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1Department of Information and Communications Engineering, Aalto University, Espoo, Finland
silas.rech, mohammad.vali, tom.backstrom}@aalto.fi

Abstract
Teleconferencing has increased in popularity and often takes
place around other people such as open offices. A particular
problem of such environments is that multiple users can have
independent conversations simultaneously, which leak into each
others’ devices. This poses problems of both privacy and qual-
ity. In this work, we introduce a multi-device, targeted speech
separation network. We call this network IsoNet, as it isolates
the dominant speech in a mixture of multiple speakers by gen-
erating a mask from interfering speakers. This mask is used
to remove speech from other simultaneous conversations in the
enhanced speech signal. The privacy improvement is measured
by mutual information and the enhancement quality is evalu-
ated with a MUSHRA test, PESQ, and SI-SNR. Our experi-
ments show a statistically significant improvement with IsoNet
from 27 to 75 in MUSHRA score and a decrease of mutual in-
formation of 60%. IsoNet improves privacy as sensitive speech
content is effectively attenuated.
Index Terms: privacy-aware, multi-device, targeted speech
separation, voice isolation

1. Introduction
The most natural telecommunication channel between humans
is phone calls or teleconferences. However, often multiple peo-
ple have conversations independently of each other at the same
time in the same room. This presents a threat to privacy, as
the sensitive information from one conversation can leak into
another [1]. We view the privacy threat in this scenario for
the leaked, also referred to as interfering speaker, not for the
enhanced speaker. Next to the privacy threat, it is exhaust-
ing to focus on one speaker when there are other speakers or
noises over longer periods of time [2]. Though state-of-the-art
speech enhancement techniques are used in telecommunication
services to e.g. attenuate background noises, they are unable to
effectively remove speech content from a mixture of multiple
overlapping speakers. In this work, we consider two speakers,
Alice and Eve, in one room which have microphones closely
positioned to their mouths, such as a headset, see Figure 1.

We propose to use the two available audio streams, one
from each device, to improve the privacy of one of the speech
signals with multi-channel speech enhancement. Specifically,
we define the target, here Alice, of the separation algorithm to
be the speaker closest to the microphone. This speaker will most
likely dominate the speech mixture. The interfering audio, on
the other hand, stems from a speaker who does not play a role
in the ongoing conversation, in this case, Eve. By effectively at-
tenuating Eve’s signal in the transmission of Alice’s speech, we
are increasing privacy for Eve as the transmission of her speech
is limited to the desired conversation. This work presents a so-

Alice

Eve

Voice Service 1

Voice Service 2

Room

Figure 1: Problem Scenario: Alice and Eve are in the same
room but are connected to different voice services. The leakage
of each speaker reduces privacy and degrades the speech qual-
ity.

lution that uses two microphone signals to isolate the dominant
speaker in each microphone. We call this network IsoNet be-
cause of its main functionality, isolating the dominant speaker.
IsoNet generates a mask from the interfering audio stream. The
inverse of that mask is then used to remove undesired speech
contents from the targeted input. After the separation, an addi-
tional speech enhancement model is used to compensate for any
artefacts caused by the masking. This setup makes IsoNet inde-
pendent of any prior information and it can be run in real-time.

