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Abstract
Motivation: Existing methods for simulating synthetic genotype and phenotype datasets have limited scalability, constraining their usability for
large-scale analyses. Moreover, a systematic approach for evaluating synthetic data quality and a benchmark synthetic dataset for developing
and evaluating methods for polygenic risk scores are lacking.

Results: We present HAPNEST, a novel approach for efficiently generating diverse individual-level genotypic and phenotypic data. In comparison
to alternative methods, HAPNEST shows faster computational speed and a lower degree of relatedness with reference panels, while generating
datasets that preserve key statistical properties of real data. These desirable synthetic data properties enabled us to generate 6.8 million com-
mon variants and nine phenotypes with varying degrees of heritability and polygenicity across 1 million individuals. We demonstrate how
HAPNEST can facilitate biobank-scale analyses through the comparison of seven methods to generate polygenic risk scoring across multiple an-
cestry groups and different genetic architectures.

Availability and implementation: A synthetic dataset of 1 008000 individuals and nine traits for 6.8 million common variants is available at
https://www.ebi.ac.uk/biostudies/studies/S-BSST936. The HAPNEST software for generating synthetic datasets is available as Docker/
Singularity containers and open source Julia and C code at https://github.com/intervene-EU-H2020/synthetic_data.

1 Introduction

With the emergence of large-scale biobanks, methods to ana-
lyse common genetic variants [single-nucleotide polymor-
phisms (SNPs)] across diverse human populations are in
growing demand. This is especially the case for polygenic risk
scoring (PRS) methods, which quantify an individual’s genetic
risk for a disease or other phenotypic trait (Choi et al. 2020).
Derived from one’s genotype, well-calibrated PRSs have the
potential to be used for risk stratification and prognostic pre-
diction (Choi et al. 2020). The utility of PRS has been demon-
strated for certain common diseases among European
ancestries, on which most genome-wide association studies
(GWAS) were carried out (Mills and Rahal 2020), but some
studies have highlighted limitations in transferability of PRS
across ancestries and different socio-demographic groups
(Araújo and Wheeler 2022). Thus, the development of meth-
ods that can improve the generalizability of PRSs is needed.
At the same time, only a few accessible large-scale biobank

datasets exist and most previous PRS methods have been
tested and compared in UK Biobank (Pain et al. 2021). More
diverse biobank datasets are needed, but due to the highly
sensitive nature of genetics data, accessing and sharing
individual-level data raises privacy concerns. This makes pub-
licly accessible synthetic data a welcome alternative for meth-
ods developers.

Broadly, two main approaches have been used to simulate
individual level genetic data. Coalescence-based methods,
such as Hudson’s ms and msprime (Hudson 2002, Kelleher
et al. 2016), use demographic models to generate genomes in-
cluding both rare and common variants. Reference-based
approaches use real genomic data (e.g. 1000 genomes or
HGDP) to generate synthetic data, but they are not suitable to
generate realistic rare variants. There are also methods, such
as simGWAS (Fortune and Wallace 2019), that directly simu-
late GWAS summary statistics. However, many times they do
not meet modern demands for methods development based
on individual level data. We will focus on reference-based
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approaches since for PRSs we are mostly interested in com-
mon genetic variation, which forms the bulk of complex trait
heritability (Yang et al. 2010). Moreover, common SNPs,
especially Hapmap3 SNPs (International HapMap 3
Consortium 2010), are widely recommended for PRS compu-
tation (Wang et al. 2023). HAPGEN2 (Su et al. 2011) is a
widely used tool for genotype and phenotype simulation,
which preserves linkage disequilibrium (LD) patterns of real
data through a resampling approach based on the Li and
Stephens model (Li and Stephens 2003). However,
HAPGEN2 lacks computational scalability and flexibility in
phenotype generation to simulate certain scenarios of interest
for biobank-scale PRS and SNP-based methods development,
where the genetic architecture of the phenotype is an essential
factor. Recent alternatives include G2P (Tang and Liu 2019)
and Sim1000G (Dimitromanolakis et al. 2019). Sim1000G is
an integrated R package, but is limited to genotype simula-
tion. G2P encompasses both genotype and phenotype simula-
tion, and is highly customizable, but this setup can be
challenging for non-expert users. In Table 1, we provide an
overview of the characteristics of these different approaches.
Without an integrated approach for parameter selection and
evaluation of synthetic data quality, it is difficult for end-users
to understand the statistical guarantees and reliability of the
generated datasets. To the best of our knowledge, there does
not exist a software tool implementing an end-to-end pipeline
for synthetic data generation, evaluation and optimization.

