
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Tajdari, Farzam; Roncoli, Claudio
Online Set-Point Estimation for Feedback-Based Traffic Control Applications

Published in:
IEEE Transactions on Intelligent Transportation Systems

DOI:
10.1109/TITS.2023.3274233

Published: 01/10/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Tajdari, F., & Roncoli, C. (2023). Online Set-Point Estimation for Feedback-Based Traffic Control Applications.
IEEE Transactions on Intelligent Transportation Systems, 24(10), 10830-10842.
https://doi.org/10.1109/TITS.2023.3274233

https://doi.org/10.1109/TITS.2023.3274233
https://doi.org/10.1109/TITS.2023.3274233


10830 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

Online Set-Point Estimation for Feedback-Based
Traffic Control Applications

Farzam Tajdari and Claudio Roncoli

Abstract— This paper deals with traffic control at motorway
bottlenecks assuming the existence of an unknown, time-varying,
Fundamental Diagram (FD). The FD may change over time due
to different traffic compositions, e.g., light and heavy vehicles,
as well as in the presence of connected and automated vehicles
equipped with different technologies at varying penetration
rates, leading to inconstant and uncertain driving characteristics.
A novel methodology, based on Model Reference Adaptive
Control, is proposed to robustly estimate in real-time the time-
varying set-points that maximise the bottleneck throughput, par-
ticularly useful when the traffic is regulated via a feedback-based
controller. Furthermore, we demonstrate the global asymptotic
stability of the proposed controller through a novel Lyapunov
analysis. The effectiveness of the proposed approach is evaluated
via simulation experiments, where the estimator is integrated
into a feedback ramp-metering control strategy, employing a
second-order multi-lane macroscopic traffic flow model, modified
to account for time-varying FDs.

Index Terms— Traffic control, adaptive control, time-varying
fundamental diagram, robust estimation.

I. INTRODUCTION

TRANSPORT networks constitute the backbone of our
society, enabling the mobility of people and the distri-

bution of goods. However, due to urbanisation and suboptimal
mobility policies and choices, transport infrastructures in and
around metropolitan areas are reaching their saturation, with
negative effects such as ever-increasing traffic congestion. This
causes an increased need for energy, risk of accidents, traffic
jams, and driver frustration [1], [2], [3]. In traffic networks,
congestion is typically triggered by the activation of a bot-
tleneck, which occurs when the traffic demand exceeds the
road supply. In particular, in a motorway context, whenever
there are lane drops, uphills, or curvatures, a bottleneck may
appear, which, if activated, may produce a capacity drop,
i.e., a reduction of the total discharging flow rate from the

Manuscript received 30 June 2022; revised 29 November 2022,
17 February 2023, and 29 March 2023; accepted 3 May 2023. Date of
publication 16 May 2023; date of current version 4 October 2023. This
work was supported in part by the Academy of Finland Project ULTRA
under Grant 328216, in part by the Academy of Finland Project ALCOSTO
under Grant 349327, and in part by the FINEST Twins Center of Excellence
through the European Union Horizon 2020 programme under Grant 856602.
The Associate Editor for this article was J. Xun. (Corresponding author:
Farzam Tajdari.)

Farzam Tajdari is with the Department of Built Environment, School of
Engineering, Aalto University, 02150 Espoo, Finland, and also with the
Department of Mechanical Engineering, Dynamics and Control (D&C) Group,
Technical University of Eindhoven, 5612 AZ Eindhoven, The Netherlands
(e-mail: farzam.tajdari@aalto.fi).

Claudio Roncoli is with the Department of Built Environment, School
of Engineering, Aalto University, 02150 Espoo, Finland (e-mail: claudio.
roncoli@aalto.fi).

Digital Object Identifier 10.1109/TITS.2023.3274233

bottleneck area, causing travel time delay for the upstream
traffic. Traffic congestion then propagates upstream of the
bottleneck, until a significant reduction of the demand flow
occurs [4], [5], [6].

A successful countermeasure able to mitigate or avoid the
effects of congestion is traffic control, which consists in using
some technological device (e.g., traffic signal, variable mes-
sage sign, etc.) to regulate the flow entering a specific road area
by employing some traffic measurement [7], [8]. Among other
approaches, over the last decades, feedback-based traffic con-
trol methods have been proposed and sometimes implemented,
able to partially deal with the aforementioned challenges.

In the context of feedback-based freeway traffic control,
several recent studies have introduced different tools and
investigated their impact in different traffic scenarios. The
problem of controlling freeway traffic via isolated or coordi-
nated ramp-metering methodologies has been tackled in sev-
eral works, including [9], [10], [11], and [12]; another control
strategy, variable speed limits, have been investigated in iso-
lation or jointly with ramp-metering (see, e.g., [13], [14]); as
well as in the context of mixed traffic with automated vehicles
(see, e.g., [15], [16], [17]). Other control strategies, such as
speed control has been investigated, e.g., in [18] and [19].

To investigate uncertainty in Fundamental Diagram (FD)
related parameters, the work in [20] introduced a robust
control method to deal with the uncertainties associated with
the turning ratio by employing distributionally robust chance
constraints. Later, the uncertainty in the assumption of a fixed
FD, i.e., initial conditions and the model parameters resulting
while a controller is implemented is studied in [21].

Despite their design peculiarities, all those control
approaches require the knowledge of some features character-
ising the traffic behaviour in order to work effectively, which
include the traffic capacity (i.e., maximum flow able to pass a
bottleneck location) and the critical density or occupancy (i.e.,
the density or occupancy at which capacity occurs). These
quantities are not trivial to obtain or estimate and they require
the collection and analysis of traffic data for each area where
traffic control is to be applied. Moreover, even once these
parameters are calibrated, they may require constant tuning
due to short- and long-term changes in traffic behaviour and
characteristics. This will be amplified with the appearance of
vehicle automation [22]; in fact, it is expected that vehicles
with various driving assistance systems, such as Connected
and Automated Vehicles (CAVs) are going to co-exist for the
next decades, altering the current traffic characteristics and
affecting the need for traffic control [23], [24], [25], [26].
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A way to deal with this issue is to design and employ adap-
tive estimation algorithms to automatically tune the parameters
(e.g., the set-points) within control strategies. This has been
proposed, e.g., in the context of urban traffic control, in [27]
and [28], where the set-points are tuned on a day-to-day basis.
Papers [29] employed a methodology based on discrete-time
Extremum Seeking (ES), which is a model-free method,
applied to traffic data for real-time optimisation, which has
been broadly investigated and utilized in several applications,
including, e.g., [30] and [28].

