that a 
set of features including M p , P , and one of the stellar parameters ( M s , 
R s , or T eff ) works well. Therefore, we select planetary mass, orbital 
period, and stellar mass as the main features. 

3.2 Clusters 

FS methods highlight planetary mass, stellar mass, and orbital period 
as vital features to estimate planet radii. We use ML clustering 
algorithms to investigate potential groups of exoplanets in a four- 
dimensional logarithmic space consisting of planetary mass and 
radius, stellar mass, and orbital period. The algorithms are Affinity 
Propagation, BIRCH, DBSCAN, Gaussian Mixture Model, Hier- 
archical Clustering, K-Means, Mean Shift, Mini-Batch K-Means, 
OPTICS, and Spectral Clustering. 

3.2.1 Number of clusters 

When the number of clusters ( K ) is not known in advance, as in 
our case, hierarchical clustering is an appropriate technique to adopt 
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Figure 2. Distribution of correlation coefficient ( r s ) between planetary radius ( R p ) and other physical parameters obtained by the Monte Carlo analysis. 
Parameters are planetary mass ( M p ), stellar mass ( M s ), radius ( R s ), and ef fecti ve temperature ( T eff ), and orbital eccentricity ( e ) and period ( P ). Stellar metallicity 
(Fe/H), which displays a p -value greater than 0.1, has been excluded. The red dash–dotted line is the mean, and two red dotted lines represent uncertainties 
around it. The mean and uncertainty values are presented in the upper right corner of each panel. The absolute value of the coefficients determines the strength 
of the relationship. The larger the number, the stronger the relationship. It marks M p as the most and e as the least rele v ant parameters to the planetary radius. 

Figure 3. Wrapper FS methods. Left: coefficients of determination ( ρ2 ) 
against feature sets for the Forward Selection technique. In the first step, it 
determines M p as the best feature, and in each following iteration, the best 
remaining feature is added to the set. Right: ρ2 values against feature sets for 
the Backward Elimination technique. Unlike Forward Selection, it starts with 
all features and remo v es the worst one at each step. Features are planetary 
mass ( M p ) and radius ( R p ), orbital period ( P ) and eccentricity ( e ), and the 
stellar mass ( M s ), radius ( R s ), metallicity (Fe/H), and ef fecti ve temperature 
( T eff ). The grey areas demonstrate standard errors. Both methods highlight 
M p , P , and R s as three important parameters in predicting the planetary radius. 

(Landau et al. 2011 ). Using the Hierarchical Clustering algorithm 

as a distance-based method, one can have an assumption of K . Its 
agglomerative algorithm assigns each data point to an individual 
partition; then, at each iteration, the closest pair of partitions are 
merged until all data belong to a single partition. Fig. 4 shows the 
Hierarchical Clustering dendrogram, which records the sequences of 
merges. The greater the height of the vertical lines in the dendrogram, 
the greater the distance between the clusters. Clusters can be defined 
by trimming a dendrogram with a distance threshold. Ho we ver, 
there is no universal method for setting thresholds. In general, a 
distance threshold on the dendrogram is set to intersect the longest 
vertical line. The number of vertical lines intersecting the threshold 
line indicates the K value. Two distance thresholds are set to the 
dendrogram of our data set (red dashed lines in Fig. 4 ). The larger 
threshold results in two clusters with a Euclidean distance of 30.6, 
while the smaller threshold splits the larger cluster into two parts 
with a distance of 11.9 between them. 

For algorithms that do not learn the K from data, we use Elbow 

and Silhouette methods to find the optimal value of K and use it 
as an input parameter in clustering algorithms. The Elbow method 
performs the K-Means clustering algorithm for different values of 
K . Then, it calculates the SSD between data points and their cluster 
centroids each time. Fig. 5 demonstrates SSD values as a function of 
K . As shown, the curve starts to flatten out and form an elbow shape 
in K = 2, chosen as the optimal number of clusters. 
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Figure 4. Hierarchical Clustering dendrogram. The greater the height of the 
vertical lines, the greater the distance between the clusters. Two red dashed 
lines are distance thresholds. The number of vertical lines intersecting the 
threshold line indicates the number of clusters. The larger threshold results 
in two clusters, while the smaller threshold results in three clusters. Due to 
illustration purposes, lower sequences have not been shown. 

Figure 5. SSD between data points and their assigned cluster centroids 
against the number of clusters ( K ), calculated by the Elbow method. The red 
vertical dashed line corresponds to K = 2, where the curve starts to flatten out. 
This point is chosen as the optimal number of clusters. 

Furthermore, the average Silhouette width can e v aluate clustering 
reliability and may be used to estimate K value (Rousseeuw 1987 ). 
The Silhouette method computes a coefficient for different values of 
K and uses it to determine the degree of separation between clusters. 
The coefficient becomes ne gativ e if the sample is assigned to the 
wrong cluster. Provided that the sample is far from neighbouring 
clusters, the coefficient will be close to + 1. If the sample is on or 
near the decision boundary between two neighbouring clusters, the 
coefficient becomes 0. Fig. 6 presents the Silhouette plots for K = 2, 
3, 4, and 5. In this figure, the thickness of the plots represents the 
cluster size, and each red vertical dashed line belongs to an average 
Silhouette score. K = 3, 4, and 5 are not appropriate due to clusters 
with lower -than-a verage Silhouette scores and wide fluctuations in 
the size of plots. Like the Elbow method, this method proposes 
K = 2 as the proper number of clusters. Fig. 7 illustrates a matrix of 