To address these limitations, we introduce HAPNEST, a
user-friendly tool for generating synthetic datasets for geno-
types and phenotypes, evaluating synthetic data quality, and
analysing the behaviour of model parameters with respect to
the evaluation metrics. HAPNEST simulates genotypes by
resampling a set of existing reference genomes, according to a
stochastic model that approximates the underlying processes
of coalescent, recombination and mutation. Like HAPGEN2,
HAPNEST is also based on the Li and Stephens model of LD
(Li and Stephens 2003), but HAPNEST additionally models
the coalescence age of segments using an approximate model
inspired by the sequential Markovian coalescent model
(McVean and Cardin 2005). Phenotypes are subsequently
assigned to each sample by integrating user-specified genetic,
covariate, and environmental effects. Genetic effects are mod-
elled in terms of heritability and polygenicity. HAPNEST

enables efficient simulation of diverse biobank-scale datasets,
as well as simultaneously generating multiple genetically cor-
related traits with population specific effects under different
pleiotropy models. Moreover, the HAPNEST software
includes an extensive workflow for evaluating synthetic data
fidelity and generalizability, as well as approximate Bayesian
computation (ABC) techniques for analysing the posterior dis-
tributions of model parameters to aid model selection.

We compare the performance of HAPNEST with current
state-of-the-art genotype and phenotype simulation tools in
terms of data quality and computational speed. Furthermore, as
a demonstration of the utility of our tool, we show the applica-
tion of our diverse, biobank-scale synthetic data for evaluating
the performance of various PRS methods under different disease
models. Our open-source software tool is available at https://
github.com/intervene-EU-H2020/synthetic_data, and has also
been distributed as Docker and Singularity containers. We have
generated 6.8 million common variants and nine phenotypes
with varying degrees of heritability and polygenicity across 1
million individuals and made this large synthetic dataset avail-
able at https://www.ebi.ac.uk/biostudies/studies/S-BSST936 to
encourage standardized evaluation of new statistical methods
by the genomic research community.

2 Overview of genotype generation methods

HAPNEST simulates pairs of synthetic haplotypes, where
each haplotype is constructed as a mosaic of segments of vari-
ous lengths imperfectly copied from a reference set of real
haplotypes (Fig. 1a). This resampling approach, based on the
Li and Stephens model (Li and Stephens 2003), is also used by
other tools such as HAPGEN2, but HAPNEST differs in that
it models a varying coalescent age of segments, T, when deter-
mining genetic distances, ‘, between cross-over events, and
uses this to introduce age-based mutations. This is inspired by
the sequential Markovian coalescent model (McVean and
Cardin 2005) and motivated by the need to (i) preserve key
statistical properties of real genotypes (fidelity) and (ii) limit
overfitting to the reference data (generalizability) by introduc-
ing variability according to the coalescence process. Previous
works have focused on generating high-fidelity data with re-
spect to properties such as LD structure, but the generalizabil-
ity property is also important when generating a large

Table 1. Summary of main differences between HAPNEST and alternative synthetic data generation tools.

Runtime for 100k
synthetic samples

Method
Genotype
simulation

Phenotype
simulation

Parameter
optimization

Evaluation
pipeline

Open
source

Software
platform �20k SNPs �100k SNPs

HAPNEST Yes Yes Automated Fidelity (MAF, LD,
population structure,
nearest-neighbour
adversarial accuracy,
GWAS results) and
generalizability
(kinship relatedness)

Yes Containerized
command
line tool

15.0 min for one
thread, 6.3 min for
eight threads

41.6 min for one
thread, 11.7 min
for eight threads

HAPGEN2 Yes No Manual None No Command
line tool

36.3 min for one
thread, 33.4 min
for eight threads

339.2 min for one
thread, 280.9 min
for eight threads

G2P Yes Yes Manual GWAS results No Java-based
GUI

Excluded from
comparison

Excluded from
comparison

Sim1000G Yes No Manual None Yes R package Excluded from
comparison

Excluded from
comparison
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number of synthetic samples and genetic variants from few
reference samples.