However, even if a set-point is estimated using offline data,
it may not always be optimal because of possible real-time
changes in traffic behaviour characteristics, which implies
the importance of online identification of the set-point [31].
The change in traffic characteristics may be caused, by a
different traffic composition (e.g., of trucks and cars) or by
the presence of CAVs at various penetration rates. However,
online estimation of the FD for full AV or mixed human-driven
and AV traffic is relatively scarce in the literature [32].
To our best knowledge, the only existing works dealing
simultaneously with control and online set-point estimation
are [33] and [34]. The work in [33] employs a method
proposed in [35], developing an online ES control approach
to calculate the optimal density input for motorway traffic,
when there is a downstream bottleneck. However, such an
approach is restricted to a single lane with a one-link network,
while the slow convergence speed of the algorithm makes it
unsuitable for practical applications. In [34], two methods,
i.e., Simple Derivative Estimation and Kalman Filter–based
Estimation algorithms, are compared to estimate set-points for
a ramp-metering application; however, the methods suffer in
the case of strong short-term changes of the actual set-point
value, while being sensitive to the changes of the traffic flow
parameters, which require significant off-line fine-tuning of the
methods’ parameters.

Apart from the approaches mentioned above, there exist
methods capable of simultaneously controlling and identifying
the unknown parameters of a system online (see, e.g., [36]).
One suitable method is Model Reference Adaptive Control
(MRAC), which is designed to exploit conventional con-
trollers while the controllers’ parameters are updated based
on model parameters identification, where the model struc-
ture is assumed known and parameter values are unknown.
Such methods have been widely used, e.g., in controlling
robotic systems [37], online identification [38], [39], and
noise filtering [40]. In the field of traffic control, Had-
dad et al. [41] presented a two-stage framework based on
MRAC as an extension to [42] that i) incorporates state
delay in a Macroscopic Fundamental Diagram (MFD), and
ii) employs them to model data processing and commu-
nication delays between interconnected regions. The work
in [43] presents a unified methodology extending [44], which
exploits MRAC to adaptively compensate input delays, which
can be constant, time-varying, or dependent on the current
plant state while taking into account the effect of control
saturation. Although employing such adaptive control meth-
ods has considerable potential in the domain of traffic con-
trol, there is a lack of literature on designing and testing

such control schemes that aim at identifying traffic flow
parameters.

This paper proposes an adaptive control scheme consisting
of a novel globally robust MRAC-based approach for estimat-
ing constant or time-varying unknown set-points (in the form
of critical densities) for controlling a local motorway bottle-
neck, to maximise the outflow and, consequently, reducing
travel delays. Our main scientific contributions are as follows.

• We propose an adaptive dynamic set-point (critical den-
sity) estimator, assuming the availability of local traffic
measurements, such as the traffic density and flow at the
bottleneck.

• We prove that the estimator error dynamic is globally
asymptotically and exponentially stable via a novel Lya-
punov analysis.

• We perform numerical investigations employing a state-
of-the-art traffic control strategy and non-linear traffic
model, to demonstrate the effectiveness of the proposed
method. Furthermore, we perform numerical analyses to
demonstrate the robustness against parameter choices and
disturbances.

A preliminary version of this work has been proposed in [45],
which, however, suffers from some limitations elaborated
as follows. The adaptation rule for updating the estimating
parameters is designed via a Lyapunov function that guaran-
tees only conditional stability, while it is not proven whether
the designed growth rate parameter is able to guarantee the
convergence of the estimates to the true values. Furthermore,
the designed growth rate may lead to slow estimation and large
delays when the unknown parameters undergo fast changes.
Accordingly, the work in [45] is extended here in various
aspects. First, we provide a novel formulation of the adap-
tive estimator, demonstrating its global asymptotic stability,
which guarantees true value identification of the unknown
parameters. Second, we incorporate a methodology for online
tuning of its growth-rate parameters, while also thoroughly
investigating the stability properties of the proposed adaptive
estimation law. Third, we redesign the numerical experiments
by considering state-of-the-art modelling and control strate-
gies, while investigating also the robustness of parameter
choices.

II. ADAPTIVE ESTIMATOR DESIGN

A. Preliminary

Here, we introduce the fundamentals for establishing an
estimator that allows a feedback controller to maximise the
outflow at a motorway bottleneck. As, due to less pronounced
fluctuations, it is preferable to employ density as a set-point for
the controller [46], the problem reduces to estimating the crit-
ical density at the motorway bottleneck. To this end, we begin
by explaining our main assumptions; then, we elaborate on the
controller design; finally, we demonstrate the convergence of
the estimated values and the stability of the proposed approach.

For the design of the estimator, we formulate a parabolic
flow-density (q−ρ) relationship, denoted as FD; note however
that we will demonstrate in Section IV that the approach is
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Fig. 1. The FD shape assumed at the bottleneck area.

also effective when a different shape for the FD is employed,
as long as it is concave and features a unique maximum point.

In particular, we employ the following function describing
the FD, also depicted in Fig. 1,

q = aρ2
+ bρ, (1)

where a and b are unknown parameters; function (1) has a
maximum point (ρ⋆, q⋆) as

ρ⋆
=

−b
2a

, q⋆
=

−b2

4a
; (2)

note that q⋆ is the maximum flow (capacity) and ρ⋆ is the
critical density.