Figure 6. Silhouette plots for different numbers of clusters ( K ). The thickness 
of the plots indicates the cluster size and red vertical dashed lines represent 
the corresponding average Silhouette coefficients. If the sample is far from 

neighbouring clusters, the coefficient becomes close to + 1. The coefficient 
can be ne gativ e if the sample is assigned to the wrong cluster. Providing that 
the sample is on or near the decision boundary between two neighbouring 
clusters, the coefficient becomes 0. Due to clusters with lower -than-a verage 
Silhouette scores and wide fluctuations in the size of plots, K = 3, 4, and 5 are 
not appropriate. Scatter plots for each Silhouette plot are shown in Fig. 7 . 

scatter plots for Silhouette plots, where each row has been assigned 
to a specific K , and columns 1, 2, and 3 show the distribution of 
planetary radius versus planet’s mass, orbital period, and star’s mass, 
respectiv ely. Like e xclusiv e clustering algorithms where each data 
point belongs e xclusiv ely to one cluster (Jain & Dubes 1988 ), we 
aim to group planets into distinct non-o v erlapping clusters. On the 
one hand, if K = 2 (see the first row in Fig. 7 ), two clusters are 
almost well separated in all three spaces, with only a few data points 
o v erlapping. On the other hand, when planets are divided into more 
than two clusters (see the second, third, and fourth rows in Fig. 7 ), 
the members of the clusters become less distinguishable from each 
other. 

For K = 3, planets with a longer orbital period are defined as a new 

cluster (black-filled squares). Although three clusters are separated 
in the R p - P space, in the R p - M p and R p - M s spaces, most members of 
cluster 2 are distributed o v er the other two clusters, especially cluster 
1. Likewise, in the case of K = 4, the cluster separation is better in 
the R p - P space than in the other two spaces, where clusters o v erlap. 

For K = 5, although clusters 0 and 4 are well distinguished in the 
planet’s mass–radius distribution, they overlap a lot in the R p - P and 
R p - M s spaces. In the R p - P space, members of clusters 0, 1, 2, and 3 
are almost separated; nevertheless, members of cluster 4 extremely 
o v erlap with those of cluster 0. In addition, cluster 3 members o v erlap 
with members of clusters 0 and 4 in the R p - M p and R p - M s spaces. 

Consequently, we choose K = 2 based on the results from 

the Hierarchical, Elbow, and Silhouette methods and the idea that 
planetary clusters are separate groups that do not o v erlap. Similarly, 
the Affinity Propagation and Mean Shift algorithms, which do not 
need to specify the number of clusters, give two clusters. Another 
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Figure 7. Matrix of scatter plots corresponding to Fig. 6 . Rows 1, 2, 3, and 4 represent the number of clusters ( K ) equal to two, three, four, and five, respectively. 
Columns 1, 2, and 3 illustrate the distribution of planetary radius ( R p ) versus the planet’s mass ( M p ), orbital period ( P ), and star’s mass ( M s ), respectively. The 
grey-filled circles, white circles, black-filled squares, light grey-filled pluses, and white stars represent members of clusters 0, 1, 2, 3, and 4, respectively. 
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Table 1. Clustering algorithms, breakpoints of radius ( B Radius ) and mass ( B Mass ) in logarithmic space, number of 
planets in the first ( N 1 ) and second ( N 2 ) clusters along with adjusted hyperparameters introduced in the Scikit-learn 
library (Pedregosa et al. 2011 ). The one-dimensional Gaussian distribution is used to find the intersection point and 
introduce the rele v ant breakpoints. Default v alues are set for hyperparameters that are not listed. The Elbow method and 
Silhouette score have been used to find the optimal number of clusters equal to 2. DBSCAN and OPTICS algorithms 
fail to provide appropriate clusters. 

Algorithm B Radius B Mass N 1 N 2 Adjusted parameter 

Affinity propagation 0 .93 1 .73 254 440 damping = 0.9, preference =−60 
BIRCH 0 .90 1 .72 247 447 n clusters = 2, threshold = 0.01 
DBSCAN – – – – eps = 0.2, min samples = 25 
Gaussian Mixture Model 0 .95 1 .80 271 423 n components = 2 
Hierarchical Clustering 0 .90 1 .72 247 447 n clusters = 2 
K-Means 0 .92 1 .72 252 442 n clusters = 2 
Mean shift 0 .93 1 .73 257 437 bandwidth = 0.9 
Mini-Batch K-Means 0 .92 1 .72 252 442 n clusters = 2 
OPTICS – – – – min samples = 40 
Spectral clustering 0 .89 1 .64 239 455 n clusters = 2 

point that should be taken into account is that this number of clusters 
chosen is consistent with published works (e.g. Weiss et al. 2013 
and Bashi et al. 2017 ), where two regimes were introduced in the 
planetary mass–radius relation by different techniques. 

As for DBSCAN and OPTICS algorithms, they give K = 2 but 
cannot separate clusters well; thus, we exclude them from the 
analysis. The ef fecti veness of clustering methods depends on several 
factors, including the data set’s characteristics and underlying dis- 
tribution. Different clustering algorithms make certain assumptions 
about the data structure and employ distinct approaches to identify 
clusters. Accordingly, their performance can vary based on how 

well these assumptions align with the data set’s properties. In cases 
where clustering algorithms fail to find appropriate clusters, there 
may be several potential explanations. One important factor is the 
distribution of the exoplanet data, which might not conform to 
the assumptions made by certain clustering algorithms. DBSCAN 

and OPTICS are two density-based methods that e x ecute clustering 
by finding areas where data points are concentrated. They can 
disco v er arbitrarily shaped clusters, including non-spherical ones; 
they, ho we ver, might fail when the data set is too sparse, and the 
density varies across the data, like in the case of exoplanet data 
(Moreira, Santos & Carneiro 2005 ; Ahmad & Dang 2015 ). 

