
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Hakula, Harri
Effects of Internal Boundary Layers and Sensitivity on Frequency Response of Shells of
Revolution

Published in:
Vibration

DOI:
10.3390/vibration6030035

Published: 01/09/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Hakula, H. (2023). Effects of Internal Boundary Layers and Sensitivity on Frequency Response of Shells of
Revolution. Vibration, 6(3), 566-583. https://doi.org/10.3390/vibration6030035

https://doi.org/10.3390/vibration6030035
https://doi.org/10.3390/vibration6030035


Citation: Hakula, H. Effects of

Internal Boundary Layers and

Sensitivity on Frequency Response of

Shells of Revolution. Vibration 2023, 6,

566–583. https://doi.org/10.3390/

vibration6030035

Academic Editor: Aleksandar Pavic

Received: 5 April 2023

Revised: 14 July 2023

Accepted: 17 July 2023

Published: 18 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

vibration

Article

Effects of Internal Boundary Layers and Sensitivity on
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Abstract: New applications introduced capsule designs with features that have not been fully
analysed in the literature. In this study, thin shells of revolution are used to model drug delivery
capsules both with closed and open designs including perforations. The effects of internal boundary
layers and sensitivity on frequency response are discussed in the special case with symmetric
concentrated load. The simulations are carried out using high-order finite element method and
the frequency response is computed with a very accurate low-rank approximation. Due to the
propagation of the singularities induced by the concentrated loads, the most energetic responses
do not necessarily include a pinch-through at the point of action. In sensitive configurations, the
presence of regions with elliptic curvature leads to strong oscillations at lower frequencies. The
amplitudes of these oscillations decay as the frequencies increase. For efficient and reliable analysis
of such structures, it is necessary to understand the intricate interplay of loading types and geometry,
including the effects of the chosen shell models.

Keywords: frequency response; shells; boundary layers; finite element method

1. Introduction

Recent advances in pharmacology have led to the introduction of long-term drug
delivery devices, typically implants intended for insertion into human bodies (see, for
instance, the overview by Auvinen et al. [1]). Ultimately, these devices will have character-
istics that maximise the payload volume. Hence, modeling such devices as thin shells of
revolution is reasonable. In Figure 1, three proposed designs for prototypes of monolithic,
reservoir-type implants are illustrated. It should be noted that the current manufacturing
techniques constrain the payload volume maximisation under external constraints.

When inside bodies, the implants are subject to external pressure loading, for instance.
within the upper arm muscles. In some circumstances, the effect can be local; however,
the frequencies are low. The capsules are filled with injectable drug-releasing hydrogel
formulations, which are shear thinning, and therefore any fluid–structure interactions can
be omitted from the model. The open end or perforations (if included) are the channel
through which the drugs are released once the bonds within the gel are broken. For the
monolithic open-end designs, the expected drug release rate is based on the ideal shape of
the open end of the capsule [1]. For perforated ones, the release rate is a function of the
internal pressure and the hole coverage percentage. There are many solutions for activation
of drug release including electromagnetically controlled vibrations.

Ultimately, the goal of computational mechanics in this class of applications would be
to apply topology optimisation to optimise for structural properties and drug release rates,
for instance, material or fluid flow [2]. There have been significant interest and advances
addressing these concerns in the literature covering different geometric configurations,
time domains, and characteristic length scales in materials.
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(a) (b) (c)

Figure 1. Three realistic capsule designs with the limit payload regions indicated. The first design
(a) is a cylinder, whereas the other two (b,c) have non-uniform curvature inner shells. Images courtesy
of V. Auvinen/University of Helsinki.

Thin structures and shells in particular have been studied by many authors; the
standard reference is Chapelle and Bathe [3]. The so-called sensitive shells (see book by
Sanchez-Palencia [4]) are a special class of structures with unusual characteristics. For
instance, the elliptic shells may lose coercivity as the dimensionless thickness tends to zero.
The resulting large displacements are not physical and one interpretation of the sensitivity
is that at the limit the Shapiro–Lopatinsky conditions of linear elasticity are not satisfied
any more. These shell-specific features emerge whenever only one end of the capsule is
sealed completely while the other one is either open or otherwise only lightly kinematically
constrained. Analysis is strictly restricted by the type of the Gaussian curvature of the shell.
If the shell profile is not uniform in some well-defined way, a priori analysis is not available
and numerical simulation is necessary. In Figure 1a, the shell profile is uniform, but in
Figure 1b,c this is not the case.