Convolutional time-domain audio separation networks such
as Conv-TasNet [3] have shown great potential in speech sep-
aration tasks due to their quality and, more importantly, their
real-time capability. Hence, IsoNet is also based on the basic
architecture of the Conv-TasNet but improves two of its as-
pects further. Firstly, Conv-TasNet needs additional informa-
tion about how many speakers need to be separated at all times,
as it approximates an individual mask for each speaker. This
requires additional methods to estimate the number of speak-
ers in a room. Secondly, the reconstruction of the separated
audio streams presents a challenge, as it is not clear how to con-
nect separated speech channels to the right speakers, especially
when the number of speakers changes over time. Although
Conv-TasNet was not designed as a targeted speech separa-
tion network, it shows state-of-the-art separation performance
in subjective measures such as the mean opinion score (MOS)
compared to networks that target a speaker directly. Moreover,
implementations of Conv-TasNet are readily available which
makes it a good baseline for this work. Other recent works that
are designed to target an individual speaker leverage additional
information about a speaker such as visual cues [4] or a-priori
speaker embeddings which define the targeted speaker before-
hand like [5–9]. The methods proposed in WaveFilter, personal-
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ized PercepNet, and Voicefilter rely on prior recordings from the
targeted speaker to isolate speech. Another approach is to use
inter-channel phase differences in a multichannel setup [10]. As
targeted speech separation is a subgroup of traditional speech
separation, we are also including state-of-the-art models from
blind speech separation to allow a better comparison to the over-
all research area such as SepFormer [11] and TDANet [12].

The novelty of our work is dominant speaker isolation, for
example in an open office, where we can make the assumption
that the most dominant speaker in a speech signal, so one mi-
crophone, is also the target of the isolation algorithm. The prac-
tical implementation of a two-stage convolutional time-domain
audio separation network shows that we can isolate a speaker
without any prior information using audio streams from two de-
vices, which we introduce in Section 2.2. This network first
masks the interfering speakers and then enhances the filtered
signal. An implementation with listening examples and the
source code is openly available.1

2. Method
2.1. Signal Model

A mixture of multiple speakers xmix(n) over time n can be de-
fined as

xmix(n) =

Ns∑

c=1

sc(n) + sn(n), (1)

where sc(n) denotes the cth contributing speech source, sn(n)
the potential background noise, Ns is the number of speakers,
and 1 ≤ c ≤ Ns. Each of the overlapping audio signals sc(n)
can further be described as the convolution of a clean speech
signal with a corresponding room impulse response such as

sc(n) = xc(n) ∗ hc(n), (2)

where xc(n) denotes a clean audio signal, hc(n) the impulse
response and the asterisk ∗ denotes the convolution operator.

Our scenario has two speakers in one room with two ongo-
ing but independent conversations with other people using two
separate devices, see Figure 1. In this scenario, speech from
one speaker leaks into the opposite speaker’s microphone. This
presents a privacy risk for the leaked speaker and degrades the
speech quality. We propose to extract the desired speaker from
the sum of overlapping speech signals by adding a processing
step, which has access to the audio streams of each of the de-
vices in the room. As the two people in this scenario are in the
same room, they are aware of the potential to be leaked into the
other person’s microphone. Thus, we do not see a shared pro-
cessing step as a privacy risk. Access to another’s speech signal
has been given indirectly by being in a shared room.

2.2. IsoNet

We call the network, which is used to isolate the dominant
speaker, IsoNet. It consists of an encoder, mask-generator, en-
hancer, and decoder which is modelled after the Conv-TasNet,
see Figure 2. The two audio signals are first fed sequen-
tially into the encoder to window the utterance into smaller
time frames. The weights of the encoder for both inputs are
shared. The encoding is achieved with one linear convolu-
tional layer without any activation function using 50% stride.

1https://github.com/Speech-Interaction-Technology-Aalto-
U/IsoNet

Then, the framed interfering speech signal is fed into a tempo-
ral block which consists of multiple convolutional blocks (1-D
Conv Blocks), which are similar to the Conv-TasNet. This tem-
poral block represents a mask for the interfering speaker. The
output of the temporal block is activated with a sigmoid func-
tion, such that the values contained in the mask are between 0
and 1. To remove the undesired speech contents, the mask is
first inverted by subtracting 1 from the calculated mask values
and then multiplied with the targeted signal channel. Subse-
quently, the quality of the masked signal is enhanced with a
second temporal block following the same architecture. The
enhanced signal is finally reconstructed with a linear convolu-
tional layer with 50 % stride into the original representation.