Specifically, the real haplotypes to copy from are sampled
uniformly from a reference dataset, Ds, of k SNPs for Ns sam-
ples, limited to individuals belonging to a certain ancestry
group s (S ¼ fAFR, AMR, EAS, EUR, CSA, MIDg, where
AFR ¼ African, AMR ¼ Admixed American, EAS ¼ East
Asian, EUR ¼ European, CSA ¼ Central/South Asian, MID ¼
Middle Eastern). Alternatively, users can specify the proportion
of real haplotypes to sample from each ancestry group. We re-
fer to the Discussion section of the paper regarding the compli-
cations in interpreting admixed samples. Segments of length ‘
(in centimorgans) are sampled from the real haplotypes
(Fig. 1b) based on the model

‘ � Expð2TqsÞ; T � Gammað2;Ns=Ne;sÞ; (1)

where for group s, qs is the recombination rate and Ne;s is the
effective population size. The presence of a genetic variant at
position i is only copied if T � mi, where T is the segment’s
coalescent time and mi is the variant’s age of mutation
(obtained from Albers and McVean 2020). This does not cre-
ate new mutations but introduces variability based on a coa-
lescent model of when mutations entered the population. Two
synthetic haplotypes, hj, j 2 f1;2g, constructed in this way
are added element-wise to create a synthetic genotype, g
(Fig. 1c). For experiments in this text, we consider a reference
dataset of 4062 phased genotypes derived from the publicly
available 1000 Genomes Project and Human Genome
Diversity Project (1KGþHGDP) datasets for six major dis-
crete ancestry groups (Karczewski et al. 2020).

Finally, to aid the scalability of HAPNEST, we develop an
efficient multithreaded implementation in the Julia program-
ming language. Specifically, the operations that are

parallelized across genotypes include the part of the algorithm
that executes Equation (1) to determine how segments should
be copied to construct synthetic haplotypes and the I/O opera-
tions that write these segments to an output file. We note that
this parallelization and use of memory-mapped I/O for
constant-time access of reference data makes HAPNEST suit-
able for use with large reference panels (even if they do not fit
in the computer’s memory) and a large number of synthetic
samples.

2.1 Posterior distributions of model parameters

HAPNEST uses ABC to optimize the model parameters for the
fidelity and generalizability objectives (Naeem et al. 2020, Alaa
et al. 2022). We define the ABC summary statistic for the fidel-
ity objective as an LD decay vector, and the summary statistic
for the generalizability objective is defined as a vector of the
number of duplicate/MZ twin, first-degree and second-degree
relatives between the synthetic and reference datasets. We mea-
sure generalizability in terms of genetic relatedness (defined by
the kinship coefficient), to ensure that the samples in large syn-
thetic datasets are not close copies of samples from the much
smaller reference dataset. HAPNEST model parameters are se-
lected as the means of the posterior distributions inferred using
emulation-based rejection sampling (Tankhilevich et al. 2020).
As an illustrative example, Supplementary Fig. S2 shows the
posterior distributions of the parameters that best satisfy the
multiobjective criteria, for six discrete ancestry groups from
the 1KGþHGDP reference for 18 267 HapMap3 variants on
chromosome 21. We observe a tradeoff between optimizing
the fidelity objective (Supplementary Fig. S3) and optimizing
the generalizability objective (Supplementary Fig. S4). This
tradeoff can affect the results of downstream analyses such as
GWAS (Supplementary Fig. S7 and Table S9), and so it is

Figure 1. (a) A reference set of real haplotypes, from which segments (coloured) are imperfectly copied to construct a synthetic haplotype. (b) Detailed

view of an individual segment. The segment length, ‘, and coalescence time, T, are sampled from a stochastic model. The presence of a genetic variant

at position i is only copied if T � mi , where mi is the variant’s age of mutation. Variants that are not copied are shown in red. (c) Synthetic genotypes, g,

are constructed as pairs of synthetic haplotypes, hj , j 2 f1; 2g. (d) Once the genotype is generated, liability of phenotype will subsequently be assigned to

each sample as a summation of genetic effect, covariate effect (if any) and environmental noise.
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important for users to choose the objective that matches the
priorities of their use case.