B. Adaptive Estimator Design

By replacing the nominal values of q⋆ and ρ⋆ in (1), the
error of q from q⋆ is

q − q⋆
= a(ρ2

− ρ⋆2
) + b(ρ − ρ⋆). (3)

Now, we introduce the integral error states

Eq =

∫ (
q − q⋆

)
dt (4)

Eρ =

∫ (
ρ − ρ⋆

)
dt, (5)

allowing to define the integral error system

Ėq = q − q⋆ (6)

Ėρ = ρ − ρ⋆, (7)

that can be reformulated as

Ẋ = Beue + re, (8)

where

X =

[∫
q dt∫
ρ dt

]
, ue =

[
u1
u2

]
=

[
ρ⋆2

− ρ2

ρ − ρ⋆

]
(9)

Be =

[
−a b
0 1

]
, re =

[
q⋆

ρ⋆

]
. (10)

We propose controlling system (8) using MRAC [36], which
let us simultaneously identify the unknown parameters a and
b (both appearing in Be) and minimise the tracking error.
In order to proceed, we introduce the feedback control law
(see, e.g., Chapter 1 in [47])

ue = −5̂(X − re), (11)

where 5̂ is an unknown matrix that needs to be estimated.
We rewrite (11) as

ue = 5̂ Īv, (12)

where Ī =
[
−I2×2 I2×2

]
(I2×2 is the identity matrix) and

v =

[
X
re

]
. We then introduce a model reference

Ẋ M = −AM X M + BMre, (13)

where AM and BM are arbitrarily defined matrices that guar-
antee a stable model reference dynamics. Let us define the
error between the integral states and the model reference
e = X − X M , whose dynamics are defined as (see [36])

ė = Ẋ − Ẋ M

= Be(−5̂X + 5̂re)+re + AM X M − BMre+AM X − AM X

= −AM (X − X M )+Be(−5̂+AM )X+Be(5̂ −
BM − I

Be
)re

= −AM e + Be(−5̂ + AM )X + Be(5̂ −
BM − I

Be
)re, (14)

which, converting to the Laplace domain, leads to

e =
Be

s I + AM

[
−5̂ +

AM

Be
5̂ −

BM − I
Be

]
v

=
B̄e

s I + AM

[
−5̂2(Be) +

AM

B̄e
5̂2(Be) −

BM − I
B̄e

]
v,

(15)

where s is the Laplace variable, and 2 is a sign operator
defined as follows

2(i) =


1, if i > 0
0, if i = 0
−1, if i < 0.

(16)

We can observe that the error dynamics of (15) is stable over
time if and only if changes of 5̂ are restricted to a finite
domain or 5̂ is converging to a certain value (see Section II-
C), considering that −AM is selected as a stable matrix with
negative eigenvalues, while BM and Be are constant matrices.
As the term 2(Be) appears in (15), to facilitate the calculation
we rewrite (12) as

ue = 2(Be)5̂ Īv; (17)

then, by replacing (17) into (8), we obtain

Ẋ = Be2(Be)5̂ Īv + re, (18)

which, defining B̄e = Be2(Be), results in

Ẋ = −B̄e5̂X +

(
B̄e5̂ + I

)
re. (19)

System (19) is exponentially stable around re if
limt→∞ 5̂ → B̄e, as −B̄e5̂ is a Hurwitz matrix (see
Chapter 3 in [48]).

C. Derivation of the Estimation Law

In order to derive the estimation law, we start by studying
the convergence of 5̃ = 5̂ − 5, by employing the following
exponential Lyapunov function

V = XPXT
+ M̃T0−1 M̃ (20)

V̄ = exp(−γV), (21)
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where we define M̃ = exp(β|5̃|). Denoting M̂ = exp(± β5̂)

and M = exp(∓ β5), then M̃ = exp(±β5̂) exp(∓β5) and,
since 5 is assumed constant (5̇ = 0), M is a constant positive
matrix in (21) that can be neglected, which leads us to

M̃ = exp(β|5̂|). (22)

Furthermore, having P ≥ 0 (scalar), γ > 0 (scalar), β > 0
(scalar), and 0 > 0 (matrix), leads to V̄ > 0. For achieving
exponential global stability, it is sufficient that ˙̄V ≤ −V̄ (see,
e.g., [48], [49]); then

˙̄V = −γ V̄
dV
dt

≤ −V̄ (23)

and, since γ and V̄ are always positive, the sufficient condition
reduces to

dV
dt

≥
1
γ

I, (24)

thus
dV
dt

= ẊPXT
+ XP ẊT

+
˙̃MT0−1 M̃ + M̃T0−1 ˙̃M. (25)

By obtaining uT
e from (17) and replacing it into (25), we obtain

dV
dt

= 2P Be XvT Ī T5̂T2(Be)
T
+ 2 ˙̃MT0−1 M̃ . (26)

Defining PBe = C , e = C X , and combining (24) and (26)
we obtain the condition

2 ˙̃MT0−1 M̃ + 2 evT Ī T5̂T2(Be)
T
=

1
γ

I, (27)

which, by replacing ˙̃M = β M̃ 2(5̂)
˙̂
5, results in

β
˙̂
5T0−12(5̂)T M̃T M̃ =

1
2γ

I − evT Ī T5̂T2(Be)
T. (28)

That is, as long as the condition in (28) is satisfied and
γ > 0, 5̂ is converging. Moreover, we define 1

γ
I = 0+2×2,

which results in

β
˙̂
5T0−12(5̂)T M̃T M̃ = −evT Ī T5̂T2(Be)

T
; (29)

thus, a sufficient condition for stability is that the changes in
the unknown parameters are

˙̂
5T

= −evT Ī T 5̂T2(5̂)T

M̃T M̃
2(Be)

T 1
β

0, (30)

where 0 is known as the growth rate of the estimation
law. Assuming 0T

= 0, 2(5̂)5̂ = |5̂|, and R2×2 =

1
β
2(Be)

|5̂|

M̃T M̃
, this results in the adaptation law

˙̂
5 = −0R ĪveT. (31)

Remark 1: Regarding (31), it should be noted that the
term |5̂|

M̃T M̃
includes M̃ in its denominator, which may lead

to instability. However, from (22), we know that M̃ ≥ 1,
which prevents the occurrence of a singularity. In addition,
by plotting a scalar version of such a term (refer to Fig. 2),
one can observe that a) the term is well-bounded and b) if
5̂ becomes very large, the term |5̂|

M̃T M̃
→ 0, which, in turn,

results in the boundedness of 5̂, still satisfying the asymptotic
stability of the error system in (14).

Fig. 2. Schematical behaviour of the nonlinear term |5̂|

M̃T M̃
in (31) for the

case where 5̂ is a scalar.