Concentrated loads or point loads are common and widely used in modeling. For
shells, they have an interesting role to play since they excite singularities that propagate
along the characteristics of the surface. There is a strong connection between the char-
acteristics and internal boundary layers. Formally, characteristics act as boundary layer
generators for the internal layers. Depending on the shell geometry, it may happen that due
to superposition of boundary layers, even in the case of concentrated loads, the maximal
displacements can occur far away from the point of action of the load. In other words,
where one would expect a simple local pinch through, something quite global, i.e., practical
resonance, can result as a response. Free vibration of perforated shells and its relation to
standard cases has been covered in [5,6].

Elliptic surfaces cannot have internal layers; however, if the elliptic shell is sensitive,
the deformations need not be local, that is, occurring only close to the point of action. In a
very recent paper, it has been observed that in idealised configurations, concentrated loads
can create secondary pinch-through effects via boundary layer superposition [7].

Frequency response analysis of perforated shells has been studied by this author
previously; see [8,9]. There, the focus was on material uncertainty and stochastic finite
element method when the dimensionless thickness tended to zero. Somewhat surprisingly,
the local effects have boundary-layer induced amplification of deformation amplitudes and
hence become dominant features in the asymptotic process.

1.1. Novelty of This Work

The goal of this study is to systematically examine the combined effects of the many
features present in thin structures on their frequency response under concentrated loading.
In particular, the shell models and geometries, with special emphasis on local curvature,
and kinematical constraints are in focus. Material properties are included indirectly in the
form of perforated structures.

Two associated questions are related to relevant quantities of interest and efficient
simulation techniques, respectively. In numerical simulations. measuring energy is natural
since the related convergence analysis of the finite element method is well understood.
Similar results for displacements are not available, and for the high-order methods it is
known that related convergence is oscillatory and not monotonic. Here, the interest lies in
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whether the most energetic responses and maximal displacements are strongly correlated
or not. Even for dimensionally reduced shell models, computational costs can be very
high, especially if the domain is complicated, which is certainly the case for perforated
structures. Low-rank approximations are one candidate to alleviate this issue, and the
numerical evidence presented here supports this.

The results obtained here show that local concentrated loads can lead to global effect
or practical resonance via boundary layer superposition in frequency response. Indeed, the
most energetic responses correlate strongly with maximal displacements if the kinematical
constraints are strong; in other words, the shell is fully clamped. This correlation is
weakened somewhat if some of the constraints are weakened. The effect of the shell models
also plays an important role. In problems addressing thin structures, it is necessary for
engineers to have sufficient understanding of the assumptions underlying the designs of
different models. Different levels of geometry approximation may lead to qualitatively
different solutions as is shown in the numerical experiments.

Finally, the sensitivity of shells, as defined above, also has an effect in frequency
response. In sensitive configurations, the presence of regions with elliptic curvature leads
to strong oscillations at lower frequencies. The amplitudes of these oscillations decay as
the frequencies increase. This is in agreement with theoretical predictions [4,10].

1.2. Brief Review of Literature

The first two papers considering pressure loading were by Pitkäranta and Sanchez-
Palencia [10], and the fist papers including symmetric point loads were by Bathe et al. [11].
In eigenproblems, sensitivity was first discussed in [12] and later comprehensively in [13].

Imperfections, either material or geometric, are important in the context of shell
structures [14]. One of the numerical sources of imperfections is the description of shell
geometry. Isogeometric methods rely on exact description of the shell surface [15]. Here,
the exact geometry description is achieved via a special variant of the Naghdi model [16]
for shells of revolution due to Malinen [17]. The Koiter model used by Sanchez-Palencia in
his analysis requires C1 finite elements [4].

For parameter-dependent problems, purely numerical sources of error such as numer-
ical locking have to be taken into account. The pragmatic definition of numerical locking is
to take it as the loss of the optimal convergence rate [18,19]. There are, broadly speaking,
two standard approaches to alleviate the possible locking—either one modifies the vari-
ational formulation [20] or relies on high-order finite elements, i.e., the hp-version of the
FEM [21,22] and adaptivity. Here, the latter approach is adopted. Adaptivity was also used
by Sanchez-Palencia [4]. One further option is to use well-tuned low-order elements [23,24].

One way to alleviate the problems related to complicated perforated computational do-
mains is to homogenise the materials. For recent work on simple strategy in eigenproblems,
see [6].