3 Comparison of synthetic genotype quality

Synthetic data quality is evaluated based on a workflow imple-
mented in the HAPNEST software tool for measuring the fidel-
ity, diversity, and generalizability of synthetic datasets. We
compare HAPNEST with three alternative methods: HAPGEN2
(Su et al. 2011), G2P (Tang and Liu 2019), and Sim1000G
(Dimitromanolakis et al. 2019). For these experiments, we con-
sider two models for HAPNEST based on whether the multiob-
jective (fidelity and generalizability) or LD objective (fidelity
only) was used to optimize the parameter values. The evaluation
based on the LD objective alone is motivated by the fact that for
applications such as GWAS and PRS, it is important to preserve
realistic LD patterns in the synthetic data. For the other meth-
ods, which do not have built-in optimization procedures, param-
eters are selected manually to be comparable to the parameters
used by the HAPNEST multiobjective approach, where possible
(see Supplementary Experiments section for a full list of parame-
ter values used for other methods). The method comparison
experiments use Nsyn ¼ 1000 samples generated from a refer-
ence of Nref ¼ 775 European-ancestry individuals from the
1KGþHGDP datasets (Karczewski et al. 2020), for 18 267
HapMap3 variants on chromosome 21. Due to limitations with
scalability and compatibility of other methods, we do not evalu-
ate larger synthetic datasets across methods, but we do provide
a detailed evaluation of HAPNEST-generated datasets for larger
synthetic datasets, non-European ancestry and larger SNP sets:
Nsyn ¼ 1000, 25 000, s ¼ EUR;AFR, and k ¼ 18 267, 1 09 673
(where the number of SNPs, k, correspond to the HapMap3 var-
iants and SNPs with non-zero MAF in all six superpopulations,
respectively, on chromosome 21).

3.1 Fidelity

Fidelity is measured as the similarity between the real (refer-
ence) and synthetic datasets for four properties: minor allele
frequency (MAF) distribution, population structure in terms
of alignment of the principal components (PCs), LD decay
and nearest neighbour adversarial accuracy (full definitions
are given in Supplementary Methods sections). The full fidel-
ity results are reported in Supplementary Table S1.

3.1.1 Minor allele frequency
The G2P method had the lowest divergence in MAF between
the synthetic and reference datasets, followed by HAPNEST
(LD objective), HAPNEST (multiobjective), and Sim1000G
(Supplementary Table S1).

3.1.2 LD decay
In Fig. 2a and c, we provide a visualization of LD correlation ma-
trices for a snapshot segment of the reference and synthetic sam-
ples generated by each method. We observe that the samples
produced by HAPGEN, HAPNEST, and G2P faithfully capture
the reference LD while Sim1000G amplifies the correlation
among SNPs. To quantify this observation, we provide the LD
decay plot (Laido et al. 2014) for all methods along with the ref-
erence in Fig. 2b. The HAPNEST (LD objective) method had the
LD decay that least diverged from the reference, followed by the
G2P and HAPGEN2 methods (Supplementary Table S1).
However, we observe that HAPNEST (multiobjective) has a
faster LD decay (Fig. 2b) and more generally, our posterior

analysis indicates there is a tradeoff between optimizing the LD
and relatedness objectives (Supplementary Figs. S3 and S4).
Nevertheless, GWAS results presented later still indicate realistic
LD structure at genome-wide significant loci. LD analyses similar
to Fig. 2b (Supplementary Fig. S5) and Fig. 2c (Supplementary
Fig. S6) for a wider range of HAPNEST-generated synthetic
datasets show visually comparable LD results for a larger num-
ber of synthetic samples, number of SNPs and non-European
ancestry.

3.1.3 Population structure
We evaluate preservation of population structure of
HAPNEST and other state of the art simulators. Figure 3a
shows a PCA projection of 10 002 HAPNEST-generated indi-
viduals from six super populations based on chromosome 21.
Visual separations between individuals from different popula-
tions demonstrate good preservation of overall population
structure across multiple ancestries. Figure 3b shows a visual
comparison of projecting the top two PCs of 1000 European-
ancestry individuals generated by each tool, aligning with the
reference. For a more quantitative evaluation, we also compare
the PC alignment score, defined as the cosine distance between
the first 20 PCs obtained from real and synthetic data within
European individuals. The PC alignment score captures the dis-
crepancy in population structure in a high-dimensional space.
HAPGEN2 has the highest PC alignment score, followed by
HAPNEST (LD objective) (Supplementary Table S1).