2.3. Loss Function

Following Conv-TasNet [3], we also use the scale-invariant
signal-to-noise ratio (SI-SNR) as the loss function, calculated
as

SI-SNR := 10 · log10
||starget||2
||enoise||2

, (3)

in which the target signal is calculated with starget :=
(ŝT s)s

||s||2 .
Here, s is the reference and ŝ the estimated isolated signal. Fur-
thermore, the noise is defined as enoise := ŝ−starget and ||·||2
refers to the power of the signal.

3. Evaluation
3.1. Datasets

We use the LibriSpeech dev-clean dataset for training and test-
ing [13]. It consists of approximately 1000 hours of audiobook
recordings in English, sampled at 16 kHz. In total, there are 40
different speakers in the dataset, which have between 20 and
60 speech samples. All samples that are less than six seconds
long are discarded. All remaining samples serve as possible
speech samples for the room simulation. We choose two ran-
dom speakers from the Librispeech dataset and place them in a
virtual room with a random distance between each other. Then,
we place microphones close to the position of each speaker to
simulate a phone call scenario with a distance of 0.15 m. For the
room simulations, we use the PyRoomAcoustics package [14].
In total, we generate 20000 samples in this fashion with ran-
domized room and speaker settings, which results in 33 hours
of training data. The height of the audio source is fixed to 1.5 m.
The size of the simulated room was randomly chosen to have
a length and width in the range of 5 m to 10 m and a height
of 2.5 m to 5 m. Figure 3 shows the distance between micro-
phones in the simulated room in ms, thus the delay between
one speech signal arriving at the targeted and interfering micro-
phone respectively. This shows that the speech signal does not
need to be time-aligned to each other for a successful speech
enhancement. Other public datasets such as WSJ0-2mix, and
Libri2Mix can not be used in this work, as they do not pro-
vide a correlated and accurate simulation of the room where the
speakers are placed in. Additionally, these datasets provide a
single-channel input. This complicates the comparison between
IsoNet and blind single-channel speech separation models.

3.2. Metrics

We use mutual information (MI) as a measure of privacy. MI is
a useful metric to measure how much of the speech of the in-
terfering speaker is still contained in the isolated speech signal.
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Figure 2: Full IsoNet architecture, A) shows an abstract view of the whole architecture, while B) shows the structure of one temporal
block. Lastly, C) shows the detailed architecture of one Conv-Block.
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Figure 3: Distribution of distances between microphones in ms.

The lower the MI between the output of the network and the in-
terfering speaker, the better the algorithm performed regarding
privacy. MI is not often reported in other current research as
the usual task is to separate a mixture of speech into its individ-
ual components, rather than optimizing for the smallest possible
residue of one speaker in another speech signal [15].

We use three metrics to evaluate our network performance
regarding its enhancements capability: SI-SNR, PESQ, and the
MUSHRA listening tests. We also include metrics such as
short-term objective intelligibility (STOI) [16], and signal-to-
distortion ratio (SDR) to allow a better comparison with other
baseline models. However, we identified perceptual evaluation
of speech quality (PESQ) and the listening tests as methods
that correlate better to the subjectively perceived speech quality.
Prior work shows that the SDR tends to suffer from unaccounted
channel errors and has a problem with scaling. [17]. PESQ is
a widely used objective metric to evaluate speech quality [18]
due to its simplicity to use and availability. This stands in con-
trast to its successor the Perceptual Objective Listening Qual-
ity Analysis (POLQA) which is not commonly available. The
multiple stimuli with hidden reference and anchor (MUSHRA)
listening test was designed to evaluate lossy audio coding al-
gorithms [19]. In this test, see Table 4, listeners are presented
simultaneously with different versions of the same audio sig-
nal in random order. Each of the degraded versions is evaluated
against the reference so that even small differences between sig-

Method PESQ ∆ SI-SNR ∆ SDR
WaveFilter - - 10.45
PercepNet 2.412 - -
VoiceFilter - 12.6 -
Conv-TasNet 3.22 12.2* 12.7*
SepFormer - 16.5* 17*
TDANet - 17.4* 17.9*
IsoNet 3.7 18.6 14.1

