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Functional dysphonia (FD) refers to an abnormality in voice quality in the absence of an identifiable lesion.
In this paper, we propose an approach based on the tunable Q wavelet transform (TQWT) to automatically
classify two types of FD (hyperfunctional dysphonia and hypofunctional dysphonia) from a healthy voice using
the acoustic voice signal. Using TQWT, voice signals were decomposed into sub-bands and the entropy values
extracted from the sub-bands were utilized as features for the studied 3-class classification problem. In addition,
the Mel-frequency cepstral coefficient (MFCC) and glottal features were extracted from the acoustic voice signal
and the estimated glottal source signal, respectively. A convolutional neural network (CNN) classifier was
trained separately for the TQWT, MFCC and glottal features. Experiments were conducted using voice signals
of 57 healthy speakers and 113 FD patients (72 with hyperfunctional dysphonia and 41 with hypofunctional
dysphonia) taken from the VOICED database. These experiments revealed that the TQWT features yielded
an absolute improvement of 5.5% and 4.5% compared to the baseline MFCC features and glottal features,
respectively. Furthermore, the highest classification accuracy (67.91%) was obtained using the combination

of the TQWT and glottal features, which indicates the complementary nature of these features.

1. Introduction

Voice disorder is referred to as functional dysphonia when there
are disturbances in voice quality without any obvious neurological,
anatomical, or other organic difficulties affecting the larynx (Behlau
et al.,, 2015; Reymond et al.,, 2006; Kiakojoury et al., 2014; Mu-
movic¢ et al.,, 2014). Functional dysphonia (FD) is the most frequent
voice disorder among adults aged between 19 and 60 years (Martins
et al., 2015). FD can manifest itself in two main forms, either as (i)
hyperfunctional (hyperkinetic) dysphonia - the form associated with
overuse of the laryngeal muscles and, occasionally, use of the false
vocal folds, and (ii) hypofunctional (hypokinetic) dysphonia - the form
associated with incomplete closure of the vocal folds due to reduced
muscle tension (Reymond et al., 2006). Hyperfunctional dysphonia is
common among people with voice-intensive occupations like teachers
and singers, and is characterized by a tight, tense, loud and often
deepened voice (Mumovi¢ et al.,, 2014). Conversely, hypofunctional
dysphonia is mainly characterized by a breathy, low-pitched and weak
voice. The goal of this study is to develop a 3-class classification system
to perform automatic classification between a healthy voice and two
types of FD voices (hyperfunctional and hypofunctional).

Typically, a voice disorder classification system can be developed
using two approaches, namely, the traditional pipeline approach and
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the end-to-end approach. A system based on the traditional pipeline ap-
proach consists of two stages (feature extraction and classifier) (Reddy
et al., 2021; Reddy and Alku, 2023). In the feature extraction stage,
various features are extracted to capture the discriminative information
present in voice signals. The extracted features are then used to train
a classifier, such as a support vector machine (SVM) or convolutional
neural network (CNN), to automatically distinguish healthy voices from
disordered voices. In contrast, the end-to-end approach combines the
feature extraction and classification steps into a single neural network
that takes a voice signal (or its spectrogram) as input and generates the
classification label as output (Narendra and Alku, 2020; Reddy et al.,
2022, 2020). The use of end-to-end systems, however, is limited in
the classification of disordered voices by the scarcity of training data
in the study area. Because of the data scarcity, end-to-end systems
cannot be trained effectively to learn the optimal feature mapping from
the data (Narendra and Alku, 2020; Reddy et al., 2022). Hence, the
traditional pipeline systems, which work well with smaller amounts
of training data, are preferred in classification of voice disorders. It is
worth noting that in most of the previous studies on automatic voice
disorder classification, the focus is mainly on the binary classification
problem (i.e., distinguishing a healthy voice from a disordered voice).
However, the multi-class classification problem (i.e., classification be-
tween a healthy voice and several different voice disorders), which
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would be more useful for clinical practitioners, has been investigated in
only a few studies (Vaiciukynas et al., 2012; Behroozm and Almasganj,
2005; Kodrasi et al., 2021; Tirronen et al., 2023). This study focuses
on using the traditional pipeline approach for developing classifiers to
perform a 3-class classification task (healthy voice vs. hyperfunctional
dysphonia vs. hypofunctional dysphonia).