3.1.4 Adversarial accuracy
We consider privacy-preserving metrics by calculating the
nearest neighbour adversarial accuracy score, which averages
the true positive rate and true negative rate for distinguishing
real and synthetic data. Adversarial accuracy scores closest to
0.5 are observed for the G2P and HAPNEST (multiobjective)
methods, indicating that these synthetic samples are more in-
distinguishable from the real data (Supplementary Table S1).

Overall, our analysis indicates that no one method per-
forms best across all evaluation metrics, but instead there are
tradeoffs that end users should consider, depending on the
priorities of their use case. The correlation in the performance
of metrics across methods is weak overall, but a lower LD de-
cay distance is generally associated with a higher PC align-
ment, suggesting that methods with better preservation of LD
structure also preserve the population structure of the refer-
ence data well (Supplementary Table S1). The nearest neigh-
bour adversarial accuracy is closest to 0.5 for methods that
generate high-fidelity data with lower relatedness to the refer-
ence data and between synthetic genotypes (Supplementary
Tables S2 and S3). We provide further analyses of fidelity and
generalizability metrics (Supplementary Table S5 for
European ancestry and Table S6 for African ancestry) to dem-
onstrate the properties of HAPNEST datasets for a variety of
common use cases. In particular, these results show that for
larger synthetic datasets (Nsyn ¼ 25 000, k > 1 00 000),
HAPNEST achieves comparable performance in the LD met-
ric and better performance in some metrics such as PC align-
ment, compared with the smaller datasets. Similar results
were observed for both the European and African ancestry
experiments.

3.2 Generalizability and diversity

Diversity is measured by the degree of genetic relatedness
(kinship) within the synthetic dataset and generalizability is

4 Wharrie et al.
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Figure 2. (a) LD correlation for 500 contiguous SNPs selected at random from chromosome 21 HapMap3 variants, for the European-ancestry reference

dataset (Nref ¼ 775); (b) comparison of LD decay (Laido et al., 2014) for Nsyn ¼ 1000 European-ancestry synthetic samples; (c) comparison of LD

correlation (for same 500 SNPs shown in reference panel) for Nsyn ¼ 1000 European-ancestry synthetic samples. We selected alleles with MAF � 0:001
and used plink with – r2 square flag to compute the LD correlation matrix.
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measured by the degree of genetic relatedness between the
real and synthetic datasets. HAPNEST (multiobjective)
reached the best generalizability and diversity of all methods
evaluated (Supplementary Tables S2 and S3) when consider-
ing Nsyn ¼ 1000 synthetic samples. However, it is more ap-
propriate to measure generalizability and diversity on larger
and more realistic sample sizes. As there is a limited number
of haplotypes in the reference dataset, one might expect that
when generating thousands of synthetic samples, some gener-
ated genomes might eventually be copies of or highly related
with genomes in the reference set. As shown in the next sec-
tion, scalability is an issue for Sim1000G and G2P, so in this
experiment we only consider HAPNEST and HAPGEN2. We
quantify the two measurements as

1� Ncross

Nsyn �Nref

� �
� 100

for generalizability, where Ncross is the number of closely re-
lated pairs (i.e. twins or first-degree relatives, as determined
by the kinship coefficient) between the reference and synthetic
datasets; and

1� Npairs

N2
syn �Nsyn

 !
� 100

for diversity, where Npairs is the number of closely related pairs
in the synthetic dataset. Supplementary Table S4 shows the
generalizability and diversity measurements for HAPNEST in
comparison to HAPGEN2, under various sample sizes gener-
ated with two reference panels. We observe that HAPNEST
also outperforms HAPGEN2 for both generalizability and di-
versity on larger sample samples.

4 Scalability analysis for large sample sizes

The scalability of HAPNEST is validated by measuring the com-
putational speed of generating genotype datasets for a varying
number of synthetic samples, SNPs and computing threads. The
experiments compare a smaller panel of 18 267 HapMap3 var-
iants and a larger panel of 109 673 variants with non-zero MAF
on chromosome 21. The analyses were conducted using a
CentOS server with Intel Xeon E5 2680 v3 2.50 GHz processors
and 32GB RAM for both single- and multithreaded setups, and
use fixed input parameters, qs ¼ 2:185;Ne;s ¼ 500, to ensure
that equivalent setups are being compared for computational
experiments. The Sim1000G and G2P methods were excluded
from this comparison as they did not scale to the large sample
sizes considered here under this setup.

