
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Sun, Wei; Ji, Shaoxiong; Denti, Tuulia; Moen, Hans; Kerro, Oleg; Rannikko, Antti; Marttinen,
Pekka; Koskinen, Miika
Weak Supervision and Clustering-Based Sample Selection for Clinical Named Entity
Recognition

Published in:
Machine Learning and Knowledge Discovery in Databases

DOI:
10.1007/978-3-031-43427-3_27

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Sun, W., Ji, S., Denti, T., Moen, H., Kerro, O., Rannikko, A., Marttinen, P., & Koskinen, M. (2023). Weak
Supervision and Clustering-Based Sample Selection for Clinical Named Entity Recognition. In G. De Francisci
Morales, F. Bonchi, C. Perlich, N. Ruchansky, N. Kourtellis, & E. Baralis (Eds.), Machine Learning and
Knowledge Discovery in Databases: Applied Data Science and Demo Track - European Conference, ECML
PKDD 2023, Proceedings (pp. 444-459). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14174 LNAI). Springer.
https://doi.org/10.1007/978-3-031-43427-3_27

https://doi.org/10.1007/978-3-031-43427-3_27
https://doi.org/10.1007/978-3-031-43427-3_27


Weak Supervision and Clustering-Based
Sample Selection for Clinical Named

Entity Recognition

Wei Sun1,2(B), Shaoxiong Ji3,4(B) , Tuulia Denti2, Hans Moen3, Oleg Kerro2,
Antti Rannikko2, Pekka Marttinen3, and Miika Koskinen2

1 KU Leuven, Leuven, Belgium
sun.wei@kuleuven.be

2 HUS Helsinki University Hospital, Helsinki, Finland
3 Aalto University, Espoo, Finland

{hans.moen,pekka.marttinen}@aalto.fi
4 University of Helsinki, Helsinki, Finland

shaoxiong.ji@helsinki.fi

Abstract. One of the central tasks of medical text analysis is to extract
and structure meaningful information from plain-text clinical documents.
Named Entity Recognition (NER) is a sub-task of information extraction
that involves identifying predefined entities from unstructured free text.
Notably, NER models require large amounts of human-labeled data to
train, but human annotation is costly and laborious and often requires
medical training. Here, we aim to overcome the shortage of manually anno-
tated data by introducing a training scheme for NER models that uses an
existing medical ontology to assign weak labels to entities and provides
enhanced domain-specific model adaptation with in-domain continual pre-
training. Due to limited human annotation resources, we develop a specific
module to collect a more representative test dataset from the data lake
than a random selection. To validate our framework, we invite clinicians
to annotate the test set. In this way, we construct two Finnish medical NER
datasets based on clinical records retrieved from a hospital’s data lake and
evaluate the effectiveness of the proposed methods. The code is available
at https://github.com/VRCMF/HAM-net.git.

Keywords: Named Entity Recognition · Distant Supervision · Sample
Selection · Clinical Reports

1 Introduction

Although Electrical Health Records (EHR) are trending towards structured data,
documentation in plain text remains popular in clinical work. As a result, text
documents contain valuable information, which highlights the need for auto-
matic information extraction and data structuring techniques for research and
management purposes or to facilitate the clinician’s work. Electrical Health
Records (EHR) are nowadays widely adopted by healthcare institutes and med-
ical service providers. EHRs are created and maintained by healthcare service
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providers and consist of various information and data types related to patients’
healthcare. This includes narrative free-text reports, laboratory results, demo-
graphics, diagnosis codes, and images. During hospitalization, patients’ infor-
mation is synchronically updated to the EHR system where clinicians can query
the EHR system to obtain relevant medical information about patients. However,
most clinical notes are in free-text format. Named Entity Recognition (NER) is
a subtask of Natural Language Processing (NLP), aiming to detect and assign
labels to pre-defined categories or concepts as they appear in the text, such as dis-
eases, medicines, symptoms, anatomical structures, or procedures. NER is based
on supervised learning. Thus, a substantial amount of training data consisting of
input text and label sequences are required. To provide reliable token-level pre-
dictions, high-quality manually annotated data by clinical experts is necessary,
which implies considerable human effort. Earlier, NER systems have been trained
for different languages, such as for English text, such as n2c21, RadGraph [8],
MalwareTextDB [14], and CoNLL2003 [18], and for smaller languages such as
Finnish2, but to our knowledge, no NER dataset for medical Finnish exists.