In building effective traditional pipeline systems for classification
of voice disorders, the selection of features is essential. In the litera-
ture, several acoustic features have been investigated, and the features
studied can be grouped into four categories: (1) perturbation fea-
tures (such as jitter and shimmer) (Silva et al., 2009; Vasilakis and
Stylianou, 2009; Zhang et al., 2005); (2) spectral and cepstral features
(such as Mel-frequency cepstral coefficients (MFCCs), linear predictive
cepstral coefficients (LPCCs), cepstral peak prominence (CPP) and per-
ceptual linear prediction cepstral coefficients (PLPCCs)) (Reddy et al.,
2021; Reddy and Alku, 2021; Wu et al., 2021; Fraile et al., 2011);
(3) complexity features (such as the Hurst exponent and sample en-
tropy) (Arias-Londono et al., 2011; Arias-Londofo and Godino-Llorente,
2015); and (4) glottal features (such as time-domain and frequency-
domain glottal source parameters) (Reddy and Alku, 2023; Narendra
and Alku, 2020; Kadiri and Alku, 2019; Novotny et al., 2020). Among
various feature types, cepstral features are widely used in the classi-
fication of voice disorders. The main advantage of a cepstral domain
representation is that the features are less correlated, which is bene-
ficial in building efficient machine learning (ML) models (Reddy and
Alku, 2021; Kadiri and Alku, 2019). In addition, cepstral features can
be computed without estimating the fundamental frequency (F,) of
the voice signal, which is beneficial compared to other feature types
such as perturbation or glottal features whose computation depends on
the extraction of F, (Reddy and Alku, 2021; Kadiri and Alku, 2019).
Furthermore, cepstral features (such as MFCCs) have been shown to
perform comparably to or better than the perturbation and complexity
features (Kadiri and Alku, 2019; Gémez-Garcia et al., 2019).

In this study, we propose to apply the tunable Q wavelet transform
(TQWT) to voice signals for feature extraction. TQWT is a wavelet
transform, which provides the ability to easily tune the Q-factor of
the wavelet depending upon the oscillatory behavior of the signal (Se-
lesnick, 2011; Reddy and Rao, 2019). TQWT results in the generation
of more robust time-scale representations since it is based on the os-
cillatory behavior of the signal rather than on its frequency (Selesnick,
2011; Sakar et al., 2019). In disordered voices, possible disruptions in
vocal folds may result in transient voice waveforms, and these abnor-
malities can be expected to be detected better with TQWT (Sakar et al.,
2019). Motivated by this we propose utilizing the features derived
using TQWT to capture the distinctive changes in voice signals for the
classification of FD. The TQWT-based features have been previously
used in speech tasks such as speech enhancement (Dash et al., 2021)
and automatic detection of Parkinson’s disease (PD) from speech (Sakar
et al.,, 2019). However, as per our knowledge, this is the first study
which utilizes TQWT in feature extraction in multi-class classification
of voice disorders.

A few recent studies have analyzed the effectiveness of glottal
source signals in discrimination of normal and disordered voices (Reddy
et al.,, 2021; Reddy and Alku, 2021; Wu et al., 2021; Narendra and
Alku, 2020; Reddy et al., 2020; Tirronen et al., 2023). These studies
have shown that the glottal source waveform carries complementary
voice quality-related information, and therefore combining the features
derived from the glottal source with other features, such as MFCCs,
can improve the classification performance. Therefore, in this work, we
propose combining the features derived using TQWT with the glottal
features to further enhance the multi-class classification performance.
Taken together, the main goals of this work are as follows.