D. The Growth Rate of the Estimator

Although any positive constant value for 0 is theoretically
sufficient to guarantee the global stability of the estimation
scheme, it may not guarantee the global asymptotic stability
of the estimation error (i.e., 5̂ → 5). To address this
shortcoming, we redefine 0 as a time-varying parameter,
considering that the tracking error for system (8) is ē = X−re;
this leads to

0(t) =
(∫ t

0
Rē(r)ēT(r)dr

)−1

, (32)

where
d
dt

(
0−1(t)

)
= Rē(t)ēT(t). (33)

From (31), knowing that eT(t) = ēT(t)(5 − 5̂) and Īv(t) =
re − X = −ē(t), we have that

˙̂
5 = 0Rē(t)ēT(t)(5 − 5̂) (34)

0−1(t) ˙̂
5 +Rē(t)ēT(t) 5̂ = Rē(t)ēT(t)5 (35)

d
dt

(0−1(t)5̂) = Rē(t)ēT(t)5 (36)

d
dt

(

∫ t

0
Rē(r)ēT(r)dr5̂) = Rē(t)ēT(t)5 (37)∫ t

0
Rē(r)(ēT(r)5̂ − ēT(r)5)dr = 0. (38)

Essentially, (38) implies that the proposed estimation law is
minimizing a cost function based on the well-known least-
square method, with the cost function

J =

∫ t

0
||ēT(r)5̂ − ēT(r)5||

2 dr. (39)

However, while implementing the estimator, it is desirable to
update the gain 0(t) directly, rather than using (33) and then
inverting the matrix 0−1, which may cause numerical issues.
Instead, by using the identity matrix

d
dt

(
0(t)0−1(t)

)
= 0̇(t)0−1(t)+0(t)

d
dt

(
0−1(t)

)
=0, (40)

we obtain

0̇(t) = −0(t)Rē(t)ēT (t)0(t). (41)

While using (31) and (41) for online estimation, we need to
specify initial values for the estimated parameters and the gain
of growth rate. However, the initialisation may be challenging,
as from (31) and (41) it results that 0(0) should be a very
large value (theoretically approaching infinity), whereas 5̂ is



10834 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

initially undefined. To tackle this challenge, assuming proper
finite values to initialize 0 and 5̂ can be a problem solver.
In fact, one should use the best guess to initialize 5̂, a proper
initial value of the gain 0(0) must be opted as high as allowed
by the noise sensitivity extracted from the dynamic of the
system analysis. Note that, for the sake of simplicity, 0(0)

may be chosen as a diagonal matrix.

E. Parameter Convergence

Theoretically, the convergence properties of the estimator
can be revealed via solving the differential equations (33) and
(31), assuming the absence of noise and parameter variation.
From (33), (31), and (41), one may see that

0−1(t) = 0−1(0) +

∫ t

0
Rē(r)ēT (r)dr (42)

d
dt

(
0−1(t)5̃(t)

)
= 0. (43)

Assuming equilibrium conditions (i.e., 5̇ = 0), we obtain

5̃(t) = 0(t)0−1(0)5̃(0). (44)

As Īv = −ē if v is such that

lim
t→∞

λmin

(∫ t

0
Rē(r)ēT (r)dr

)
→ ∞ (45)

lim
t→∞

λmin

(∫ t

0
R Īv(r)vT (r) Ī Tdr

)
→ ∞ (46)

and knowing that when t → ∞, R is a bounded constant
matrix as a function of 5̂, then (46) can be rewritten (by
excluding the constant matrices) as follows

lim
t→∞

λmin

(∫ t

0
v(r)vT (r)dr

)
→ ∞, (47)

where λmin(·) denotes the smallest eigenvalue of its argument.
The gain matrix converges to a small positive value and
the estimated parameters asymptotically (although usually not
exponentially) converge to the true parameters. Indeed, for any
positive integer k,∫ kσ+σ

0
v(r)vT (r)dr =

k∑
i=0

∫ iσ+σ

iσ
!v(r)vT (r)dr ≥ kα1 I.

(48)

Thus, if v is persistently excited, (48) is satisfied; then,
according to [50] and [51], 0 converges to a small positive
value and 5̃ → 0.

Note that the impact of the initial gain value and the initial
parameter value on the estimation process is observable from
(42), (43), and (44). In fact, a small error in the parameter’s
initialisation value (5̃(0)), always leads to a small parameter
estimation error. Whereas, a large initial gain 0(0) results in a
small parameter estimation error. Generally, based on (32), 0

is a very small value and according to (41), it is exponentially
converging to zero. Thus, if 0(0) is not big enough we may
have no update or a very low-speed update in the parameter
estimation. This is more evident if we select 0(0) = 00 I ,
which results in

5̃ =

(
I + 00

∫ t

0
Rē(r)ēT (r)dr

)−1

5̃(0). (49)

F. Robustness to Noise in the Density and Flow Measurement

Generally, the least-squares method (39) used for the
designed growth rate (0) calculated via (41) performs robustly
with respect to noise and disturbance. Proper noise-rejection
capability results from the fact that noise, particularly if char-
acterised by high frequency, is averaged out. The estimator’s
inability to track highly fluctuating parameters (different from
switching parameters’ values) is also intuitively understand-
able, from two different viewpoints. In mathematical terms,
0(t) converges to zero when v is persistently excited according
to (43), i.e., the parameter update is essentially shut off after
some time, and the changing parameters cannot be updated
anymore. In practical terms, the least-square estimator tries to
fit all the data up to the current time, while, in practice, the
previous data is extracted by the previous parameters.

G. The Estimator Framework

The overall framework presented in this paper, shown in
Fig. 3, includes a feedback controller designed to maintain the
density at a motorway bottleneck around the critical set-point
estimated via the proposed methodology. The framework is
composed of three main parts: a) the feedback traffic control
loop (grey part); b) the adaptive estimator (orange part), and
c) the adaptive estimator’s parameters (growth rate) estimation
(green part). The grey part essentially includes any feedback
controller that utilises density as a set-point to maximise bot-
tleneck throughput. The orange part represents the estimation
process of ρ⋆ and q⋆, while the growth rate of the estimator
(0) is adaptively estimated as shown in the green part.

To implement the parameter estimation in discrete form,
we consider ˙̂

5(k + 1) =
5̂(k+1)−5̂(k)

1t and 0̇(k + 1) =
0(k+1)−0(k)

1t where 1t is time-step; then, the adaptation
rule (31) and the gain update (41) turn into

5̂(k + 1) = 5̂(k) − 1t
(
0(k)R(k) Īv(k)e(k)T)

, (50)

0(k + 1) = 0(k) − 1t
(
0(k)R(k)ē(k)ēT(k)0(k)

)
. (51)

The estimates ρ̂⋆, namely the set-point for the feedback
controller, can be obtained as (see (9))

ρ̂⋆(k + 1) = ρ(k + 1) − u2(k + 1), (52)

where u2 is an element of ue, which can be computed from 5̂

and measured variables ρ. Moreover, the estimates for the
maximum outflow q̂⋆ is calculated as (see (9))

q̂⋆(k + 1) = −
5̂2

1,2(k + 1)

45̂1,1(k + 1)
. (53)

Note that (52) and (53) are defined so that we avoid having
dependent parameter estimation, which is necessary to achieve
convergence to the true values (see [36]).