One solution to tackle the scarcity of manually labeled training data is to
adopt distant supervision methods to generate labels for training samples based
on external knowledge sources. In this framework, earlier approaches include,
e.g., knowledge-based distant supervision, transfer learning from pretrained mod-
els, and dictionary-based methods, to name a few. For example, Zirikly et al. [25]
and Wang et al. [22] leverage the transfer learning to project the label knowledge
from resource-rich languages (English) into the low-resource one. Korkontzelos
et al. [10] and Shang et al. [20] establish NER datasets based on in-domain dic-
tionaries. It is necessary to generate entity-level supervision signals for training
data and capitalize on domain-specific dictionaries and language knowledge.

We propose a novel NER framework called Hybrid Annotation Mechanism
Network (HAM-net) to predict medical entities from clinical documents in an
extremely low-resource scenario. We fuse a Finnish medical dictionary3 and a
dependency parser for Finnish4 to enhance the annotation mechanism.

Considering the characteristics of medical-related NLP algorithms, we per-
form domain-specific continual pertaining (DCP) to resolve in-domain adap-
tation problems. Much research literature shows that language models suffer
from performance degeneration on downstream tasks without taking in-domain
adaptation into account [7,9]. Currently, advanced language models, such as
Bidirectional Encoder Representations from Transformers (BERT) [5] and Long-
former [3], incorporate biomedical and clinical knowledge through pre-training
on large-scale biomedical and clinical corpus [13]. We deploy domain-specific con-
tinual pretraining with the masked language modeling (MLM) objective on an
enormous Finnish medical text from the data lake of the hospital. To endow our

1 https://n2c2.dbmi.hms.harvard.edu/.
2 https://turkunlp.org/fin-ner.html.
3 https://finto.fi/mesh/en/.
4 http://turkunlp.org/Turku-neural-parser-pipeline/.

https://n2c2.dbmi.hms.harvard.edu/
https://turkunlp.org/fin-ner.html
https://finto.fi/mesh/en/
http://turkunlp.org/Turku-neural-parser-pipeline/


446 W. Sun et al.

framework with better domain specification, we perform domain-specific contin-
ual pretraining to obtain domain-aware model parameters to initialize the NER
model.

To validate the HAM-net in different medical documents, we retrieve patient
clinical records from the data lake of the hospital and divide them into four text
clusters based on frequent medical specialties to establish NER datasets. Also,
we develop the Sample Selection Module (SSM) to choose the most informative
data points as validation samples for better evaluation. The experiments show
that the SSM is better than random selection, such that the validation samples
generated by our module better represent the whole datasets.

Our contributions are illustrated in the following aspects:

– This paper proposes a novel framework to deal with the NER task in an
extremely low-resource scenario, i.e., extract customized medical entities from
clinical notes without human-annotated data.

– We integrate a Finnish medical dictionary and a Finnish language parsing
pipeline to construct the Hybrid Annotation Mechanism (HAM) module for
providing weakly labeled data.

– We design the Sample Selection Module (SSM) to select the representative
samples for human annotation, which enables the reliable evaluation of our
weakly supervised HAM-net and effectively reduces the annotation cost.

Patient
Clinical
Records

In-domain
MLM

HAM

SSM

Weakly
Labeled Data

NER Encoder

Model Parameter

Initialize

Predictions

Selected
Samples

Doctors

Annotation

Datalake

NER Decoder

Fig. 1. Overall architecture of HAM-net. The texts in patient clinical records from the
hospital data lake are written in a low-resource language (Finnish).

2 Related Work

Medical NER detects medically meaningful entities in unstructured documents
and classifies them into predefined labels, such as drug dosages, diseases, medical
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devices, and anatomical structures. Most early medical NER works utilize feature
engineering techniques and machine learning algorithms to resolve medical NER
tasks [17,19,21]. Deep learning-based NER approaches have recently achieved
state-of-the-art (SOTA) performance across NER tasks because of the semantic
composition and continuous real-valued vector representations through nonlinear
processing provided by deep neural networks [12]. For example, in the clinical
setting, Wu et al. [23] used the convolutional and recurrent neural networks
to encode the input sentences while the sequential labels were generated by a
task-specific layer, i.e., a classification layer.

Acquiring high-quality training data for deep learning models in the med-
ical setting can be difficult because human annotation is labor-intensive and
expensive. As a classical supervised learning task, the medical-named entity
recognition task requires a substantial amount of entity-level supervision signal,
e.g., anatomical structure and drug dosage, to learn the transformation func-
tion between input data and our desired targets from the training dataset. Two
common weak supervision schemes, i.e., incomplete and inaccurate supervision,
are extensively studied in research communities [24] to resolve the data scarcity
problem. Incomplete supervision approaches select a small set of training samples
from a dataset, and then human encoders assign labels to selected samples for
training the model. Ferreira et al. [6] leverage active learning strategies to select
the most informative samples on a clinical multi-label classification, i.e., interna-
tional classification disease (ICS) coding task. Inaccurate supervision approaches
generate weakly labeled data by assigning many training samples with super-
vision signals provided by outside resources, such as dictionaries, knowledge
graphs, and databases. Nesterov et al. [16] leverage Medical Dictionary for Reg-
ulatory Activities (MedDRA), a subset of UMLS, to construct a knowledge base
as annotation resources. The weakly labeled data generated by a rule-based
model is fed into a BERT model to generate entity-level predictions.