1. To study a multi-class classification problem in FD (healthy vs.
hyperfunctional vs. hypofunctional) using a potential feature,
TQWT, that has not been investigated before in the study area
of pathological voice.
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Table 1
Demographics of the participants considered in this study.
Health status Age (in years) Number of Number of Total
female subjects male subjects
18-34 21 7 28
35-49 9 8 17
Healthy 50 6 6 12
Total 36 21 57
18-34 10 7 17
Hyperkinetic 3549 16 7 z
VP >50 21 9 30
Total 47 23 70
18-34 9 2 11
s 35-49 10 2 12
Hypokinetic >50 13 5 18
Total 32 9 41

2. To study whether the multi-class classification performance
could be improved by combining glottal features with the TQWT
features.

The paper is organized as follows. Section 2 describes the VOICED
database used for the classification task. Section 3 provides the details
about the proposed FD classification system, the considered acoustic
features, the CNN classifier and the evaluation criteria. The results are
reported in Section 4. Finally, the conclusions of this study are provided
in Section 5.

2. Database

In this work, we study pathological and healthy voices of the
VOice ICar fEDerico II (VOICED) database (Cesari et al., 2018; Verde
and Sannino, 2018). The publicly available VOICED database includes
voice signals of 57 healthy speakers, 70 speakers with hyperfunctional
dysphonia, and 41 speakers with hypofunctional dysphonia. All of the
speakers were adults between 18 and 70 years of age. Subjects aged
under 18 and over 70, or who had diseases, such as upper respiratory
tract infections or neurological disorders, were excluded. The details
about the number of male and female participants for each category
are provided in Table 1. Each speaker produced the vowel [a] for 5 s
without interruption. The collection of voice signals was performed in
the medical room of the Institute of High Performance Computing and
Networking (ICAR-CNR). Medical experts verified all the voice samples
clinically according to the clinical protocol called SIFEL prepared by the
Italian Society of Science and Bone Sciences. Based on the results of the
medical (phoniatric) examination, the doctor diagnosed the presence or
absence of a voice disorder. The collection process was carried out in a
quiet and less dry environment with an ambient noise level of less than
30 dB. An m-health system called Vox4Health used the microphone
on a Samsung Galaxy S4 to acquire the voice signals. All recordings
were sampled at 8000 Hz with a resolution of 32 bits. In addition,
any unexpected noise generated during the acquisition process was
eliminated by applying an appropriate filter.

Fig. 1 shows examples of voice signals and corresponding spectro-
grams representing a healthy voice (left), a hyperfunctional dysphonic
voice (middle) and a hypofunctional dysphonic voice (right). From
Fig. 1(a), it can be seen that the time-domain waveform of a hyper-
functional dysphonic voice signal is more pressed and the time-domain
waveform of a hypofunctional dysphonic voice signal is more rounded,
compared to the healthy counterpart. Consequently, significant varia-
tions are present in the spectra of the three classes, especially in the
harmonic structure shown in Fig. 1(b).
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Fig. 1. An illustration of differences in voice signals (the vowel [a]) between a healthy female speaker (left), a female speaker with hyperfunctional dysphonia (middle) and a
female speaker with hypofunctional dysphonia (right). The top panels show the time-domain voice signals and the bottom panels show the corresponding spectrograms.

VOICED Feature
Database Extraction
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Features Features Features
Individual or Combined
Features
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Fig. 2. Schematic block diagram of the proposed system for automatic classification
of functional dysphonia.

2.1. Data pre-processing

Each voice signal included about 38000 discrete data samples of the
recorded waveform, out of which the first 1000 were approximately
equal to zero, and therefore these 1000 samples were deleted to avoid
final classification errors. Furthermore, in order to increase the size of
the database, each speaker’s recording was divided into 9 chunks (each
consisting of 4096 samples).