For applications of frequency response analysis in topology optimisation, see, for
instance, works with focus on sensitivity analysis [25], materials [26], time domain [27],
maximal response minimisation [28], and damping material design [29].

1.3. Structure of Discussion

The rest of the paper is structured as follows: In Section 2, the thin shell problem setting
is set including the perforation patterns. Frequency response and especially the low-rank
variant used here is outlined in Section 3. The boundary layer structure of the standard
geometry types as well as the propagation of singularities are discussed in Section 4 before
the extensive set of numerical simulations examined in Section 5. Finally, conclusions are
drawn in Section 6.
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2. Preliminaries on Shells

In this section, the properties of thin shell structures are reviewed. In addition to shell
geometry and the variational formulation necessary for the finite element method, the shell
specific concept of sensitivity is briefly introduced.

2.1. Shell Geometries

There are many ways to define a shell of revolution. Consider an axis of revolution, the
x-axis in the sequel, and some profile function f (x) defined over an interval x ∈ I = [x0, x1].
The profile function induces the type of Gaussian curvature (see, for instance, [30]) of the
shell surface. This classification follows directly from the second derivatives of the profile
function. The analysis of shell problems is based on the assumption that the type of shell
curvature is uniform. If this condition does not hold universally, the classification remains
meaningful locally. An example of a parabolic shell with the associated 2D computational
domain is given in Figure 2.
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Figure 2. Reference configurations. (a) Parabolic shell of revolution. (b) Perforated computational
domain. Boundaries at y = 0 and y = 2π are periodic. Clamped case: All displacements are inhibited
at x± π. Sensitive case: All displacements are inhibited at x = −π only. Regular 20× 20 grid with
all holes free where the hole coverage percentage is 25%.

For all x ∈ I, the following characterisation is widely applied: If f ′′(x) = 0, f ′′(x) < 0,
or f ′′(x) > 0, then the shell is said to be parabolic, elliptic, or hyperbolic, respectively.

2.2. Perforations

Perforated domains are characterised by the penetration patterns which in turn depend
on the underlying manufacturing processes and the related hole coverage, typically given
as a percentage; see Figure 2.

The ligament efficiency η is the quantity used to characterise perforated sheets of metal.
Assuming that the holes are ellipses with a, b as the horizontal and perpendicular semiaxis,
and the separation of the centres is Px and Py, respectively, one can define horizontal and
perpendicular ligament efficiency, denoting them ηx, ηy, respectively; see [31–33] for the
original definitions. For regular arrays of holes,

ηx = (Px − 2 a)/Px, ηy = (Py − 2 b)/Py, (1)

and for triangular arrays, allowing for alternating layers,

ηx = (Px − 4 a)/Px, ηy = (Py − 4 b)/Py. (2)
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For circular holes, radius r = a = b, of course, and further, if the pattern is regular,
η = ηx = ηy. Both pattern types are illustrated in Figure 3. Notice that the triangular
pattern in the figure has a tighter packing than that implied by Equation (2).
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(b)

Figure 3. Penetration patterns: (a) Regular pattern. (b) Triangular pattern.

2.3. Shell Models

Every shell is considered to be a three-dimensional body for which the 3D theory of
linear elasticity could be considered exact for small deformations. The approach taken
here is that the shell problem is defined on the mid-surface ω of the 3D body under the
assumption that the thickness d is constant. Such models are often reasonably accurate for
thin shells [34]. The model considered here is named after Naghdi. The displacement field
u has five components: the tangential displacements u, v, the transverse deflection w, and
the dimensionless rotations θ, ψ. The shell is further assumed to consist of homogeneous
isotropic material with Young modulus E and Poisson ratio ν. The total energy of the shell
is expressed as

F (u) = 1
2

D(a(u, u) + d2 b(u, u))− q(u), (3)

where D = E d/(12(1− ν2)) is a scaling factor (see, for instance, [35]), q is the external load
potential, and a(u, u) and b(u, u) represent membrane and transverse shear and bending
deformations, respectively. For source problems, the resulting linear system is Sx = b,
where S is the stiffness matrix and b in the fully integrated load potential.

a(u, u) and b(u, u) are quadratic forms independent of d and defined as

a(u, u) = am(u, u) + as(u, u)

= 12
∫

ω

[
ν(β11(u) + β22(u))2 + (1− ν)

2

∑
i,j=1

βij(u)2
]

A1 A2 dγ + (4)