We observe that while generation times are similar for
smaller datasets, HAPNEST is increasingly faster than
HAPGEN2 for more variants and larger sample sizes (Fig. 4)
which approach the size of modern biobank-scale genetic
datasets. For 100 000 synthetic samples, HAPNEST was be-
tween 2.4–8.2x times faster than HAPGEN2 (for between
18 267 and 109 673 SNPs) for a single thread and this in-
creased to 5.3–24x times faster for multiple threads (tested
for eight threads). This demonstrates that HAPNEST uses
parallelization to achieve gains in computational efficiency
for larger synthetic datasets. We note that HAPGEN2 does
not have a command-line option for multiple threads and
that similar results for both the single and multithreaded
experiments (Fig. 4) indicate that HAPGEN2 was not fully
utilizing the available computing resources. The scalability
of HAPNEST to generate large datasets under memory con-
straints can also be attributed to details of our implementa-
tion introduced to handle memory-intensive I/O operations,
such as batching and memory-mapping. RAM usage statis-
tics reported in Supplementary Tables S10 and S11

Figure 3. (a) PCA projection plot for Nsyn ¼ 10 002 synthetic samples generated by the HAPNEST method (multiobjective ABC), for chromosome 21

HapMap3 variants, Nref ¼ 4062; (b) comparison of PCA projection plots and bivariate densities for Nsyn ¼ 1000 European-ancestry synthetic samples

(Nref ¼ 775). The highest PC alignment score for preservation of population structure is 0.311 for HAPGEN2, 0.281 (HAPNEST LD objective), 0.222 (G2P),

0.182 (HAPNEST multiobjective), and 0.043 (Sim1000G).
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demonstrate that HAPNEST utilizes less RAM than
HAPGEN2 for larger synthetic sample sizes (3.8–7.9x times
less RAM for 100 000 synthetic samples on a single thread)
and uses multithreading to more efficiently utilize the avail-
able computing resources.

5 Overview of phenotype generation methods

A continuous or binary phenotype can be assigned to each
sample as an aggregation of genetic effect, user-input covari-
ate effect (if any) and environmental noise. The genetic com-
ponent is generated as a weighted sum of causal allele counts
(Fig. 1d). For each causal SNP bi, the effect size is drawn from
a Gaussian distribution with 0 mean and variance determined
by three well-studied factors impacting heritability of the var-
iants, the MAF pi, local linkage structural ri, and the func-
tional annotation si of the SNP:

bi � Nð0; ½pið1� piÞ�arb
i sc

i Þ:

Power parameters a, b, and c reflect strength of negative selec-
tion on each aspect and we used extensive empirical observa-
tions (Finucane et al. 2015, Gazal et al. 2017, Schoech et al.
2019) to chose the default parameters. HAPNEST allows
SNP’s effect sizes to be drawn from a mixture of distributions
with different width, corresponding to variable level of herita-
bility. Our model also allows flexible assignment of individual
components’ contribution to the phenotype (heritability), as
well as the number of causal variants constituting the genetic
risk (polygenicity). We run GWASs for 50 000 synthetic indi-
viduals and 1 049 096 HapMap 3 SNPs based on phenotypes
generated under different genetic architectures. The Manhattan
plots visually resemble Manhattan plots obtained on real data
with similar heritability and polygenicity (Supplementary Figs.
S8, S9, and S11). Supplementary Fig. S11 shows exemplary
GWAS results for traits under two extreme scenarios: low heri-
tability, low polygenicity, and high heritability, high polygenic-
ity. The former resembles phenotypes such as atrial fibrillation
and flutter (Supplementary Fig. S8), and the latter resembles
typically more heterogeneous traits, such as body pain
(Supplementary Fig. S9). Our approach allows us to specify ge-
netic correlations between phenotypes within and, importantly,
between ancestry groups.