3. Architecture of the proposed system

The proposed system for the studied multi-class classification prob-
lem is shown in Fig. 2. During training, three types of features,
namely, 13-dimensional MFCCs, 12-dimensional TQWT features, and
12-dimensional glottal features, are extracted from every voice signal
present in the database. While the MFCC and TQWT features are
extracted directly from the acoustic voice signals (described in Sec-
tions 3.1 and 3.3), the glottal features are extracted from the glottal

flow waveforms (described in Section 3.2), which are estimated from
acoustic voice signals by using the quasi-closed phase (QCP) glottal
inverse filtering (GIF) algorithm (Airaksinen et al., 2014).

A CNN classifier is trained using the features extracted from the
voice signals as input and the corresponding labels (healthy/hyper
functional/hypofunctional) as output. Separate CNN classifiers are
trained using individual features (MFCC, glottal, TQWT) and fea-
tures sets where two individual features are combined (MFCC+TQWT,
MFCC+glottal, TQWT+glottal). At the time of testing, the same set of
speech features, which were used during training, are extracted from
the test voice signals. The extracted features are given as input to the
CNN classifier, which predicts the labels (healthy vs. hyperfunctional
vs. hypofunctional). In this study, the classification systems developed
using the widely used MFCCs and glottal features are considered
baseline systems.

3.1. Extraction of the MFCC features

The variations in the spectra (as demonstrated by Fig. 1(b)) can
be captured and represented in a compact form using MFCCs. Fig. 3
shows the steps involved in the MFCC feature extraction process. The
input voice signal is first pre-emphasized and divided into several 30 ms
frames using the Hamming window and a hop size of 10 ms. Next, the
512-point discrete Fourier transform (DFT) of each frame is computed.
After this, a triangular filter bank consisting of 40 Mel-spaced filters
is applied to the power spectrum. Finally, by computing the discrete
cosine transform (DCT) of the logarithm of the filter bank’s output,
13 MFCCs are obtained for each frame. The MFCCs computed from all
frames are averaged to obtain a 13-dimensional feature vector for every
voice signal.

3.2. Extraction of the glottal features

In recent studies, the glottal source signal, which is derived from
the voice signal by using glottal inverse filtering (GIF), has been shown
to carry complementary information related to voice disorders (Reddy
et al.,, 2021; Reddy and Alku, 2021; Wu et al., 2021; Narendra and
Alku, 2020; Reddy et al., 2020; Tirronen et al., 2023). In this study,
we capture this information through a glottal feature vector consisting
of 12 time- and frequency-domain parameters (Childers and Lee, 1991;
Alku et al., 2002) computed from the glottal source waveform derived
using the quasi-closed phase (QCP) GIF technique (shown in Fig. 2).
The reason for choosing the QCP technique is that it has been shown
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Fig. 3. Block diagram representation of the extraction of MFCC and glottal features. The DFT, DCT and log(.) blocks denote discrete Fourier transform, discrete cosine transform

and logarithm operation, respectively.

Table 2
Time- and frequency-domain glottal parameters. For more details, see
Childers and Lee (1991), Alku et al. (2002).

Time-domain glottal parameters

0Q1 Open quotient, calculated from the primary
glottal opening

0Q2 Open quotient, calculated from the secondary
glottal opening

NAQ Normalized amplitude quotient

AQ Amplitude quotient

CIQ Closing quotient

0OQa Open quotient, derived from the LF model

QO0Q Quasi-open quotient

SQ1 Speed quotient, calculated from the primary

glottal opening

SQ2 Speed quotient, calculated from the secondary
glottal opening

Frequency-domain glottal parameters

H1H2 Difference between the first two glottal harmonics
PSP Parabolic spectral parameter
HRF Harmonic richness factor