III. EXPERIMENTAL SET-UP

We now proceed by demonstrating via numerical experi-
ments the effectiveness of the proposed methodology. We first
introduce the traffic simulation model and the feedback control
ramp metering strategy considered in our experiments, fol-
lowed by the evaluated scenarios and the parameters utilised
for the model, controller, and estimator.
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Fig. 3. Closed-loop diagram of the proposed estimation and control integrated framework.

A. The Macroscopic Traffic Flow Model METANET

The macroscopic traffic flow model METANET [52] is
selected for the numerical experiments. METANET is a
second-order traffic flow model consisting of two intercon-
nected dynamic equations, which describe the evolution of
traffic density and (space) mean speed, respectively. To define
a space-time discretized model, the considered freeway stretch
is subdivided into N cells of lengths L i , i = 1, 2, . . . , N ;
whereas the time t = kT is discretized, where T is the sim-
ulation time step and k = 0, 1, . . . is the discrete-time index.
The traffic characteristics of each cell are macroscopically
identified by the following traffic variables:

• traffic density ρi (k), as the number of vehicles in cell i at
time t = kT , divided by L i and by the number of lanes λi
in the considered cell (measured in veh/km/lane);

• mean speed vi (k) as the mean speed of vehicles in cell i
at time t = kT (measured in km/h);

• traffic flow qi (k) as the number of vehicles leaving cell i
during the time period (kT, (k + 1)T ], divided by T
(measured in veh/h).

The equations of the second-order macroscopic traffic flow
model used to calculate the traffic variables are:

ρi (k + 1) = ρi (k) +
T

L iλi

[
qi−1(k) − qi (k) + ri (k) − si (k)

]
(54)

vi (k + 1) = vi (k) +
T
τ

[V (ρi (k)) − vi (k)]

+
T
L i

vi (k)
[
vi−1(k) − vi (k)

]
−

νT
τ L i

ρi+1(k) − ρi (k)

ρi (k) + κ
−

δT
L iλi

ri (k)vi (k)

ρi (k) + κ
(55)

qi (k) = ρi (k)vi (k)λi (56)

V (ρi (k)) = vfree
i (k) exp

[
−

1
αi (k)

(
ρi (k)

ρcr
i (k)

)αi (k)
]

, (57)

where τ (time constant), ν (anticipation constant), and κ

(model parameter) are global parameters given for the whole
motorway; ri (k) and si (k) are the on-ramp inflow and off-
ramp outflow, respectively; V (ρi (k)) is a speed–density rela-
tionship that represents the FD; finally, vfree

i (k) (free-flow

speed), ρcr
i (k) (critical density), and αi (k) (model parameter)

are parameters that characterise the FD in each cell, which,
differently from the original formulation, in this work are
considered time-dependent to describe the possibility of the
FD to change over time. METANET is widely considered one
of the most accurate macroscopic traffic models, capable of
reproducing traffic instabilities and the capacity drop effect,
which are essential for evaluating traffic control strategies.

B. ALINEA Ramp Metering Strategy

We assume traffic is controlled by the well-known ramp-
metering feedback controller ALINEA [9]. The controller
ALINEA is designed to maintain the total (cross-lane) density
at its critical value in the bottleneck segment, which, in turn,
is expected to maximise the bottleneck throughput. This is
done by manipulating the ramp inflow via an I-type controller,
according to the following control law

u(k) = u(k − 1) + K A

(
ρ̂⋆

î
(k) − ρî (k)

)
, (58)

where u(k) is the controlled input (ramp flow); ρî (k) is the
(measured) density at bottleneck cell î ; ρ̂⋆

î
(k) is the estimated

set-point for the density at the bottleneck cell; and K A is the
controller gain, which can be defined, e.g., via a trial-and-
error procedure. Note that, due to input saturation, the value
u(k − 1) used in the right-hand side of (58) should be the
bounded value of the previous time step, i.e., after application
of the upper and lower bounds constraints (considering, e.g.,
umin and umax as the lower and upper bound, respectively, for
the input u(k)) in order to avoid the wind-up phenomenon in
the regulator.

Since ramp metering actions may create a queue outside the
motorway network, we introduce the following dynamics for
the (vertical) queue length w(k) (in veh)

w(k + 1) = w(k) + T (d(k) − u(k)) , (59)

where d(k) is the on-ramp external demand during time
interval (k, k + 1].

In addition, in the presented experiments (as well as in
the majority of real-life situations), we assume that the ramp
capacity is smaller than the mainstream one; in the opposite
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Fig. 4. The motorway stretch utilised in the simulation experiments.

case, there may be a need to consider the presence of on-ramp
queues also for the no-control case, thus d should also be
saturated.

C. Network Description and Simulation Configuration

We consider a two-lane motorway stretch, depicted in Fig. 4,
which contains a metered on-ramp to test and evaluate the
performance of the proposed strategy in the presence of
changing FD. The stretch considered contains two origins, i.e.,
the main-stream and an on-ramp, two freeway links, and one
destination. In particular, we consider a network composed
of 20 segments of the same length L i = 0.5 km, while
we employ a time step T = 10 s. Typical ramp-metering
implementations consider a control time-step in the order of
30–60 s [53]; thus, we update the control signal once in
three simulation steps, i.e., the time-step of the controller
is 30 s. The simulation horizon is 4 h, corresponding to
K = 1440 steps.

We assume that the FD changes from FD1 to FD2 in
the middle of our simulations (i.e., after 2 h, k = 720),
which may reflect different traffic compositions (e.g., a high
number of heavy vehicles altering the traffic characteristic
of the motorway). We employ typical METANET parameters
from [52], which are shown in Table I. Note that, in practice,
the factual critical densities may not be the same as the values
defined for the FD of the METANET model (i.e., the ones
reported in Table I). This is due to the fact that, in second-order
traffic models (such as METANET), the FD relation represents
a “desired” target, which would happen only at steady-state,
whereas traffic characteristics result from the dynamic model,
where the actual speed is affected by the different terms in the
speed dynamic equation (55) [54].