3.2.2 Planet classes 

The planets are divided into two groups by choosing K = 2 
for BIRCH, Gaussian Mixture Model, Hierarchical Clustering, K- 
Means, Mini-Batch K-Means, and Spectral Clustering. Moreo v er, 
the Affinity Propagation and Mean Shift algorithms, which learn the 
number of clusters from data, result in two clusters. To introduce a 
boundary between two groups in the planet’s mass–radius space, we 
construct a Gaussian kernel density estimation for each cluster and 
find the intersection point. Table 1 lists the results of the clustering 
algorithms, which are almost similar (except for DBSCAN and 
OPTICS, as discussed in Section 3.2.1 ). Ultimately, we separate 
data into two classes using an average value of log R p = 0.91 ( R p 

= 8.13 R ⊕) for radius breakpoint ( B Radius ) and log M p = 1.72 ( M p = 

52.48 M ⊕) for mass breakpoint ( B Mass ). Exoplanets with R p ≤ 8.13 R ⊕
and M p ≤ 52.48 M ⊕ are defined as small planets, and those with R p 

> 8.13 R ⊕ and M p > 52.48 M ⊕ as giant planets. Fig. 8 shows the 
mass–radius distribution of clustered and outlier data. For several 
planets that lie outside the boundaries ( B Radius and B Mass ), we use the 

Figure 8. The mass–radius distribution of clustered data. Data are separated 
into two classes using R p = 8.13 R ⊕ (horizontal dashed line) and M p = 

52.48 M ⊕ (vertical dashed line). The grey areas demonstrate mean errors 
of mass and radius. Exoplanets with R p ≤ 8.13 R ⊕ and M p ≤ 52.48 M ⊕ are 
defined as small planets (grey circles), and those with R p > 8.13 R ⊕ and M p > 

52.48 M ⊕ as giant planets (white circles). There are 254 small planets and 440 
giant planets. The black dots are outlier planets found by the LOF method 
(see Appendix A ). Four iso-density curves are also drawn: cold-hydrogen 
(blue dashed line), Earth-like rocky (green dash–dotted line), pure-iron (black 
dotted line), and pure rocky (solid crimson line) planets (Marcus et al. 2010 ; 
Becker et al. 2014 ). 

criterion of their closeness to the boundaries to assign them to either 
of the classes. 

According to a traditional definition, small exoplanets are planets 
with radii smaller than 4 R ⊕ and masses lower than ∼30 M ⊕ (Howard 
et al. 2010 ; Marcy et al. 2014 ; Weiss & Marcy 2014 ); ho we ver, 
this customary definition of small and large planets does not exactly 
match previous studies that hav e inv estigated a transition point in 
the mass–radius distribution of exoplanets. Table 2 compares our 
breakpoints with those found by others in the literature and shows 
a considerable difference between mass breakpoints. Besides an 
increasing number of exoplanets and the evolution of their mass–
radius distribution, this difference could result from applying differ- 
ent methods to find a cut-off point in planetary masses. Performed 
methods vary from a simple visual investigation of mass–radius and 
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Table 2. Breakpoints of mass ( B Mass ) and radius ( B Radius ) derived by previous 
studies and in this work. 

Study B Mass (M ⊕) B Radius (R ⊕) 

Weiss et al. ( 2013 ) 150 –
Hatzes & Rauer ( 2015 ) 95 –
Chen & Kipping ( 2017 ) 130 ± 22 –
Bashi et al. ( 2017 ) 124 ± 7 12 .1 ± 0.5 
This work 52 .48 8 .13 

mass–density distributions (Weiss et al. 2013 ) to using different slope 
criteria in the planetary parametric relations (Hatzes & Rauer 2015 ; 
Bashi et al. 2017 ; Chen & Kipping 2017 ). As a result, the mass 
and radius breakpoints identified in this work (52.48 M ⊕ and 8.13 R ⊕, 
respectively) are closer to traditional breakpoints than those found in 
previous studies. 

There are 254 small planets and 440 giant planets. The distri- 
butions of the orbital period, stellar mass, average density, and 

calculated equilibrium temperature for small and giant planets are 
demonstrated in Fig. 9 . The upper left-hand panel demonstrates that 
most giant planets are closer to their host star than small planets are. 
They, none the less, have a P varying from 0.77 to 4331.01 d, while for 
small planets, it is between 0.28 and 207.62 d. The upper right-hand 
panel shows that the host star mass is frequently in a range around 
the Solar mass for most planets. It results from a selection effect: 
exoplanet-search programs often concentrate on Sun-like stars. In 
addition to this, lower mass stars are not as likely to host exoplanets 
with sufficient mass to be identified by the radial-velocity technique 
(Bonfils et al. 2005 ; Cumming et al. 2008 ). Small planets revolve 
around stars with M s between 0.08 and 2.24 M �, while, for host stars 
of giant planets, they vary from 0.53 to 2.07 M �. 