6 Application: comparison of polygenic risk
scoring methods

We demonstrated the utility of HAPNEST by comparing seven
PRS methods using synthetic data from five ancestry groups. We
first generated a synthetic training dataset of 100 000 individuals
of European ancestries, and performed a standard GWAS using
software plink2 (Purcell et al. 2007), correcting for top 20 PCs.
We subsequently used the summary statistics to build PRSs in a
separate synthetic test set of 25 000 individuals (5000 samples
from each ancestry group). To demonstrate variability across ge-
netic architectures, GWAS summary statistics are computed for
nine continuous phenotypic traits, with varying heritability (0.03,
0.1, and 0.5) and polygenicity (0.0001, 0.005, and 0.1). We as-
sumed a genetic correlation of 1 across all ancestry groups.

The evaluation of the PRS methods is based on the
reference-standardized framework by Pain et al. (2021),
where for continuous traits, the PRS performance is measured
in terms of Pearson correlation between the predicted and ob-
served values. The optimal parameters for each PRS method
are identified using cross validation (CV), or pseudovalidation
(PseudoVal), if CV is not available.

Better predictive performance is observed for higher herita-
bility, lower polygenicity architectures (Supplementary Fig.
S10). No single PRS method was observed to perform best
across all genetic architectures. Methods with sparsity-
inducing shrinkage priors (e.g. PRScs) were observed to per-
form better for higher heritability, lower polygenicity archi-
tectures, where genetic effects on most SNPs are zero
(Fig. 5c), while other approaches such as MegaPRS performed
better for lower heritability, higher polygenicity architectures
(Fig. 5a). Multiancestry results replicate known issues with
transferability of polygenic risk scores based on European-
ancestry summary statistics (Fig. 5b and d).

7 Discussion

In this study, we proposed HAPNEST, a new algorithm to
generate realistic individual-level genetic and phenotypic data
and provide an efficient implementation. HAPNEST meets
the demand for diverse, biobank-scale genomic data by im-
proving scalability compared with existing methods. Users
can customize population parameters or use parameter esti-
mates derived from the reference dataset. Previous studies
have been inconsistent in their approach to evaluating the

Figure 4. Simulation times for genotype datasets for HAPNEST and HAPGEN2 (other methods are excluded from this comparison due to scalability and

compatibility issues), averaged for five trials with 95% confidence intervals plotted, for a varying number of synthetic samples, SNPs and computing

threads. Missing results are due to an experiment being terminated for exceeding the memory limit.
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quality of the generated synthetic data. We provide a compre-
hensive set of measures to be used for data quality evaluation
that have been proposed in the statistical genetics and
differential-privacy literature (Yale et al. 2019). Genotype
generation, phenotype generation and evaluation modules are
wrapped in user-friendly Docker or Singularity containers,
where each module can be run independently.

Synthetic genotypes are generated by copying and assem-
bling haplotype segments from the reference genome, with
distribution of segment length determined by specifics of the
target population, including recombination rates, effective
population size and samples in the reference panel.
Parameters are optimized through the ABC algorithm, which
typically results in an output dataset well-balanced across fi-
delity and generalizability metrics. On top of that, we intro-
duced mutations to the synthetic genome to reduce similarity
across individuals. Like HAPGEN2, HAPNEST is also based
on the Li and Stephens model of LD (Li and Stephens 2003),
but to improve computational scalability and generalizability
we have introduced modelling of varying, rather than con-
stant, coalescence time, and the use of mutation ages to deter-
mine if mutations are present in synthetic samples.

From our systematic evaluation and experiments, we no-
ticed some general trade-offs in synthetic data quality and in
the parameter selection. One trade-off occurs between the
preservation of population LD structure and synthetic sample
relatedness when constructing large synthetic datasets from
much smaller reference datasets. Our observations indicated
that parameters optimizing the preservation of LD usually re-
sult in higher levels of sample relatedness, as LD typically
comes with larger average segment length copied from the ref-
erence. On the other hand, shortened segments allow more
combinations and higher sample level variability, which
results in samples that are less related to each other but in-
creased fragmentation in the LD structure. Furthermore,
smaller segments lead to more computational input/output
operations when constructing synthetic data files and a slight
increase in running time. Segments copied from the reference
genome in our algorithm can be conceptually viewed as
identity-by-descent (IBD) segments in population genetics
(Zhou et al. 2020, Browning and Browning 2020). As shown
in Equation (1), recombination events (qs) happen over time
(T) in the population. Thus, IBD segments degrade over time,
which also shows an impact on LD (Thompson 2013, Sticca