to compute glottal source signals from non-modal voices better than
several existing GIF techniques (Airaksinen et al., 2014). For complete
details about the QCP algorithm, the reader is referred to Airaksi-
nen et al. (2014). In total, 12 glottal parameters (listed in Table 2)
are estimated using the APARAT toolbox (Airas et al.,, 2005), and
they characterize various characteristics (e.g., different time-quotients
and spectral tilt) of the glottal excitation. The glottal parameters are
computed in 30 ms frames using a frame shift of 10 ms. While HRF
and H1H2 are computed pitch-asynchronously once per frame, the
remaining parameters are computed pitch-synchronously once per glot-
tal cycle and then averaged over the frame. All the 9 time-domain
parameters and PSP are expressed using a linear scale while HIH2 and
HREF are expressed using the dB scale. The glottal parameters computed
from all frames are finally averaged to obtain a 12-dimensional glottal
feature vector for every voice signal.

3.3. Extraction of the TQWT features

TQWT is a wavelet transform, which enables easy tuning of the Q-
factor of the wavelet depending upon the oscillatory behavior of the
signal (Selesnick, 2011). The key parameters used for TQWT are the Q-
factor Q, the redundancy r, and the decomposition levels J (Selesnick,
2011; Reddy and Rao, 2019). Usually, QO quantifies the number of
oscillations that the wavelet exhibits. Typically, a wavelet with a Q-
factor of 3 or larger consists of enough oscillatory cycles to process
oscillatory signals (such as voice signals or electroencephalography
signals) (Selesnick, 2011). On the other hand, when processing sig-
nals with little or no oscillatory behavior (such as a scan-line from
a photographic image), the wavelet transform should have a low Q-
factor (typically QO = 1) (Selesnick, 2011; Reddy and Rao, 2019). In

BN

o)
Detail

sub-bands

Voice J-stage TQWT
signal decomposition

ST
—efom

Fig. 4. Block diagram of TQWT with J-stage decomposition.

Approximation
sub-band

this study, we use wavelets with a Q-factor of 2. The disordered voice
signals embed transients in addition to oscillatory waveforms due to
disruptions in vibration of the vocal folds. Therefore, by setting O = 2
we hypothesize that TQWT can efficiently represent both oscillatory
and transient behaviors. The parameter r can be interpreted as a
measure of how much spectral overlap exists between adjacent band-
pass filters (Selesnick, 2011; Reddy and Rao, 2019). The r value must be
greater than 1, but increasing r has the effect of increasing overlap in
the frequency domain of band-pass filters constituting TQWT (Reddy
and Rao, 2019). Therefore, in this study, we set r = 2 to ensure the
minimum overlap of band-pass filters.

TQWT consists of a series of two-channel filter banks, with the
low-pass output of each filter bank given as input to the succeeding
filter bank (Selesnick, 2011; Reddy and Rao, 2019). Each output signal
constitutes one sub-band of the wavelet transform. There will be J + 1
sub-bands, and these sub-bands are the low-pass filter output signal of
the final filter bank (approximation sub-band) and the high-pass filter
output signal of each filter bank (detail sub-bands). Fig. 4 demonstrates
the J-stage TQWT decomposition. In this work, the value of J is chosen
to be 11. Therefore, in total 12 sub-bands (11 detail sub-bands and
1 approximation sub-band) are obtained for each voice signal. Fig. 5
and Fig. 6 show the sub-bands obtained with the TQWT decomposition
and the corresponding distribution of signal energy across the sub-
bands for healthy and FD voice signals, respectively. Here, sub-band 1
corresponds to high frequencies while sub-band 12 corresponds to low
frequencies. From the figures, it can be seen that the amount of energy
in sub-bands 9-12 is negligible. This also justifies the decomposition of
voice signals into only 12 sub-bands in the present work as sub-bands
beyond 12 carry no significant information. Most importantly, a clear
difference in the distribution of energy can be seen between the three
classes. Compared to the healthy class, the relative energy in sub-band
8 is diminished in both of the FD classes. Furthermore, it can be seen
that most of the energy of the healthy voice signal is concentrated on
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Fig. 5. Illustration of the sub-bands computed with the TQWT decomposition for voice signals (the vowel [a]) produced by (a) a healthy female speaker, (b) a female speaker
with hyperfunctional dysphonia, and (c) a female speaker with hypofunctional dysphonia.

sub-bands 3 and 4 indicating a smaller frequency leakage compared
to the two FD voices. The hypofunctional voice signal has the largest
frequency leakage, which can be attributed to breathy phonation.