The lower left-hand panel compares small and giant planets’ 
a verage density distrib ution. As expected, giant planets are generally 
less dense than small planets. The density distribution of giant planets 
peaks at about Saturn’s density. Hence, a significant fraction of giant 
planets has an average density similar to Saturn, the least dense 

Figure 9. Histograms of the orbital period (upper left-hand panel), stellar mass (upper right-hand panel), average density (lower left-hand panel), and equilibrium 

temperature (lower right-hand panel) for small (solid-border bars) and giant (dashed-border bars) planets. The red dash–dotted line in the lower left-hand panel 
represents Saturn as the least dense planet, and the green solid line is Earth as the densest planet in the Solar system. In the lower right-hand panel, the green 
solid line represents Earth’s equilibrium temperature, and the blue dash–dotted line is Mercury, which has the highest equilibrium temperature in the Solar 
system. The orbital period distribution shows that giant planets are closer to their host star than small planets. The stellar mass distribution demonstrates that, 
for most planets, the host star’s mass is around the Sun’s mass. Comparing planets’ average density and calculated equilibrium temperature demonstrate that 
giant planets are hotter and less dense than small planets. 
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planet in the Solar system. On the contrary, small planets co v er a 
higher density range that includes Earth, the densest planet in the 
Solar system. This, in turn, suggests that giant planets are composed 
mainly of hydrogen and helium envelopes, whereas heavier elements 
dominate small planets. 

Comparing the calculated equilibrium temperature of planets 
(lower right-hand panel) demonstrates that giant planets are hotter 
than small planets. This temperature difference between the two 
planet classes is expected because giant planets are closer to their 
host star (as shown in the upper left-hand panel); in addition to this, 
the host stars are almost of the same spectral type (equi v alently, 
stellar mass, as shown in the upper right-hand panel). 

It is important to note that our sample of giant planets is dominated 
by gas giant exoplanets with orbital periods of less than 10 d, 
commonly referred to as hot Jupiters. It is believed that these planets 
are more likely to be found around metal-rich stars than around stars 
with low stellar metallicity (Maldonado, Villaver & Eiroa 2018 ; 
Osborn & Bayliss 2020 ; Yee & Winn 2023 ). 

3.3 Prediction of the planetary radius 

To find the radius of a planet based on physical parameters, ML 

predictive algorithms are applied to our data set of 694 planets. 
The physical parameters are the planet’s mass ( M p ), orbital period 
( P ), and host star’s mass ( M s ), selected by FS methods. Bootstrap 
Aggregation, Decision Tree, K-Nearest Neighbors, Linear Regres- 
sion, Multilayer Perceptron, M5P, Random Forest, and SVR are 
implemented algorithms. These algorithms are applied separately 
to entire, small, and giant planets. To have the best performance 
of algorithms, the hyperparameters are tuned. Furthermore, a 10- 
fold cross-validation procedure is used to assess the performance of 
models. The RMSE, mean absolute error (MAE), and coefficient of 
determination ( ρ2 ) are calculated as validation metrics (see equations 
2 , 3 , and 4 ). 

RMSE, MAE, and ρ2 of entire, small, and giant planets, along 
with the tuned hyperparameters, are listed in Table 3 . Fig. 10 shows 
the box plots of accuracy in the 10-fold cross-validation for models. 
SVR with an RMSE of 0.093 is the best-performing model for the 
entire data set, followed by Bootstrap Aggregation, Random Forest, 
and M5P with RMSEs of 0.096, 0.097, and 0.098, respectiv ely. The y 
also have lower MAE and higher ρ2 values than other models. The 
SVR performs better than other algorithms for both subsets of small 
and giant planets. 

Fig. 11 compares the observed ( R obs ) and predicted ( R pre ) radius 
(upper panel) along with residual values (lower panel) obtained by 
SVR as the best-performing model. In this figure, the model has 
been applied separately to small and giant planets, resulting in a 
gap and a relatively higher dispersion around ∼8 R ⊕. ρ2 value is 
0.710 for small planets and 0.510 for giant planets. The normalized 
median absolute deviation (NMAD) has been calculated for small 
and giant planets predictions. NMAD is R pre = R obs ± σ (1 + 

R obs ), where σ = 1.48 × median [ | R pre − R obs | /(1 + R obs )] (Hoaglin, 
Mosteller & Tukey 1983 ). As observed in the lower panel of Fig. 11 , 
a distinct linear trend with a slope of 0.459 is noticeable in the 
residuals between predicted and observed radii of giant planets. This 
trend could be attributed to factors such as systematic observation 
errors, the determination of physical parameters, and calculation is- 
sues including hyperparameter tuning, algorithm characteristics and 
limitations, and selected features. We adjust the learning algorithms 
to address this challenge by re-configuring their hyperparameters. 
Interestingly, a similar pattern emerges in the residual values across 
all eight predictive algorithms. This suggests that the constraints Ta
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Figure 10. Box plots showing the spread of accuracy in the 10-fold cross- 
v alidation for predicti ve algorithms. On each box, the red dashed mark is 
the median, and the edges of the box are the 25th and 75th percentiles. SVR 

with an RMSE of 0.093 is the best-performing model for the entire data set, 
followed by Bootstrap Aggre gation, Random F orest, and M5P with RMSEs 
of 0.096, 0.097, and 0.098, respectively. 

Figure 11. Comparison between observed ( R obs ) and predicted ( R pre ) plan- 
etary radius (upper panel) along with residual v alues (lo wer panel) obtained 
by the SVR model, which has been applied separately to small (triangles) 
and giant (circles) planets. The red line indicates R pre = R obs along with two 
dashed lines and a grey area that illustrate the NMAD for small and giant 
planets, respectively. Considering Hoaglin et al. ( 1983 ), NMAD is calculated 
using R pre = R obs ± σ (1 + R obs ), where σ = 1.48 × median [ | R pre − R obs | /(1 
+ R obs )]. 

of SVR alone cannot explain this pattern. Moreover, we discover 
that excluding or including the parameter M p significantly affects 
the slope of the linear trend ( ±0.08) compared to other parameters. 
Ho we ver, modifying the subset of features does not eliminate this 
trend. The most gradual trend appears when utilizing the feature 
subset of M p , P , and M s . 