6(1− ν)
∫

ω

[
(ρ1(u)2 + ρ2(u))2

]
A1 A2 dγ,

b(u, u) =
∫

ω

[
ν(κ11(u) + κ22(u))2 + (1− ν)

2

∑
i,j=1

κij(u)2
]

A1 A2 dγ, (5)

where βij, ρi, and κij stand for the membrane, transverse shear, and bending strains,
respectively. The strain–displacement relations involve at most first derivatives of the
displacement components, and are linear, of course. The principal curvature coordinates,
where there are only four parameters, the radii of principal curvature R1, R2, and the
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so-called Lamé parameters, A1, A2, which relate coordinate changes to arc lengths, are
needed to specify the curvature and the metric on Γ. Here,

A1(x) =
√

1 + [ f ′(x)]2, A2(x) = f (x), (6)

and

R1(x) = −A1(x)3

f ′′(x)
, R2(x) = A1(x)A2(x). (7)

Using the identities above, the bending, membrane, and shear strains [17], κij, βij, and
ρi, respectively, have the following expressions: First, bending with strong dependence
on rotations:

κ11 =
1

A1

∂θ

∂x
+

ψ

A1 A2

∂A1

∂y
,

κ22 =
1

A2

∂ψ

∂y
+

θ

A1 A2

∂A2

∂x
,

κ12 = κ21 =
1
2

[
1

A1

∂ψ

∂x
+

1
A2

∂θ

∂y
− θ

A1 A2

∂A1

∂y
− ψ

A1 A2

∂A2

∂x
(8)

− 1
R1

(
1

A2

∂u
∂y
− v

A1 A2

∂A2

∂x

)
− 1

R2

(
1

A1

∂v
∂x
− u

A1 A2

∂A1

∂y

)]
;

second, membrane with no dependence on rotations:

β11 =
1

A1

∂u
∂x

+
v

A1 A2

∂A1

∂y
+

w
R1

,

β22 =
1

A2

∂v
∂y

+
u

A1 A2

∂A2

∂x
+

w
R2

, (9)

β12 = β21 =
1
2

(
1

A1

∂v
∂x

+
1

A2

∂u
∂y
− u

A1 A2

∂A1

∂y
− v

A1 A2

∂A2

∂x

)
;

third, shear with a very different structure:

ρ1 =
1

A1

∂w
∂x
− u

R1
− θ, (10)

ρ2 =
1

A2

∂w
∂y
− v

R2
− ψ.

Remark 1. When the shell parametrisations defined above are used, all terms of the form ∂Ai/∂y
are identically zero.

The energy norm ||| · ||| is defined in a natural way in terms of deformation energy:

E(u): = |||u|||2 = a(u, u) + d2 b(u, u). (11)

Similarly for bending, membrane, and shear energies, B(u): = d2 b(u, u), M(u): =
am(u, u), S(u): = as(u, u).

The load potential has the form q(v) =
∫

ω f(x, y) · v A1 A2 dx dy. It is assumed that the
load acts in the transverse direction of the shell surface, i.e., f(x, y) = [0, 0, fw(x, y), 0, 0]T .
For load f ∈ [L2(ω)]5, the variational problem has a unique weak solution u ∈ [H1(ω)]5,
and the corresponding result holds for all finite dimensional cases, in particular if the finite
element method is applied.
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When t→ 0, the asymptotic displacement exists only if the load amplitude is correctly
scaled; see Malinen and Pitkäranta for details [36].

The mass matrix is defined as M(d) = ρd(Ml + d2 Mr), with Ml (displacements) and
Mr (rotations) independent of d, where ρ is the material density.

2.4. Shallow Shell Model

If the shell is shallow, that is, the midsurface differs only slightly from a plane, one can
arrive at a much simpler shell model. The fundamental assumption is that the curvature
tensor {bij} of the midsurface is constant. One can set a = b11, b = b22, and c = b12 = b21.
The classification of shell surfaces then reduces to the following: The shell is called elliptic
when a b− c2 > 0, parabolic when a b− c2 = 0, and hyperbolic when a b− c2 < 0. Then,
dω = dxdy, and the relation between the strain and the displacement fields is written as

β11 =
∂u
∂x

+ aw, β22 =
∂v
∂y

+ bw, β12 =
1
2

(
∂u
∂y

+
∂v
∂x

)
+ cw,

ρ1 = θ − ∂w
∂x

, ρ2 = ψ− ∂w
∂y

,

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
, κ12 =

1
2

(
∂θ

∂y
+

∂ψ

∂x

)
.