After decomposing a signal with TQWT, log-energy entropy values
of each sub-band are calculated to quantify how much information
is carried in the relevant sub-band, and these entropy values are
employed as features in classification of FD.

3.4. CNN

The classification experiments are performed using a
one-dimensional convolutional neural network (1D-CNN). The input is
fed to two sequential convolutional layers, each followed by the ReLU
activation function and layer normalization. The first convolutional
layer consists of 32 filters of size 3 x 3 and the second convolutional
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Fig. 6. Distribution of signal energy across sub-bands corresponding to the sub-bands shown in Fig. 5(a), 5(b) and 5(c).

Table 3

Results obtained for the multi-class classification task. ACC, PRE, REC and F1 refer to accuracy, precision, recall and F1, respectively. The numbers 0, 1 and 2 in the metrics refer

to healthy voice, hyperfunctional dysphonia and hypofunctional dysphonia, respectively.

Feature ACC (%) PRE_O REC.0 F1.0 PRE_1 REC_1 F1.1 PRE_2 REC_2 F1.2
MFCC 58.78 0.61 0.49 0.54 0.56 0.71 0.63 0.63 0.51 0.56
Glottal 59.80 0.57 0.55 0.56 0.58 0.66 0.62 0.67 0.55 0.60
TQWT 64.20 0.58 0.53 0.55 0.66 0.73 0.69 0.67 0.63 0.65
MFCC + TQWT 60.93 0.51 0.69 0.58 0.66 0.54 0.59 0.75 0.62 0.68
MFCC + Glottal 62.50 0.55 0.53 0.54 0.67 0.71 0.69 0.62 0.62 0.62
TQWT + Glottal 67.91 0.69 0.53 0.60 0.63 0.78 0.70 0.77 0.70 0.74

layer consists of 16 filters of size 3 x 3. The output of the convolutional
layers is reduced to a single vector using a 1-D global average pooling
layer. Finally, the resulting output is passed through a fully-connected
layer with an output size matching the number of classes, followed by
a softmax layer and a classification layer.

3.5. Evaluation scheme

The data from 80% of the speakers randomly selected from each
class was used for training and the data from the remaining speakers
was used for testing. 10% of the training data was used for validation.
The validation dataset was used to give an unbiased estimate of model
skill while tuning the CNN model’s hyperparameters. No speaker used
in training was used again in testing, thereby ensuring separation
of speakers in the train and test set. The VOICED database has an
imbalanced data distribution in terms of gender and class (see Table 1).
Therefore, the training data was balanced with respect to class and gen-
der by using the SMOTE (Synthetic Minority Over-Sampling Technique)
algorithm (Chawla et al., 2002). SMOTE is the most popularly used
oversampling technique where the synthetic samples are generated for
the minority class. It focuses on the feature space to generate new
minority instances between existing minority instances by utilizing
linear interpolation. After balancing the data, the CNN was used for
classification of FD. Four standard metrics, namely, accuracy, class-wise
recall, class-wise precision, and class-wise F1-score were computed to
evaluate the classification performance.

4. Results

The performance metrics obtained for all the features are shown in
Table 3. From the table, it can be observed that in the case of the indi-
vidual feature sets, the TQWT features provided the best performance in
terms of accuracy (64.20%), F1-score for the hyperfunctional dysphonia
class (0.69), and F1-score for the hypofunctional dysphonia class (0.65).
The Fl-scores obtained for the healthy class with all the individual
features are comparable. Furthermore, combining the MFCC or TQWT
features with glottal features has resulted in an improved classification
performance. This indicates that there is complementary information
between these feature sets. Overall, combining the TQWT features with
the glottal features provided the best classification performance in
terms of accuracy (67.91%), and Fl-scores of 0.60, 0.70 and 0.74 for

the healthy, hyperfunctional dysphonia and hypofunctional dysphonia
classes, respectively. The results highlight that the distinctive changes
in the time-frequency axis captured by TQWT are very effective in
classification of normal and dysphonic voices. Altogether, the ability
of the TQWT features to better capture abnormalities in voice signals
combined with the ability of glottal features in characterizing the mode
of phonation has resulted in an improved classification performance.