Figure 12. Predicted (circles) and observed (pluses) radius as a function 
of a mass and orbital period obtained by the SVR model for all planets in 
the sample. The distribution of cold-hydrogen (blue dashed line), Earth-like 
rocky (green dash–dotted line), pure-iron (black dotted line), and pure rocky 
(solid crimson line) planets are also illustrated (Marcus et al. 2010 ; Becker 
et al. 2014 ). 

It is important to note that this trend minimally impacts radius 
prediction. Additionally, the residuals between predicted and ob- 
served radii of giant planets fall within the range seen for small 
planets. It is plausible that this trend is linked to systematic issues in 
exoplanet observations or the determination of observed parameters 
(e.g. mass, orbital period, and radius). As the current sample of 
exoplanets detected through the transit method is substantial, further 
investigation of this effect could be undertaken when a statistically 
significant sample of exoplanets detected through other detection 
methods becomes available. 

Fig. 12 shows the predicted and observed radii as a function of a 
mass and orbital period obtained by the SVR model. The model has 
been applied to the entire sample in this figure, resulting in an ρ2 of 
0.937. SVR can efficiently reproduce the spread in radius. 

Linear Regression and M5P can derive parametric equations be- 
tween physical parameters by fitting linear models to the exoplanet 
data. A linear model is fitted to the real data in the Linear Regression 
algorithm. At the same time, M5P splits the entire data set into several 
subsets and fits a multi v ariate linear function to each subset. Equation 
( 5 ) presents a linear fit between the planetary radius, planetary mass, 
orbital period, and stellar mass derived by Linear Regression and 
M5P, where A M p 

, A P , A M s 
, and C are fitting parameters. 

log 

(
R p 

R ⊕

)
= A M p 

log 

(
M p 

M ⊕

)
+ A P log 

(
P 

d 

)

+ A M s 
log 

(
M s 

M �

)
+ C. (5) 

Best-fitting parameters obtained by Linear Regression and M5P 

are listed in Table 4 . Row 1 presents the linear fit of all planets 
provided by the Linear Regression algorithm. Running this algorithm 

independently for clusters produces individual linear fit for each 
cluster (rows 2 and 3). For small planets A M s 

= 0, and for giant 
planets A M p 

= 0, implying no dependence between the planetary 
radius and stellar mass of small planets, as well as between the 
radius and mass of giant planets. 

M5P divides the planets into two groups using a mass breakpoint of 
log M p = 1.717 ( M p = 52.12 M ⊕). Interestingly, clustering algorithms 
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Table 4. Parametric equations obtained by different regression algorithms. Rows 1 to 7 present a linear 
fit, which equates the logarithm of planetary radius ( R p ) to logarithms of planetary mass ( M p ), orbital 
period ( P ), and stellar mass ( M s ) plus a constant term ( C ) (see equation ( 5 )). Row 8 presents a linear fit 
between planetary mass and radius as log ( R p /R ⊕) = A M p log ( M p /M ⊕) + C. The linear fit between the 
planetary radius and stellar mass is also presented in row 9 as log ( R p /R ⊕) = A M s log ( M s / M �) + C. The 
first column shows the row number. Column 2 presents the used data set: the entire data set, small planets, 
or giant planets. Best-fitting parameters are listed in columns 3 to 6. The last column presents the applied 
algorithm: Linear Regression, M5P, or MCMC. 

# Data set A M p A P A M s C Algorithm 

1 Entire 0 .367 − 0 .030 0 .280 0 .191 Linear Regression 
2 Small 0 .467 0 .090 0 − 0 .103 Linear Regression 
3 Giant 0 − 0 .069 0 .480 1 .157 Linear Regression 
4 Small 0 .481 0 .076 0 .016 − 0 .095 M5P 
5 Giant 0 .012 − 0 .067 0 .489 1 .123 M5P 
6 Small 0 . 482 + 0 . 025 

−0 . 024 0 . 078 + 0 . 017 
−0 . 016 0 . 031 + 0 . 041 

−0 . 042 −0 . 099 + 0 . 030 
−0 . 030 M5P and MCMC 

7 Giant 0 . 013 + 0 . 010 
−0 . 009 −0 . 070 + 0 . 007 

−0 . 007 0 . 492 + 0 . 036 
−0 . 036 1 . 121 + 0 . 024 

−0 . 024 M5P and MCMC 

8 Small 0 . 497 + 0 . 023 
−0 . 022 – – −0 . 050 + 0 . 024 

−0 . 024 MCMC 

9 Giant – – 0 . 480 + 0 . 036 
−0 . 037 1 . 109 + 0 . 004 

−0 . 004 MCMC 

also find this breakpoint (see Table 1 ). Rows 4 and 5 present 
multi v ariate linear fits of small and giant planets produced by the M5P 

algorithm. Splitting the data provides M5P with much better results 
than Linear Regression (see Table 3 ). To estimate the uncertainty 
values of the M5P’s best-fitting parameters, we use the MCMC 

method. The likelihood function and initial values implemented in 
the MCMC analysis are the same as those acquired by the M5P. In 
Table 4 , rows 6 and 7 present the linear fits of small and giant planets, 
respectively, together with the uncertainty values obtained by the 
MCMC method. Fig. 13 presents the distributions of the predicted 
and observed radii as a function of mass and orbital period, obtained 
by the M5P model for small (lower panel) and giant (upper panel) 
planets. The value of ρ2 for the whole sample is 0.930. The predicted 
radii reproduce the spread in radius, especially for giant planets. 