Table 1: Comparison between state-of-the-art networks in
speech separation tasks. IsoNet performs on par or better than
the other baselines. The asterisk ∗ describes baseline models
which are trained on the Libri2Mix Dataset. The reported val-
ues are the original ones from the paper, as there was no public
model available for retraining.

nals can be taken into account. Further, with the MUSHRA lis-
tening test, we can get statistically significant results even with
a low number of listeners. Further, we calculate the mutual in-
formation between the clean leakage signal and the input and
output of the Iso-Net respectively.

3.3. Experimental settings

The inputs to the network are four-second long utterances which
are sampled at 16 kHz, high-pass filtered with a cutoff fre-
quency of 70 Hz and mean normalized. There is no overlap
between the frames of input samples. For all experiments, we
used the Adam optimizer with a learning rate of 0.001 and a
learning rate scheduler, as well as the SI-SNR loss function. We
set the batch size to 64 and ran for a maximum of 200 epochs.
For our activation of the masking functions we used a sigmoid
activation and for all others a ReLU activation. The bias was
deactivated in every layer. For a single temporal block, we used
the found settings from Conv-TasNet [3].

4. Experimental results
Table 1 presents the result of the comparison between IsoNet
and the baseline models. IsoNet outperforms all baseline mod-
els with the highest PESQ of 3.7 as well as the highest SI-SNR
improvement of 18.6 dB. It has to be noted that a comparison
between models can be difficult, as the initial signal-to-noise
ratios in the training database differ for each model. Direct dis-
tribution of SNR as in other methods cannot be given in this
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Method No. Params Fs
WaveFilter 5.9* 8 kHz
PercepNet 8.5/26.5 48 kHz
VoiceFilter 18.8* 8 kHz
Conv-TasNet 5.1 8 kHz
IsoNet 3.7 16 kHz
SepFormer 26 8 kHz
TDANet 2.3 8 kHz

Table 2: Comparison between state-of-the-art networks in
speech separation tasks. Just like the TDANet, IsoNet stands
out with its small network size while showing the same speech
quality. The asterisk * marks networks, which did not report
network size and we estimated the complexity of the networks
ourselves.

Input
Length PESQ std STOI std SI-SNR std

0.5 [s] 2.81 0.58 0.9 0.18 10.5 1.66
1 [s] 2.81 0.51 0.88 0.1 11.01 1.98
2 [s] 3.26 0.45 0.97 0.03 18.46 1.13
4 [s] 3.7 0.4 0.98 0.01 28.3 2.3

Table 3: Evaluating the influence of the input length on the
separation and speech quality performance of the network, std
refers to the standard deviation.

work, as the SNR is implicitly set by the room simulation.
Next to speech quality metrics, we evaluate resource con-

sumption in terms of network size and hyperparameters. Ta-
ble 2 shows that IsoNet is on par with the smallest network, the
TDANet with 2.3 M parameters). This is a notable improve-
ment since IsoNet has the added penalty of a higher sampling
rate 16 kHz than TDANet, 8 kHz, which increases the complex-
ity of IsoNet.

4.1. Varying Input Length

To find the optimal input length, we varied the input length by
feeding speech utterances between 0.5 s and 4 s to the network.
As the PESQ score does not drop in the same ratio as the in-
put length, we conclude that despite the assumption that longer
periods of audio files are necessary for effective speech sepa-
ration, we can still achieve a sufficient separation ability even
with sub-second input length (see Table 3).