In order to demonstrate the behavior of the considered features,
a one-way analysis of variance (ANOVA) was computed using MFCC,
TQWT and glottal parameters extracted from the voice signals of 250
speakers from each of the three classes (healthy, hyperkinetic and
hypokinetic). In general, a one-way ANOVA analysis tests the null
hypothesis, i.e., it compares the means between the groups and deter-
mines whether any of those means are significantly different from each
other. The results of ANOVA analysis are shown in Table 4. From the
table, it can be seen that several MFCC, TQWT and glottal parameters
show statistically significant differences (p < 0.001) between the three
classes. Furthermore, the TQWT and glottal feature sets have a larger
number of parameters showing statistically significant differences com-
pared to the MFCC feature set. In conclusion, these results, which are
based on statistical hypothesis testing, provide further evidence that
the TQWT and glottal parameters have a better ability to distinguish
the three classes compared to the MFCCs.

The confusion matrices for all the classification systems are shown
in Fig. 7. It can be seen that similar performance is achieved for the
healthy class with all the feature sets. The system developed with the
combined features (TQWT+glottal) mainly increases the performance
of the two FD classes. With the MFCC features, 90 hyperfunctional
dysphonia samples are predicted correctly and 37 samples are mis-
classified as either healthy or hypofunctionally dysarthric. Similarly,
36 hypofunctional dysphonia samples are predicted correctly and 35
samples are mis-classified as either healthy or hyperfunctional. Com-
pared to the MFCCs, the TQWT features improve the performance for
both FD classes. With the TQWT features, 93 hyperfunctional dyspho-
nia samples and 45 hypofunctional dysphonia samples are predicted
correctly. The combination of the MFCC and glottal features provided
better classification of the FD classes compared to MFCCs or glottal
features alone. Overall, the combined feature set (TQWT+glottal) per-
formed better than the other feature sets in classification of the two FD
classes. With the system developed using TQWT+glottal features, 99
hyperfunctional dysphonia samples and 50 hypofunctional dysphonia
samples are predicted correctly.
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Fig. 7. Confusion matrices of the multi-class classification systems developed using (a) MFCC features, (b) glottal features, (¢) TQWT features, (d) MFCC+glottal features, (e)
MFCCHTQWT features and (f) TQWT+glottal features. The horizontal axis represents the true class, and the vertical axis represents the predicted classes. Class labels 0, 1, and 2
represent a healthy voice, hyperfunctional dysphonia, and hypofunctional dysphonia, respectively. The column on the far right of the plot shows the percentages of all the samples
predicted to belong to each class that is correctly and incorrectly classified. The row at the bottom of the plot shows the percentages of all the samples belonging to each class
that is correctly and incorrectly classified. The cell in the bottom right of the plot shows the overall accuracy. In the remaining cells, both the number of observations and the

percentage of the total number of observations are shown in each cell.

5. Conclusions

In this paper, we investigated a 3-class classification task to auto-
matically classify two FDs (hyperfunctional dysphonia and hypofunc-
tional dysphonia) and healthy voices. The study proposed the use of
log-energy entropy values that have been extracted from the sub-bands
of TQWT as features for the considered multi-class classification task.
Voice samples from the VOICED database were used in the experiments.
Comparisons were made with two baseline features (MFCCs and glottal
features) using CNN as the classifier.