3.4 Dependence of planetary radius on host star’s mass 

There are inconsistent assertions in the literature about the depen- 
dence of planetary parameters on the host star’s mass. Pascucci 
et al. ( 2018 ) claimed that the mass of the most common exoplanets 
depends on their host star mass. They investigated G, K, and M stars 
and suggested that planets around relati vely lo w-mass stars (with a 
mass lower than 1M �) are lower in mass and smaller in radius. In 
contrast, Neil & Rogers ( 2018 ) showed that the mass–radius relation 
of small planets has no strong dependence on stellar mass. Wu ( 2019 ) 
discussed a linear relationship between exoplanet mass and host 
star mass and the lack of correlation between the planetary radius 
and stellar metallicity. In addition, Lozo vsk y et al. ( 2021 ) studied 
exoplanets with radii up to 8 R ⊕ and masses up to 20 M ⊕ surrounding 
G and K stars. The y confirmed that e xoplanets revolving around 
more massive stars tend to be larger and more massive. 

As can be seen in Table 4 , the radius of a small planet shows 
a strong dependency on its mass. Furthermore, there is no strong 
correlation between stellar mass and planetary radius for small 
planets. In comparison, the radius of a giant planet depends weakly 
on its mass because abo v e ∼8 R ⊕ the electron de generac y pressure 
dominates (Zapolsky & Salpeter 1969 ; Seager et al. 2007 ; Swift et al. 
2012 ). In addition to this, the planetary radius and stellar mass of 
giant planets have a strong linear correlation. We apply the MCMC 

as a supportive method to find the best scaling relations between 
the radius and mass of small planets and between the radius and 

Figure 13. Predicted (circles) and observed (pluses) radius as a function of 
a mass and orbital period obtained by the M5P model for small (lower panel) 
and giant (upper panel) planets. Four iso-density curves are also drawn: 
cold-hydrogen (blue dashed line), Earth-like rocky (green dash–dotted line), 
pure-iron (black dotted line), and pure rocky (solid crimson line) planets 
(Marcus et al. 2010 ; Becker et al. 2014 ). 
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Figure 14. Left-hand panel: the relation between mass and radius of small planets obtained by the MCMC method. The red line is the best scaling relation 
plotted using log ( R p / R ⊕) = 0.497log ( M p / M ⊕) − 0.050 (see Table 4 , row 8). The grey area is ±1 σ uncertainties around the best scaling relation. For better 
illustration, the data points have been binned with a width of 0.05 log M p . The binned and actual data are shown in black and grey circles. Right-hand panel: the 
one- and two-dimensional marginalized posterior distributions of the scaling relation parameters obtained by the MCMC method. A M p and C are the slope and 
intercept, respectively. The uncertainty around the best scaling relation is shown by σ . 

Figure 15. Left-hand panel: the relation between the radius of giant planets and the host star’s mass obtained by the MCMC method. The red line is the best 
scaling relation plotted using log ( R p / R ⊕) = 0.480log ( M s /M �) + 1.109 (see Table 4 , row 9). The grey area is ±1 σ uncertainties around the best scaling relation. 
For better illustration, the data points have been binned with a width of 0.05 log M s . The binned and actual data are shown in black and grey circles. Right-hand 
panel: the one- and two-dimensional marginalized posterior distributions of the scaling relation parameters obtained by the MCMC method. A M s and C are the 
slope and intercept, respectively. The uncertainty around the best scaling relation is shown by σ . 

stellar mass of giant planets while considering the reported errors of 
physical v alues. Ro w 8 of Table 4 presents the linear fit between the 
radius and mass of small planets. Additionally, the linear fit between 
the radius of giant planets and the mass of their host stars is presented 
in row 9. The related diagrams are depicted in Figs 14 and 15 . 

Giant planets are less dense than small planets (see the lower 
left-hand panel of Fig. 9 ) and mostly composed of volatile elements 
(hydrogen and helium envelopes). On the other hand, giant planets 
orbit stars more massive than ∼1M �, whereas the hosts of small 
planets include low-mass stars, that is, the y hav e a mass greater 
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than 0.08M � (see the upper right-hand panel of Fig. 9 ). Concen- 
trating on a limited sample of e xoplanets, Lozo vsk y et al. ( 2021 ) 
concluded that planets forming around massive stars accrete more 
H–He atmospheres than those that form around low-mass stars. Our 
e xtensiv e sample suggests a similar scenario for giant planets. Hence, 
the dependence of the radius of giant planets on the host star’s mass 
may result from their different planetary composition. It should be 
noted that, in addition to naturally correlated parameters, this trend 
with stellar mass might be a consequence of observational biases. 
The larger transiting exoplanets are more detectable around luminous 
stars with larger masses (Bhatti et al. 2016 ). 