4.2. Listening Tests

The enhancing performance is further evaluated with a subjec-
tive MUSHRA [19] listening test in which each subject lis-
tened to four versions of an audio signal; 1) the reference sig-
nal, 2) the output of IsoNet, 3) the original speech mixture that
was recorded on the targeted microphone, and 4) an ideal ratio
masked signal (IRM) [20]. Each audio signal was rated against
the reference signal. The results in Figure 4 show that IsoNet
improves the speech quality by 47.72 MUSHRA points com-
pared to the original mixture. It also shows an improvement
of 18.78 MUSHRA points compared to a speech mixture that
was multiplied with an ideal ratio mask. To evaluate whether
the improvements are statistically significant, we conducted a
Kruskal-Wallis H-test between the ∆ distributions. This test

Figure 4: MUSHRA listening test result with N = 26 listen-
ers, where the bars represent the first and third quartiles. The
mixture refers to the original mixed speech consisting of target
and interferer. IRM refers to the ideal ratio masked signal. ∆
refers to the difference between reference and IRM, mixture and
IsoNet respectively.

Mean Variance
Reference 96.38 7.85

IsoNet 75.08 18.01
IRM 56.3 24.57

Mixture 27.36 22.97

Table 4: Perceived speech quality based on a MUSHRA test with
N = 26 listeners. The test used four signals: 1) the reference,
2) the output of the IsoNet, 3) an IRM-masked signal and 4) the
original speech mixture.

No. Speakers SI-SNR std PESQ std
2 28.3 2.3 3.92 0.4
4 11 10.51 2.26 0.98
8 7.56 5.86 1.1 0.16

Table 5: Influence of the number of overlapping speakers on
the speech quality evaluated with SI-SNR and PESQ scores, std
refers to the standard deviation. Adding more speakers clearly
results in worse separation performance.

was chosen as the individual distributions were not normally
distributed. The test shows p-values<0.05, which confirms that
the differences in quality obtained in the listening test are sta-
tistically significant.

4.3. Scaling with additional speakers

To further evaluate the separation performance in a scenario
with more speakers than microphones, we evaluated the capa-
bility of IsoNet to remove multiple speakers from the speech
mixture. The number of microphones was kept fixed at two.
In Table 5 we can see that adding more speakers to the same
mixture results in decreasing speech quality. Nonetheless, the
degradation does not stand in a linear relation with the number
of speakers in the room.
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4.4. Privacy evaluation

As one targeted voice is isolated with the Iso-Net, the privacy
for the removed speaker increases. We can measure how much
of the interfering speech information is still contained in the tar-
get speech signal after enhancement by calculating the mutual
information before and after the separation process, which can
be seen in Table 6.

MI [bits] Variance

Before Iso-Net 3.52 0.177
After Iso-Net 1.39 0.151

Table 6: Comparison of the mutual information before and af-
ter the targeted separation. ’Before’, denotes the mutual infor-
mation between the original speech mixture and the interfering
speaker, whereas ’After Iso-Net’ denotes the MI between the
output of the network and the interfering speaker.

The comparison between the mutual information in the
original speech mixture and the isolated network output shows
a reduction of 60 %. Here, the mutual information is calculated
between the clean interfering speaker and the speech mixture
and the network output, respectively. This leads to the conclu-
sion that the removal of undesired speech information is suc-
cessful as the number of bits which share similar information is
reduced.

5. Conclusion
In this paper, we showed the ability to leverage multi-device
audio for targeting the most dominant speaker in a speech sig-
nal. This is relevant in any scenario where multiple speakers
have different conversations in the same room simultaneously.
We proposed a novel convolutional neural network architec-
ture based on the Conv-TasNet, called IsoNet. Listening tests
confirmed the perceived speech quality is on par with state-of-
the-art methods, but without requiring any additional or prior
information such as target speaker embeddings or visual cues.
Further, the IsoNet only uses 3.7 M model parameters which
is only exceeded by the TDANet and increase the perceived
speech quality by 48 MUSHRA points. The effective attenu-
ation of a speaker who is not part of the ongoing interaction
improves privacy, as only the relevant information for the in-
teraction is transmitted which can be seen by the reduction of
mutual information. Further improvement could potentially be
gained by using room microphones instead of speaker-specific
microphones to remove unwanted speech.
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