Figure 5. PRS results for two genetic architectures, averaged across three experiment trials with error bars showing the range of outcomes, for HapMap3

variants across 22 chromosomes. (a) Pearson correlation between predicted and observed values, for various PRS methods and a European-ancestry

phenotype with heritability 0.1 and polygenicity 0.005. (b) Pearson correlation for various target ancestry groups for the best-performing PRS method

(MegaPRS) for the heritability 0.1 and polygenicity 0.005 phenotype. (c) Pearson correlation between predicted and observed values, for various PRS

methods and a European-ancestry phenotype with heritability 0.5 and polygenicity 0.0001. (d) Pearson correlation for various target ancestry groups for

the best-performing PRS method (PRScs) for the heritability 0.5 and polygenicity 0.0001 phenotype.
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et al. 2021). Our algorithm also provides an implementation
of generating “admixed” samples by sampling from multiple
reference populations under user defined compositions.
However, we would like to note that this approach does not
accurately reflect the process of multipopulation diverging
and intermixing, therefore it should be used and interpreted
carefully.

Compared with other methods, HAPNEST-generated geno-
types demonstrated better diversity and generalizability,
which are essential features when scaling to large sample sizes.
While the genetic relatedness analysis indicated that the geno-
types are sufficiently different from the reference data, a
nearest-neighbour adversarial accuracy close to 0.5 indicates
that statistically speaking, it would be difficult to discern a
synthetic genotype from a real genotype. These properties of
synthetic datasets are desirable in the context of data privacy,
where we may want to create a synthetic twin of sensitive
data that preserves key statistical properties of the real data,
but cannot be traced back to real individuals. However, we
note that we have not tested the HAPNEST method for differ-
ential privacy guarantees and for this reason, we advise to use
HAPNEST, or any of the reference-based generation methods,
only on publicly available genomics datasets.

Once individual level genotypes have been generated, we
can subsequently assign phenotypes to each sample as an ag-
gregation of polygenic effects, non-genetic effects and envi-
ronmental noise. We also implemented population-specific
phenotypic effects by assuming shared causal variants across
populations with distinct but correlated effect sizes, and mul-
titrait simulation allowing for different genetic correlation
and pleiotropy models.

We believe our tool can benefit the community especially for
GWAS-related method development, for which one of the exam-
ples can be PRS computation and evaluation. HAPNEST allows
researchers to assess the validity of genetic scoring methods un-
der a broad variety of setups, including cross-ancestry, trans-di-
agnostic, and different genetic architectures. Here, as a
demonstration of its utility, we applied PRSpipe [PRSpipe is a
Snakemake pipeline developed to calculate and evaluate poly-
genic risk scores from GWAS summary statistics. It implements
and extends the GenoPred (Pain et al. 2021) pipeline, a reference
standardised framework for the prediction of PRS using various
state-of-the-art methods] to synthetic data generated by
HAPNEST and found that our results, to a great degree, repli-
cated what has been observed by Pain et al. (2021). As widely
discussed, we found lower cross-ancestry portability of PRSs de-
rived in a single ancestry. For a given phenotype, we set genetic
correlations between ancestry groups to 1 and this might be
higher than what is observed in real settings and result in slightly
inflated trans-ethnic PRS prediction performance. Nevertheless,
we still observed reduced prediction accuracy in non-European
samples, indicating the synthetic genotype captured the differen-
ces of MAF and LD structures across populations. Results under
different genetic architectures are concordant with the general
expectation: we observe better performance of PRS for pheno-
types with higher heritability and lower polygenicity due to the
existence of few variants with larger effect that explain large
amounts of phenotypic variance. We also noticed that the best
performing method can depend on different genetic architecture,
reflecting the need for careful considerations when choosing a
PRS method. As more studies come online that examine the clin-
ical utility of PRSs, it will be important to have a reference data-
set where old and new PRS methods can be compared and their

robustness can be assessed as a function of the genetic and phe-
notypic architecture. We used HAPNEST to create one of the
largest genomics synthetic datasets today including 1 million
individuals across six major continental ancestry groups, 6.8
million variants, and nine phenotypes. We hope this dataset can
generate a reference set for deriving and testing PRS methods
within a unified framework.

Supplementary data

Supplementary data are available at Bioinformatics online.
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