(12)

This simplified shell model is advantageous from the point of view of design of
numerical experiments. The fact that the model admits shell geometries that are non-
realizable—after all, the local curvature cannot be constant over the whole surface—makes
it possible to isolate layer-induced features in a way that is not possible in more realistic
settings. Shallow shell model is sometimes referred to as the mathematical shell model.

The Naghdi and shallow shell models differ only in κ12 and ρ1, when for the parabolic
case of f (x) = 1. The implementation of the shallow shell model is greatly simplified by
the fact that every resulting system has constant coefficients.

2.5. Sensitive Shells

If the shell structure is only partially kinematically constrained, the shell becomes
sensitive. In the setting here, the typical configuration is where a shell of revolution is
clamped at one end but free at the other. Strictly speaking, any perforated shell with free
holes is locally sensitive. Sensitivity means that small changes in the configuration can lead
to large changes in response. In particular, for elliptic shells, this can be dramatic in that the
fundamental assumptions of elasticity are no longer valid, and the correct interpretation of
the results is meaningful only in a strictly mathematical sense.

In typical static loading problems, it has been observed that in mixed geometry
configurations, the shell becomes strongly sensitive if any part of the profile function is
elliptic. Interestingly, in frequency response, the elliptic part does not necessarily dominate
the most energetic response.

3. Frequency Response

In this section, the linear algebra formulation of the frequency response analysis used
in the simulation below is outlined. We recall the definitions of the stiffness and mass
matrices in Section 2.4. The equation of motion for the system has the following form [37]:

Mv̈ + Cv̇ + Sv = f, (13)

where M is the mass matrix, C the viscous damping matrix, S the stiffness matrix, f the
force vector and v the displacement vector. The viscous damping matrix C is not unique.
Here, it is a linear combination of M and S. This choice is often called proportional Rayleigh
damping, and its special structure is exploited in the low-rank approximation formulation
used in simulations.
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A steady-state solution is sought in the case of harmonic excitation. The angular
frequency is ω = 2π f , where f is the ordinary frequency. The units are rad s−1 and
Hz, respectively.

The force and the corresponding response have harmonic function representations as

f = f̂(ω)eiωt,
v = v̂(ω)eiωt.

(14)

Taking the first and second derivatives of Equation (13) and substituting using
Equation (14) leads to

−ω2Mv̂(ω)eiωt + i ωCv̂(ω)eiωt + Sv̂(ω)eiωt = f̂(ω)eiωt, (15)

finally reducing to a linear system of equations:

(−ω2M + i ωC + S)v̂(ω) = f̂(ω). (16)

There are many quantities of interest that can be derived from solution v̂. The natural
energy norm (here, it is mechanical energy) is a mathematically reasonable choice, even
though in practice it may be difficult to measure since it depends on all components in
the vector field. Maximal deflections are convenient but often lack mathematical rigour in
that the presence of boundary layers makes it difficult to guarantee rates of convergence
or even convergence. In the simulations below, it is observed that the maximal transverse
deflection and the most energetic response are strongly correlated.

3.1. Damping Model

The Rayleigh damping model defines the viscous damping matrix as C = ζ(αS+ βM),
where the parameters α > 0, β > 0, and ζ > 0. The choice of parameters α + β = 1 and ζ is
typically based on experimental results and previous experience and need not stay constant
for a given structural model depending on external conditions. This choice of damping
(proportional damping) has a useful property: it preserves the eigenspace of the original
undamped problem. Another option would be to use simple diagonal damping.

3.2. Low-Rank Approximation

The fact that the Rayleigh damping preserves the eigenspace can be exploited in
searching for a suitable subspace V of (small) rank r such that, for instance, Mr = VTMV
(the subscript r denotes reduced matrix), and hence the solution of the reduced system,

Mrv̈ + Crv̇ + Srv = f, (17)

is sufficiently close to that of the full problem.
The reduced system in Equation (17) can be set to match the first n moments of the

original full-order system [38]. This is achieved by selecting a suitable Krylov subspace [39].
Using standard notation from numerical linear algebra, a Krylov basis of dimension n is
denoted as

colspan(V) = Kn(−S−1M, S−1f). (18)

The proportional damping guarantees that the construction is valid for any choice of α
and β. This dimension reduction has proven to be remarkably efficient. In shell problems,
the practical n� dim S.