To examine the effects of the time-varying FD and the
potential of ramp metering to mitigate congestion, we con-
sider the following demand scenario (see also Fig. 5). The
mainstream demand is kept constant at a relatively high level
(about 80% of the nominal capacity) for the first 3 h of
simulation, dropping to a low level (less than 50% of the
nominal capacity) during the last hour; the latter being a
cool-down period useful for ensuring that any congestion
dissipates to allow fair numerical comparisons. The demand
on the on-ramp increases for the first time after 10 min to a
high value, remains constant for 30 min, and decreases to a
constant low value. This is expected to create some congestion
while traffic behaves according to FD1. Then, after the FD
changes to FD2, the on-ramp demand increases for a second
time, remains constant for 45 min, and finally decreases to
a constant low value. This scenario is defined such that two
independent congestion instances occur with different FDs.

We employ as performance metrics the Total Time Spent
(TTS) and the Total Delay (TD) over a finite time horizon K ;

TABLE I
PARAMETER VALUES USED IN THE NONLINEAR MULTI-LANE TRAFFIC

FLOW MODEL (54)–(57)

Fig. 5. Traffic demand used in the simulation experiments.

TTS is defined as

TTS = T
K∑

k=0

N∑
i=0

λi L iρi (k) + T w(k), (60)

which allows considering both the effects of congestion cre-
ated in the mainstream and the queue generated at the on-ramp
when ramp metering is implemented.

The TD can be computed as

TD = TTS − TFFTT, (61)

where TFFTT is the Total Free Flow Travel Time, namely the
total travel time that vehicles would experience if they were
allowed to travel at the free flow speed. In order to calculate
the TFFTT, we first introduce the Free Flow Travel Time,
FFTTi (k), for a given link i at time k, which is

FFTTi (k) =
L i

vfree
i (k)

; (62)

for each link and time, the number of vehicles experiencing
such travel time is qi (k) · T ; therefore the resulting TFFTT is

TFFTT =

∑
k

∑
i

FFTTi (k)qi (k)T

= T
∑

k

∑
i

qi (k)
L i

vfree
i (k)

. (63)

D. Reference Model Formulation

As discussed in Section II, the proposed estimator requires
the definition of a reference model characterised by stable
dynamics, where one of the states is the integral of the other
state. Here, we employ the well-known mass-spring-damper
model [55], which is a two-state system with globally stable
dynamics. Actually, for each of the estimated q̂⋆, or ρ̂⋆ we
are using an independent mass-spring-damper model; thus,
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describing them in a single system, we employ a four-state
system with stable states around re, defined as follows

Ẋr = Ar Xr + Brre (64)

Ar =


0 1 0 0

−Kr − Cr 0 0
0 0 0 1
0 0 − Kr − Cr

 , Br =


0 0

Kr 0
0 0
0 Kr

 ,

(65)

where Xr :=
[∫

q̂⋆ dt, q̂⋆,
∫

ρ̂⋆ dt, ρ̂⋆
]T, thus X M =[

Xr1,1 Xr3,1

]T as X M ≡ X in (14), and Kr > 0 and Cr > 0 are
the spring and damper coefficients, respectively. The system is
globally stable to re as all the eigenvalues of Ar are negative
and the pair (Ar , Br ) is stabilisable (see, e.g., [56]).

In the performed experiments, while applying control,
we employ the feedback law (58) in the model (54)–(57). The
controller gain is set as K A = 15 (tuned via trial-and-error),
while the set-point is determined via (52) iteratively calculat-
ing (50). A sensitivity analysis involving parameters Kr and
Cr has been carried out, which is reported in Section IV-F (see
also [29]); for our experiments, we use the following values:
Kr = 10 and Cr = 2. Finally, the initial value of the growth
rate in (51) is set as 0(0) = 10, β = 0.001, and from (10) we

know that 2(Be) =

[
1 1
0 1

]
.

IV. EXPERIMENTAL RESULTS

We now proceed by presenting quantitative results demon-
strating the performance of the proposed methodology for
different settings of the proposed estimator. We define and
consider the following baseline scenarios for our comparisons.

• Scenario 1: the no-control case, where the ramp flow
is not metered, therefore congestion is expected to be
formed;

• Scenario 2: a controlled case with known set-points,
where ramp metering is active, considering that criti-
cal densities (thus, the set-points) are perfectly known
(obtained, e.g., by analysing the no-control case results);

• Scenario 3: a controlled case where the set-point is main-
tained constant during the whole simulation. Here we test
two different sub-scenarios: in the first sub-scenario, the
set-point is set equal to the critical density employed for
the first half of the simulation, i.e., according to FD1
(Scenario 3-a); in the second sub-scenario, the set-point
is set equal to the critical density employed for the second
half of simulation, i.e., FD2 (Scenario 3-b).

We reasonably expect that the no-control case (Scenario 1)
is a lower bound for performance, while the controlled case
with known set-points (Scenario 2) is an upper bound for the
improvements that may be achieved. We then implement and
evaluate controlled scenarios utilising our estimator as follows.

• Scenario 4: we test the estimator by setting as initial
set-point the critical densities of FD1 and FD2, in Sce-
narios 4-a and 4-b, respectively;

• Scenario 5: we test our estimator by considering initial
set-points values that are very high (Scenario 5-a) and
very low (Scenario 5-b) compared to the actual ones.

Fig. 6. Density of the bottleneck area: (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3-a. (d) Scenario 3-b. (e) Scenario 4-a. (f) Scenario 4-b.

In the plots presented afterwards, we use the blue colour for
reporting the results of the FD employed during the first half of
the simulation (FD1) and the red colour for the FD employed
during the second half of the simulation (FD2).