3.5 Effect of equilibrium temperature, semimajor axis, and 

luminosity 

Bhatti et al. ( 2016 ) used a Random Forest model to assess the effect 
of different physical parameters on predicting a planet’s radius. They 
concluded that the planet’s mass and equilibrium temperature have 
the greatest effect. In a similar work, Ulmer19 presented planetary 
mass, equilibrium temperature, semimajor axis, stellar radius, mass, 
luminosity, and ef fecti ve temperature as important parameters, and 
stellar metallicity, orbital period, and eccentricity as the three least 
important parameters. We add orbital periods to the data set collected 
by Ulmer19 and transfer it to a logarithmic space. Hence, a new data 
set consisting of 506 planets is provided. The features of this data set 
are as follows: orbital period ( P ), planetary mass ( M p ), semimajor 
axis ( a ), equilibrium temperature ( T equ ), luminosity ( L ), stellar mass 
( M s ), stellar radius ( R s ), and ef fecti ve temperature ( T eff ). To e v aluate 
the effect of equilibrium temperature, semimajor axis, and luminosity 
in predicting planetary radius and to compare the performance 
of Random Forest and SVR models in Ulmer19 ’s data set, we 
implement models on the nine feature combinations. As the most 
important parameter, planetary mass is added to all combinations. 
Fig. 16 presents the RMSE values obtained by Random Forest 
and SVR versus different feature combinations. The SVR model 
performs better than Random Forest for all combinations. 

According to Kepler’s third law, the orbital period and semimajor 
axis are correlated to each other (Cox 2015 ). So, as expected, 
considering the SVR model, the RMSE values of the second (0.104) 
and third (0.103) combinations are not significantly different. The 
second combination consists of M p and a , while the third set includes 
M p and P . Moreo v er, the equilibrium temperature of a planet can be 
calculated using equation ( 6 ) without considering the effect of albedo 
and eccentricity (Laughlin & Lissauer 2015 ). 

T equ = 

√ 

R s 

2 a 
× T eff . (6) 

The fourth combination includes planetary mass and equilibrium 

temperature, and the fifth combination includes planetary mass and 
constituent parameters of equilibrium temperature ( a , R s , and T eff ). 
The SVR model’s RMSE values corresponding to the fourth and fifth 
sets are almost identical (0.096). 

The luminosity of a star is correlated to its radius and ef fecti ve 
temperature ( L ∝ R 

2 
s × T 4 eff ). The sixth combination is planetary 

mass and luminosity, whose RMSE value (0.100) is almost the 
same as the seventh combination, which includes planetary mass 
and constituent parameters of luminosity ( T eff and R s ). Additionally, 
the eighth set corresponds to features selected by Ulmer19 , including 
M p , T equ , a , R s , M s , L , and T eff , and the last set consists of M p , P , and 
M s , which we have selected. Using the SVR model, it is clear that 
there is no remarkable difference between the results obtained by 

Figure 16. Comparison of the performance of Random Forest and SVR 

models for different feature combinations. The data set consists of 506 planets 
collected by Ulmer19 and transferred to a logarithmic space. The dashed 
and solid lines represent RMSEs obtained by Random Forest and SVR, 
respectively. Features are as follows: orbital period ( P ), planetary mass ( M p ), 
semimajor axis ( a ), equilibrium temperature ( T equ ), luminosity ( L ), stellar 
mass ( M s ), stellar radius ( R s ), and ef fecti ve temperature ( T eff ). The eighth set 
consists of M p , T equ , a , R s , M s , L , and T eff , selected by Ulmer19 . The last set 
is our feature combination, which contains M p , P , and M s . The SVR model 
performs better than the Random Forest model for all combinations. 

these two feature sets. RMSE of our feature set equals 0.095 while 
0.096 for that used by Ulmer19 . 

Although Ulmer19 considered the orbital period as an incon- 
sequential parameter, here we show that the orbital period (or 
semimajor axis), along with the planet’s mass and one of the 
stellar parameters, have remarkable effects on predictions. More- 
o v er, contrary to the results acquired by Bhatti et al. ( 2016 ) and 
Ulmer19 , it seems that considering stellar luminosity and planetary 
equilibrium temperature as features do not impro v e the accuracy 
of planetary radius predictions. Luminosity and equilibrium tem- 
perature are two physically dependent parameters. Thus, simi- 
lar results can be achieved only by considering their constituent 
parameters. 

4  SUMMARY  A N D  C O N C L U S I O N S  

In this study, we conduct a comprehensive analysis of a sample 
comprising 762 exoplanets and eight Solar system planets. Our main 
objective is to investigate the characteristics of these exoplanets 
and explore the correlations between various features. The data 
set includes essential parameters such as orbital period ( P ) and 
eccentricity ( e ), planetary mass ( M p ), and radius ( R p ), and the stellar 
mass ( M s ), radius ( R s ), metallicity (Fe/H), and ef fecti ve temperature 
( T eff ). 

To ensure the reliability of our analysis, we employ the LOF 

algorithm, which allows us to identify and filter out data points that 
deviate significantly from the o v erall data set. This process leads us 
to a refined data set consisting of 76 anomalous objects, which can be 
considered as robust and reliable measurements for our subsequent 
analysis. 

By utilizing FS methods, we determine the most influential factors 
in predicting the radius of exoplanets. Our findings highlight that 
planetary mass ( M p ) plays a pivotal role in this regard, whereas 
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eccentricity ( e ) and metallicity (Fe/H) demonstrate relatively lesser 
significance in the prediction process. 

To further understand the underlying structure of the data set, 
we employ various clustering algorithms and evaluation techniques 
such as the Elbow, Silhouette, and Hierarchical methods. Based on 
the outcomes of these analyses and in alignment with the conclusions 
drawn by Bashi et al. ( 2017 ), we opt to divide the data set into two 
distinct clusters: small and giant planets. Notably, we observe distinct 
breakpoints in the mass–radius space at M p = 52.48 M ⊕ and R p = 

8.13 R ⊕ for these clusters. 
Our analysis unco v ers significant disparities between small and 

giant planets. Giant planets tend to exhibit higher masses, larger 
radii, and lower densities, suggesting a pre v alence of volatile-rich 
exoplanets in this category . Additionally , these giant planets tend to 
orbit their host stars at closer distances and possess higher equilib- 
rium temperatures. On the other hand, small planets predominantly 
consist of elements heavier than hydrogen and helium, exhibiting 
lower equilibrium temperatures. 