4. Layers

Each shell geometry type possesses a distinctive set of layer deformations. It is useful
to define the concept of boundary layer generators first.
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Definition 1 (Layer Generator). The subset of the domain from which the boundary layer decays
exponentially is called the layer generator. Formally, the layer generator is of measure zero.

Pitkäranta, Matache, and Schwab [34] is the basic reference for layers with non-curved
generators. The layer generators are geometric entities and thus independent of the length
scale of the problem under consideration. In perforated structures, the layer structure is
rich due to every hole being a natural layer generator. Even if the domain is perforated, the
characteristics of the shell surface can still act as layer generators.

Classically, the layer structure is derived from the exponential solution to the homoge-
neous Euler equations of the shell problem. Using the Ansatz, u(s, r) = Ueλseikr, one can
show that solutions with Re λ < 0 such that the characteristic lengths L = 1/Re λ→ 0 are
of the form L ∼ d1/n where n ∈ {1, 2, 3, 4}. Here, k is the wave number of the Fourier mode,
and s, r are locally rotated coordinates such that s is the coordinate orthogonal to the layer
generator and r the one along the generator. The layers with n = 3 and n = 4 are present
only in hyperbolic and parabolic geometries, respectively. The layer with n = 2 is present
in all geometries. The case n = 1, i.e., the shortest one, arises from a shear deformation and
can be captured by the Naghdi type shell models such as the shallow shell formulation,
if necessary.

In simulations, thickness d is replaced by dimensionless thickness t = d/R, where
R is, for instance, the radius of the shell. The exact predicted scales are given in Table 1
and visualised in Figure 4. For shells with non-uniform curvature type, different layers are
possible depending on the local curvature type.
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Figure 4. Layer charts for different geometries. (a) Parabolic. (b) Hyperbolic. The arrows indicate the
direction in which the width of the layer varies.

Table 1. Characteristic length scales as functions of the dimensionless thickness.

Geometry Boundary Layer Internal Layer Boundary Oscillation

Parabolic t,
√

t 4
√

t -
Hyperbolic t,

√
t 3

√
t -

Elliptic t,
√

t - K ∼ − log t

Propagation of Singularities

It is one of the unique properties of thin shells that singularities such as those induced
by concentrated loads are propagated along the characteristics of the surfaces. This is also
present in frequency response problems. In Figures 5 and 6, two responses are shown with
surface and contour plots. In the hyperbolic case, the characteristic line curves will be
normal to the boundary (in the limit sense).
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Figure 5. Most energetic response: Parabolic (Naghdi). (a) Surface. (b) Contours. Clamped case,
symmetric point load at ω = 90 π rad s−1.
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Figure 6. Most energetic response: Hyperbolic (Naghdi). (a) Surface. (b) Contours. Clamped case,
symmetric point load at ω = 130 π rad s−1.

5. Numerical Simulations

Numerical simulations cover different geometry types and shell models where applica-
ble while keeping the dimensionless thickness constant, t = 1/100 (see Figures 2 and 7, and
Table 2). In all cases, the material parameters are the same: E = 2.069× 1011 MPa, ν = 1/3,
and ρ = 7868 kg m−3, unless otherwise specified. For damping, the selected weights
are simply α = β = 1/2, and ζ = 1/2000 (see also [8,9]). The loading is a symmetric
concentrated load (in N),

f (x, y) = C2 exp(−100((x− x0)
2 + (y− y0)

2))+

C2 exp(−100((x− x0)
2 + (y− (y0 + π)2))), (19)

where point (x0, y0) is where the load acts, i.e., is concentrated, and C is a scaling parameter.
In the following, x0 = −π/10, y0 = π/2, and C = 103. All cases were computed using
the low-rank approximation with rank r = 6. This choice is based on calibration with full
analysis. In [9], where only constant coefficient cases were considered, r = 4 was sufficient.
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(a) (b)

Figure 7. Reference configurations. (a) Hyperbolic shell of revolution. (b) Shell of revolution with
nonuniform curvature type.

Table 2. Simulation configuration data. Computational domain Ω = [−π, π]× [0, 2π].