The experimental results show that the TQWT features resulted in
better classification performance compared to the widely-used MFCC
features. This is because unlike in the MFCC extraction process, where
the temporal information is lost due to windowing, the TQWT com-
putation preserved temporal localization during the transform for the

relevant sub-band Sakar et al. (2019). Hence, the time-frequency rep-
resentation provided by TQWT can better characterize temporal abnor-
malities (like transients) of voice brought about by the voice excitation.
The results also show that combining TQWT log-energy entropy values
and glottal features resulted in improved classification performance,
indicating the complementary nature of the TQWT and glottal features.
We argue that this result is due to the glottal features’ capability to
quantify changes that are caused by the mode of vibration of the vocal
folds (Reddy et al., 2021; Liu et al., 2023). In other words, while the
TQWT features capture temporal abnormalities in voice signals, the
glottal features provide supplementary information about the phona-
tion mode to distinguish between voice signals generated using a modal
vibration mode (as in a healthy voice), an adductive vibration mode (as
in hyperfunctional dysphonia) and an abductive vibration mode (as in
hypofunctional dysphonia).
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Table 4
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Results of one-way ANOVA analysis for the three feature sets (MFCC, TQWT, Glottal). SBE denotes Sub-band Entropy. The value after ¢’ indicates the sub-band number or MFCC

feature number.

MFCC TQWT Glottal

Feature F-stats P-value Feature F-stats P-value Feature F-stats P-value
MFCC_1 6.7086 0.0013 SBE_1 0.3575 0.6997 0Q1 25.2997 <0.001
MFCC_2 15.4389 <0.001 SBE_2 <0.001 00Q2 40.1684 <0.001
MFCC_3 19.1721 <0.001 SBE_3 19.5005 <0.001 NAQ 18.3784 <0.001
MFCC_4 50.5907 <0.001 SBE_4 41.9387 <0.001 AQ 6.6607 0.0014
MFCC_5 15.4720 <0.001 SBE_5 43.4599 <0.001 ClQ 20.2033 <0.001
MFCC_6 4.9943 0.0072 SBE_6 10.62 <0.001 0Qa 7.7413 <0.001
MFCC_7 5.2634 0.0055 SBE_7 16.8794 <0.001 Q0Q 49.5496 <0.001
MFCC_8 5.2485 0.0056 SBE_8 5.4096 0.0048 SQ1 28.6661 <0.001
MFCC_9 10.1602 <0.001 SBE 9 38.8733 <0.001 SQ2 33.5650 <0.001
MFCC_10 4.8894 0.0079 SBE_10 15.5555 <0.001 H1H2 8.1368 <0.001
MFCC_11 13.1761 <0.001 SBE_11 7.9737 <0.001 PSP 2.8697 0.0578
MFCC_12 4.9358 0.076 SBE_12 0.6794 0.5075 HRF 5.8979 0.0030
MFCC_13 16.8161 <0.001

In conclusion, the study shows that combining features based on the
tunable Q wavelet transform with glottal features constitutes an effec-
tive feature extraction approach in the studied 3-class problem. It is to
be noted that the VOICED database considered in this study includes
only one type of speaking task, production of the vowel [a]. Unlike
vowels, continuous speech provides richer information related to the
voice disorders. Therefore, the effectiveness of the combined features
(TQWT + glottal) extracted from continuous speech in improving the
classification performance needs to be studied. Furthermore, there was
no information available about the severity of the voice disorders in
the VOICED database. Therefore, the potential of the proposed features
in the early detection of voice disorders, which is one of the most
important applications in speech-based biomarking in general, could
not be investigated in this study. In addition, previous studies (see,
e.g., Narendra et al.,, 2019) have shown that glottal source features
cannot be extracted robustly from telephone-quality speech. This might
restrict the use of the proposed combination of the TQWT and glottal
features in such remote monitoring applications where voice signal is
recorded by phone and transmitted through the telephone network.
However, developing a robust approach for glottal source extraction
from telephone quality speech can aid in overcoming this limitation of
the proposed approach.
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