To predict the planetary radius, we employ various ML regression 
models. Among these models, the SVR demonstrates superior 
performance, yielding an RMSE of 0.093. A discernible linear trend 
appears in the residuals between predicted and observed radii of giant 
planets, which is not attributed to the restrictions of the predictive 
models or calculation issues. This evident trend has no significant 
impact on the radius predictions and is possibly related to the 
systematic issues in the exoplanet observations or the determination 
of physical parameters. 

Additionally, utilizing Linear Regression, M5P, and MCMC meth- 
ods, we establish a positive linear mass–radius relationship for small 
planets. In contrast, the radius of giant planets exhibits a positive 
correlation with the mass of their host stars, consistent with the 
findings presented by Lozo vsk y et al. ( 2021 ), which suggest a 
connection between volatile-rich planets and more massive host stars. 
None the less, as most of our sample consists of transiting exoplanets, 
besides naturally correlated parameters, the observational bias in the 
detection method can explain this result. 

Furthermore, our analysis reveals that a carefully selected subset 
of features, encompassing planetary mass, orbital period, and one of 
the stellar parameters (stellar mass, radius, or ef fecti ve temperature), 
is sufficient for accurate radius prediction. The inclusion of additional 
features such as semimajor axis, equilibrium temperature, and 
luminosity does not yield substantial impro v ements in the predictiv e 
capability. 

Looking ahead, a comprehensive understanding of exoplanet 
composition and structure, as well as the testing of theories related 
to planetary formation and evolution, necessitates further follow-up 
observations. The JWST and future missions such as the Extremely 
Large Telescope (ELT), the Atmospheric Remote-sensing Infrared 
Exoplanet Large-survey (ARIEL) , and the Planetary Transits and 
Oscillations of Stars (PLATO) mission will undoubtedly contribute 
invaluable insights into the atmospheric characteristics of exoplanets 
and the determination of stellar ages, thereby facilitating a more 
detailed exploration of exoplanetary systems. 
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APPENDI X  A :  DATA -C LEA N IN G  A N D  ITS  

I MPACT  O N  PREDI CTI ON  AC C U R AC Y  

Our data set contains 770 data points. The LOF method is chosen 
to identify outlier observations. It is first applied to all parameters 
including P , e , M p , R p , M s , R s , Fe/H, and T eff , and then to R p and 
M p . The first step determines 39 outliers with an average score of 
1.951, where the higher the LOF score, the more abnormal the data 
point. In comparison, the average score of inliers is 1.113. The 
second step determines 37 outliers and assigns average scores of 
2.113 and 1.061 to the outlier and inlier data points, respectively. 
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Figure A1. RMSE values of different ML regression models implemented 
in uncleaned (grey bars) and cleaned (white bars) data sets. All models have 
higher RMSE values when outliers are included in the data set. 

In total, the LOF marks 76 data points as outliers. The outliers 
have an average Mahalanobis distance of 18.050, compared to 6.888 
for the inliers. This indicates that the 76 outlier data points are 
f arther aw ay from the data set’s central point than the inliers. It 
is interesting to note that identified outliers have higher uncertainties 
than inliers. In a logarithmic scale, outlier data points have an average 
uncertainty of 0.19 for planetary mass and 0.05 for planetary radius. 
In comparison, these values for inlier data points are 0.11 and 0.04, 
respectively. 

To quantify the impact of outliers on prediction precisions, we 
run ML regression models on the data set containing all 770 data 
points. Fig. A1 compares the prediction accuracy obtained from the 
uncleaned (with outliers) and cleaned (without outliers) data sets. 
As can be seen, all models perform remarkably better when outliers 
are remo v ed from the data set, demonstrating the significance of the 
data-cleaning step in predicting the planetary radius. 

APPEN D IX  B:  I M PAC T  O F  DATA  RE-SCAL I NG  

O N  P R EDIC TION  A  C C U R A  C Y  

We process both logarithmic and non-logarithmic data sets to un- 
derstand the effect of data re-scaling on predicting planetary radius. 

Figure B1. RMSE values of different ML regression models implemented 
in logarithmic (white bars) and non-logarithmic (grey bars) data sets. 
Bootstrap Aggregation and Random Forest models do not show a remarkable 
difference between logarithmic and non-logarithmic scaling. In contrast, other 
algorithms, particularly the SVR, provide better results on a logarithmic 
scale. 

Fig. B1 compares the RMSE values corresponding to different mod- 
els applied in non-logarithmic and logarithmic data sets. Bootstrap 
Aggregation and Random Forest slightly differ between logarithmic 
and non-logarithmic scaling. In contrast, other algorithms, particu- 
larly SVR, provide better results on a logarithmic scale. Transforming 
the exoplanet data into a logarithmic space helps handle the wide 
range of values by compressing them, allowing the ML model 
better to capture the underlying patterns and relationships within the 
data. Moreo v er, logarithm transformation efficiently addresses data 
skewness and outliers. When data do not follow a normal distribution 
and contain extreme values, the logarithmic space helps mitigate the 
influence of outliers by compressing their impact and making the 
data more symmetrical. 
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