A. Scenario 1: No-Control Case

The no-control case consists of the implementation of the
nonlinear traffic model (54)–(57) in the presented motorway
stretch, where no ramp metering is considered. According
to Fig. 7(a), one may see that congestion occurs twice at
the merging area (segment 15), which spills back upstream
reaching up to segment 2, while the density at the bottleneck
cell grows well above its critical value as it can be seen from
Figs. 6(a) and 8(a). The congestion occurs due to the high
inflow entering both the mainstream and the ramp, which
exceeds the bottleneck capacity. In fact, during the first half
of the simulation, when the bottleneck capacity is around
4000 veh/h, the total demand reaches 4300 veh/h; in the
second half of the simulation, when the bottleneck capacity
is around 3600 veh/h, the total demand reaches 3800 veh/h.
Note that capacity drop also happens at the bottleneck cells
of the stretch, which reduces capacity once congestion is set,
with the consequence of intensifying the resulting congestion.
The resulting TTS, calculated via (60), is reported in Table II

B. Scenario 2: Controlled Cases With Time-Varying Known
Set-Points

Analysing the results of Section IV-A and, in particular,
by looking at Fig. 8(a), which shows FD1 (blue) and FD2
(red) resulting from the no-control case, one may observe
that the actual critical densities of the FDs, i.e., the densities
corresponding to the maximum outflows are 33 veh/km and
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TABLE II
TTS AND TD VALUE REPORT REGARDING THE DIFFERENT SCENARIOS

Fig. 7. Contour plots for speed: (a) Scenario 1. (b) Scenario 2. (c) Sce-
nario 3-a. (d) Scenario 3-b. (e) Scenario 4-a. (f) Scenario 4-b.

28 veh/km for FD1 and FD2, respectively. These values are the
ones employed for the controlled case with known set-points.

Then, we evaluate the performance achievable by control-
ling the traffic via ramp metering, assuming that we have per-
fect knowledge of the critical densities (thus, the set-points) in
real-time. Note that this corresponds to an unrealistic scenario,
as the actual critical densities cannot be observed unless we
are reaching a (nearly) congested state. Still, it is interesting
to perform such an experiment, in order to determine an upper
bound for the performance of our estimation strategy.

We therefore implement the nonlinear traffic model
(54)–(57), where the on-ramp flow is calculated via (58), while

Fig. 8. Fundamental Diagram: (a) Scenario 1. (b) Scenario 2. (c) Scenario 3-a.
(d) Scenario 3-b. (e) Scenario 4-a. (f) Scenario 4-b.

ρ̂⋆(k) = 33 veh/km for 0 ≤ k < 720 and ρ̂⋆(k) = 28 veh/km
for 720 ≤ k ≤ 1440.

The results in Figs. 6(b), 7(b), and 8(b) show that congestion
disappears and the bottleneck cell’s density is maintained
around its critical value for both FD1 and FD2. To assess
the controller performance numerically, we compare the
TTS and TD, reported in Table II, where one may see that
Scenario 2 results in a 6.3% for TTS improvement and 33.1%
for TD improvement over the no-control case in Scenario 1.
Furthermore, queues are generated at the on-ramps during the
peak periods in all controlled scenarios; note that no upper
bound for the queue length is considered in our experiments.
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C. Scenario 3: Controlled With Constant Set-Points

In this scenario, we apply ramp metering employing a con-
stant set-point during the simulation. Basically, this scenario
represents what is typically done in existing ramp metering
applications, where the set-point is estimated from historical
data and maintained constant during implementation. In par-
ticular, we test two sub-scenarios, one (Scenario 3-a) using
as a set-point the critical density of FD1 and another one
(Scenario 3-b) using as a set-point the critical density of FD2.
That is, we implement the nonlinear traffic model (54)–(57),
where the on-ramp flow is calculated via (58), where, in Sce-
nario 3-a, ρ̂⋆(k) = 33 veh/km, ∀k; and, in Scenario 3-b,
ρ̂⋆(k) = 28 veh/km, ∀k.

Results in Fig. 6(c,d) show that the congestion is miti-
gated in both sub-scenarios. According to Figs. 7(c,d) and
Figs. 8(c,d), we observe that, for all sub-scenarios, the con-
troller is capable to maintain the bottleneck cell’s density
around the desired set-point during the period characterised by
high demand for both FD1 to FD2. However, as these values
do not maximise the throughput for some time, numerical
comparisons presented in Table II reveal that the controller is
capable to achieve only 3.9% and 3.1% for TTS improvement,
and 11.6% and 9.1% for TD improvement compared to the
no-control case for Scenarios 3-a and 3-b, respectively. Also
in this case, we show in Fig. 9(b,c) the generated queues at
the on-ramp location regarding Scenario 3-a and 3-b, which
shows a slight queue length reduction compared to Scenario 2,
especially regarding FD2.

D. Scenario 4: Controlled With Estimated Set-Points

We proceed then with evaluating the performance of our
estimator, by considering two sub-scenarios considering dif-
ferent initial values for the estimated set-points, corresponding
to the critical densities of FD1 and FD2. We implement the
nonlinear traffic model (54)–(57), where the on-ramp flow is
calculated via (58), and ρ̂⋆(k) and ρ̂⋆(k) are estimated via (52)
and (53) respectively. We test Scenario 4-a, where ρ̂⋆(0) =

33 veh/km, and Scenario 4-b, where ρ̂⋆(0) = 28 veh/km.
Looking at the results regarding Scenario 4-a, as shown in

Figs. 6(e), 7(e), and 8(e), we observe that the controller with
the estimator is capable of avoiding the onset of congestion,
similarly to the other controlled scenarios. Moreover, we can
also see that the estimator manages to successfully adjust
set-point values to the actual critical values, while successfully
controlling the system. This is also shown in more detail in
Fig. 10(b), where the estimated critical density settles to the
actual value around t = 150 min, i.e., 30 minutes after the
change in the FD. In addition, Fig. 10(a) shows the estimated
maximum outflow, where the changes start earlier than the
estimated density (t = 100 min). Numerical comparisons in
terms of TTS, reported in Table II, demonstrate that utilising
the estimator not only improves traffic conditions compared
to the control case (Scenario 1) but also outperforms all the
scenarios where a constant set-point is used; for example,
the TTS improvement and TD improvement in Scenario 4-
a are 51% and 81% higher than in Scenario 3-a, respectively.
In addition, queues resulting from Scenario 4-a are generated

Fig. 9. Ramp queue: (a) Scenario 2. (b) Scenario 3-a. (c) Scenario 3-b.
(d) Scenario 4-a. (e) Scenario 4-b.

at the on-ramp location during the peak periods, for which no
upper-bound is considered in our experiments (see Fig. 9(c,d)).