Geometry Shell Model Profile Data

Parabolic Naghdi f (x) = 1
Shallow a = 0, b = 1, c = 0

Hyperbolic Naghdi f (x) = 1 + (1/2)(x/π)2

Shallow a = 1, b = −1, c = 0

General Naghdi f (x) = 4/5 + (1/5) tanh(−2(x− π/2))

In all cases, x ∈ [−π, π] so that the 2D computational domain is D = [−π, π]× [0, 2π].
For the perforated domain, the perforation pattern is 20× 20 with a high hole coverage
25%. The p-version of the finite element method is used with uniform p = 4, which is
sufficient to prevent numerical locking effects dominating the solution. Every case includes
four parts: perforated and non-perforated configurations, each with clamped and sensitive
boundary conditions. Parabolic and hyperbolic cases include additional shallow shell
configurations. The selected frequency range is f ∈ [5, 100] at 5 Hz intervals. The observed
angular frequencies of the most energetic response and the correlation between energies
and transverse displacements are given in Table 3.

Table 3. Simulation results. Observed angular frequency of the most energetic response and the
correlation between energies and transverse displacements.

Geometry Shell Model Mesh BC ω rad s−1 Correlation

Parabolic Naghdi
Standard Clamped 130 π 0.82

Sensitive 80 π 0.68

Perforated Clamped 80 π 0.88
Sensitive 30 π 0.94

Parabolic Shallow
Standard Clamped 90 π 0.89

Sensitive 90 π 0.62

Perforated Clamped 80 π 0.87
Sensitive 30 π 0.99

Hyperbolic Naghdi
Standard Clamped 130 π 0.69

Sensitive 70 π 0.69

Perforated Clamped 110 π 0.84
Sensitive 60 π 0.90
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Table 3. Cont.

Geometry Shell Model Mesh BC ω rad s−1 Correlation

Hyperbolic Shallow
Standard Clamped 200 π 0.99

Sensitive 160 π 0.83

Perforated Clamped 190 π 0.99
Sensitive 120 π 0.72

General Naghdi
Standard Clamped 100 π 0.77

Sensitive 40 π 0.95

Perforated Clamped 90 π 0.91
Sensitive 100 π 0.60

Only selected examples are visualised. In some cases, the most energetic responses are
shown as surfaces and contour plots, in others the correlation between the energies and
maximal transverse displacements is illustrated with multi-axis-plots where two graphs
with different scales are plotted together.

The discretised system with standard or regular mesh at p = 4 has 51,000 d.o.f, and the
perforated one has 362,380. One solution set over the whole range of frequencies takes on
the average 20 s for the standard and 180–260 s for the perforated one, where the difference
is due to numerical integration in cases where the geometry parameters are not constant.

5.1. What to Expect

In free vibration, the eigenmodes of the shells of revolution are periodic in the angular
direction with trigonometric oscillations. In this set of experiments, the loading is also
symmetric, so the responses should be periodic as well. Therefore, the most energetic
responses need not include any traces of the pinch-through.

In sensitive cases, the eigendynamics have not been reported in the literature.

5.2. Analysis

The results displayed in Table 3 indicate that the correlation between the most energetic
responses and the maximal transverse deflection is moderately positive, even in the most
challenging case with perforated general geometry. All cases with standard correlation less
than 0.8 are indicated with bold font. They are mostly but not exclusively sensitive ones.
Interestingly, in the sensitive variant of the perforated general geometry case, the observed
angular frequency of the most energetic response is higher than that in the clamped variant
(also indicated with bold font). This underlines the peculiar interactions of elliptic regions
and free boundaries in thin shells.

As expected, in the parabolic case, the shallow shell approximation is remarkably
accurate. Figures 5, 8 and 9 display similar oscillations in the angular direction. The last
one is the sensitive case, where the oscillations at the free boundary are not the dominant
feature. In Figure 8a, the pinch-through is visible.

For the hyperbolic case, the shallow shell model with the chosen parameters is not
realistic. Comparison between Figures 6 and 10 reveals very different responses. The
contour plots show that the singularities are propagated along different characteristics.
In particular, the characteristics in the idealised geometry are reflected at the boundary
leading to a strong interference pattern. In both cases, the pinch-through is present, though
much stronger in the shallow shell formulation. In Figure 11, in the sensitive case, the super-
position of the layers results in strong oscillations as suspected based on the observations
in [7].
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Figure 8. Most energetic response: Parabolic (Shallow Shell Model). (a) Surface. (b) Contours.
Clamped case, symmetric point load at ω = 90 π rad s−1.
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Figure 9. Most energetic response: Parabolic (Naghdi). (a) Surface. (b) Comparison of energy and
displacement. Clamped case.
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Figure 10. Most energetic response: Hyperbolic (Shallow Shell Model). (a) Surface. (b) Contours.
Clamped case, symmetric point load at ω = 200 π rad s−1.
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Figure 11. Most energetic response: Hyperbolic (Naghdi). (a) Surface. (b) Contours. Sensitive case,
symmetric point load at ω = 60 π rad s−1.

The profile function of the general geometry case and its local curvature types (second
derivative) are shown in Figure 12. The load is acting on the parabolic part. As the boundary
layer propagates from the point of action along the axial characteristic, it has to reach the
elliptic part before reaching the boundary. In the elliptic part, there are no characteristic
lines, so the only mechanism that can excite the oscillations at the boundary is sensitivity. In
the clamped case, there are no boundary oscillations; indeed, the parabolic part dominates
(see Figure 13). The resemblance with the pure parabolic cases is clear. However, in the
perforated sensitive configuration of Figure 14, the elliptic part induces strong oscillations
along the free boundary at lower frequencies, but with higher frequencies the parabolic part
emerges as the dominant one. It is known from the theory that the displacements exhibit
the so-called saturation at higher frequencies, that is, the amplitudes of the oscillations
decay rapidly.
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Figure 12. General geometry: f (x) = 4/5 + (1/5) tanh(−2(x− π/2)). (a) Profile function. (b) Second
derivative. All geometry types are present. The load acts in the parabolic region at x = −π/10.
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Figure 13. Most energetic response: General geometry (Naghdi). (a) Surface. (b) Comparison of
energy and displacement. Clamped case.
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Figure 14. Cont.
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Figure 14. Most energetic responses: General geometry (Naghdi). (a) Surface at ω = 100 π rad s−1.
(b) Contours at ω = 100 π rad s−1. (c) Surface at ω = 40 π rad s−1. (d) Contours at ω = 40 π rad s−1.
(e) Energy vs. frequency. (f) Maximal transverse deflection vs frequency. Sensitive case.

6. Conclusions

Thin shells are common structures in engineering with many applications. Interest-
ingly, new application areas are emerging within fields where engineering knowledge is
not always present in the design teams. The internal boundary layers and the shell specific
feature of sensitivity are likely to pose challenges as the new devices are pushed toward
manufacturing limits, which is inevitable as the volume of the payload is maximised.

In problems addressing thin structures, it is necessary for engineers to have sufficient
understanding of the assumptions underlying the properties of different models. The rich
variety of local features of the responses is the result of the intricate dependencies of the
geometry, loading, and boundary conditions.

In this study, the frequency responses of a set of three shells with different profiles
under symmetric concentrated loading were studied. For all shells, perforated specimens
were also considered with clamped and sensitive boundary conditions. Proportional
Rayleigh damping was used with low-rank approximations.

The most energetic responses correlated strongly with maximal displacements on
clamped cases with correlation coefficients over 0.8, which means that this simple quantity
of interest is applicable in this context. One of the surprising features of the effects of the
concentrated loads on shells is the propagation of singularities along the characteristics of
the surface. For sensitive shells where one end is clamped and another free, it is possible
that the maximal displacements occur far from the point of action of load. This was
indicated by the correlation coefficients between the most energetic responses and maximal
displacements, which were of the order of 0.7 and below. In the example with general shell
geometry with regions of different curvature type, the most energetic response had maximal
displacement far away from the load. The presence of regions with elliptic curvature leads
to strong oscillations at lower frequencies. The amplitudes of these oscillations decay as
the frequencies increase.

As one would expect, the geometry simplifications have an effect. For parabolic shells,
this is not severe, but, for instance, for hyperbolic ones, the response profiles (surface
and frequency) can be noticeably different. Here, the two shell models represent the two
extremes, exact vs non-realizable, but in many industrial problems local geometry approxi-
mations are unavoidable and one should be aware of this effect. For the Naghdi model,
the observed frequency of interest was the same for both the parabolic and hyperbolic
ones (130 π), yet slightly lower in the general case. For the shallow shell model, the hy-
perbolic frequency was much larger (200 π � 100 π), indicating that the local curvature
approximation was indeed different.

The effect of perforations was the lowering of the most energetic frequency within
the boundary condition type with the exception of the general geometry case. There, the
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frequency of the perforated sensitive case (100 π) was the same as that of the clamped one.
This is due to the elliptic region affecting the performance strongly.

Low-rank approximation techniques make it possible to simulate realistic problems
with shell geometries. Solid a priori understanding of possible response scenarios is
necessary for design of representative simulation sets, however. As always, sensitivity in
shell structures is a complicating factor. Utmost care has to be taken in analysis of such
problems also in relation to frequency response analysis.
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