Similarly, in Scenario 4-b the controller manages to
avoid the congestion successfully, as can be seen from
Figs. 6(f), 7(f), and 8(f). In particular, as shown in Fig. 6(f), the
estimator successfully adjusts set-point values to the critical
density after the FD changes. This is shown in more detail in
Fig. 10(d), where the estimated critical density reaches first,
at t = 16 min, 33 veh/km and then, around t = 140 min,
28 veh/km. In addition, Fig. 10(c) reveals the estimated
maximum outflow, where the convergence to its true value
starts earlier than the estimated density (t = 100 min). Also
for this Scenario, the resulting TTS and TD are lower than
in the no-control case and than any controlled Scenario with
a constant set-point; in particular, the TTS improvement and
TD improvement in Scenario 4-b are 54% and 58% higher
than in Scenario 3-b, respectively. Also in this case, we show
in Fig. 9(e) the generated queues at the on-ramp location
regarding Scenario 4-b. According to this figure, the estimator
could slightly reduce the queue compared to Scenario 3,
especially for FD2.

E. Scenario 5: Controlled With Estimated Set-Points and
Distant Initial Values

In this scenario, we investigate the performance of the con-
troller with the adaptive estimator in two cases, where the ini-
tial values of the set-points are distant from the actual values,
utilising in particular (a) a very high value (Scenario 5-a), i.e.,
ρ̂⋆(0) = 40 veh/km, and (b) a very low value (Scenario 5-b),
i.e., ρ̂⋆(0) = 20 veh/km.

Looking at Figs 11(a,b), we observe that the densities at the
bottleneck area are maintained around their true critical values
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Fig. 10. Estimated values, left: maximum out flow (q⋆), right: Critical density
(ρ⋆), for: (a,b) Scenario 4-a, where ρ̂⋆(0) = 33 veh/km. (c,d) Scenario 4-b,
where ρ̂⋆(0) = 28 veh/km.

Fig. 11. Density of the bottleneck areas for: (a) Scenario 5-a, where
ρ̂⋆(0) = 40 veh/km. (b) Scenario 5-b, where ρ̂⋆(0) = 20 veh/km.

for both Scenarios 5-a and 5-b, although the initial conditions
are considerably far from the actual values. This demonstrates
that the proposed estimator is capable of achieving a proper
convergence in a short time. In particular, we can see from
Figs. 12(b,d) that, for both Scenarios 5-a and 5-b, the estimator
reaches the actual set-point value (ρ⋆

= 33 veh/km) around
t = 25 min, while Figs. 12(a,c) show that the maximum
outflow (q̂⋆) is also properly estimated.

Also for this Scenario, the TTS and TD values are reported
in Table II, where we can see that the percentage of improve-
ment is 4.2% and 4.0% for TTS, and 14.8% and 13.1% for
TD, respectively, compared to the no-control case (Scenario 1),
thus outperforming Scenario 3.

F. Sensitivity Analysis of the Reference Model Parameters

Although the reference model defined in Section III-D is
proven to be globally stable, which guarantees the convergence
of the estimated parameters, the quality and speed of the
estimation process may be affected by a proper choice of the
parameters Kr and Cr . In order to investigate their effect,
we perform a set of experiments considering Scenario 4,
as introduced in Section IV-D, comparing the resulting TTS
to better understand the sensitivity of the convergence process
and tracking error to the choice of such parameters. The results
are reported in Fig. 13, where one may observe that the ranges
of Kr and Cr that produce positive effects in terms of TTS
improvement (i.e., the orange area) are very wide, that is, the
estimator is not very sensitive to such parameters choice while
we remain within these ranges. Still, one may observe a darker

Fig. 12. Estimated values, left: maximum outflow (q⋆), right: Critical density
(ρ⋆) for (a,b) Scenario 5-a, where ρ̂⋆(0) = 40 veh/km. (c,d) Scenario 5-b,
where ρ̂⋆(0) = 20 veh/km.

Fig. 13. Sensitivity analysis showing the percentage of TTS improvement
compared to the no-control case for a domain of Kr and Cr .

orange area, where 1 ≤ Kr ≤ 20, and 1 ≤ Cr ≤ 9, which
leads to the best performance in terms of TTS improvement.
Thus, for our experiments, we select Kr = 10, and Cr = 2,
which lie in this area with the highest TTS improvement value.

G. Comparisons With Existing Methods

To investigate the numerical improvements achieved with
respect to the method proposed in [45], we implement such
a method in the same simulation scenarios presented above,
while the results are reported in Table II, and the quality
of estimation is shown in Figs. 10 and 12. Looking at
Figs. 10(b,d) and 12(b,d), one can observe that the estimator
in [45] features stronger oscillations and generally has a higher
delay in converging to the true critical density value compared
to the proposed method (on average, around 20 min). The
oscillations are due to the choice of a conditionally stable Lya-
punov function used to develop the adaptation law, while in the
proposed version the oscillations are minimal as we develop
the adaptation rule based on the global exponential stable
Lyapunov function (21). In addition, the delay is expected for
the method in [45] because of the designed small value for
the growth rate, while, in the proposed version, the growth
rate in (32) can vary depending on the stability conditions
for the estimator error (5̂ → 5). Finally, from Table II,
it can be observed that the proposed method outperforms the
method [45] for all scenarios, in terms of both TTS and TD
improvement, by an average of 42% and 46%, respectively.
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V. CONCLUSION

This paper proposed a novel robust adaptive estimator
to estimate the set-point values (i.e., critical density) for
local traffic control strategies, designed to achieve maxi-
mum throughput at a bottleneck area, assuming the FD is
unknown and time-varying. The global asymptotical stability
of the estimator is proven through a Lyapunov function,
guaranteeing convergence to the actual critical density and
maximum outflow. In addition, the stability and convergence
of the estimator’s parameters are investigated via a least-square
method. We implemented the controller and the estimator with
the feedback controller for ramp metering ALINEA, utilising
the traffic flow model METANET modified to account for a
time-varying FD. Our numerical results show that employing
the adaptive estimator outperforms the ALINEA controller in
terms of TTS in case a constant set-point is utilised. Fur-
thermore, to assess the robustness of the estimator, we tested
extreme cases for the initial estimates.

Further developments include the incorporation in the con-
trol strategy of mainstream flow control, which may be
implemented, for example, via variable speed limits, as well
as accounting for the presence of multiple bottlenecks; the
latter could, e.g., follow the works in [57] and [58]. Another
possible direction is to investigate the case of more complex
networks, characterised by multiple destinations, where, e.g.,
the behaviour of CAVs is defined per destination.
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