3 Method

This section introduces our proposed framework, i.e., Hybrid Annotation
Mechanism Network (HAM-net). It consists of a hybrid annotation mecha-
nism (HAM) and a Sample Selection Module (SSM). The overall architecture of
HAM-net is shown in Fig. 1. We retrieve Finnish patient clinical records from the
hospital data lake and deploy our framework in a real-world scenario. Domain-
specific Masked Language Modeling (MLM) is performed on a large-scale clinical
corpus from the data lake to learn medical knowledge that provides the HAM-
net with in-domain adaptation. The HAM automatically assigns weak labels to
training samples. The SSM selects the most informative data points as valida-
tion samples, and doctors annotate the selected samples. The NER model uses
weakly labeled data to train a model identifying and classifying entities into
pre-defined labels.
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Fig. 2. Overall architecture of HAM-net. The patient clinical records from the hospital
data lake are Finnish text. Annotation Dictionary is constructed based on the FinMesh
ontology. Linguistic information, i.e., lemmatization and annotation mask, is derived
from the Finnish neural parsing pipeline and human-defined rules. We leverage medical
information from ontology and linguistic information to assign labels for given input
entities.

3.1 Hybrid Annotation Mechanism

The Hybrid Annotation Mechanism (HAM) is divided into three steps as shown
in Fig. 2, i.e., annotation dictionary construction, linguistic knowledge extrac-
tion, and weak label assignment. Firstly, we retrieve medical terms from the
Finnish Medical Subject Heading (FinMesh) ontology and utilize parent-child
relationships between subjects to establish hierarchical graphs. Each hierarchi-
cal graph consists of a root node and non-root nodes, which are used to construct
a medical dictionary, i.e., the root node for the key and all non-root nodes for the
terms. Based on clinicians’ suggestions, we merge “key-item” pairs in the med-
ical dictionary to provide an annotation dictionary with six pre-defined labels.
Secondly, we integrate linguistic knowledge of sequential input extracted by the
Finnish neural parsing pipeline and human-defined rules to provide tokenized
words, annotation masks, and lemmatization to facilitate the following entity-
level annotation. Thirdly, we design a beam-mapping algorithm that assigns
weak labels to entities for establishing NER training datasets.

Annotation Dictionary Construction. Assume a collection of medical
subjects related to a top-level concept, e.g., kudokset (tissue), is denoted as
H′

i = {hi}a+b+c+2
i=0 , where a, b, and c represents each branch’s depth in a hierar-

chical tree. Each medical subject stores relevant information, including their par-
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ent and child subjects, medical concepts in different languages (Finnish, Swedish,
and English), preferred labels, alternative concepts, and related subjects.

We define the hierarchical graph for the concept as Gi
h = (H′, E) where rel-

evant medical subjects H′ are the graph’s vertices and E represents the edges
or association rules of the hierarchical graph, i.e., parent-child relations between
subjects. The edges are E → {{hi, hj}|hi, hj ∈ H′

i and i �= j} while the associa-
tion rules of the hierarchical graph (refer to the Fig. 2) is defined as follows:

– h0 → h1 → · · · → ha+2,
– h0 → h2 → · · · → ha+b+2,
– h0 → h2 → · · · → ha+b+c+2.

To construct a medical dictionary Mi, we flatten the hierarchical graph Gi
h

by pooling all vertices or subjects in the graph (except the top-level vertex h0).
Retrieved subjects are regarded as the dictionary’s terms, and the top-level ver-
tex represents the dictionary’s key, so that the medical dictionary is denoted to
Mi(k0) = {hi}a+b+c+2

i=0 . We regard the top-level vertex h0 as a key of the medical
dictionary k0.

An annotation dictionary Aj (where j ∈ {1, 2, · · · , 6}) is provided by merging
related hierarchical graphs based on clinicians’ suggestions, and the annotation
dictionary is referred to as Aj = {M1(k1

0),M2(k2
0), · · · ,Mm(km

0 )} where m is
the number of related hierarchical graphs.

Annotation Masking and Lemmatization. Let X be a sentence with n
tokens in a clinical document from the data lake. The sentence is denoted as
X = {Xi}ni=1. The Finnish neural parser pipeline reads the sentence X and pro-
vides tokenized words (Xo), tokens’ lemmatization (X l), part of speech (POS),
morphological tags, and dependency parsing. Firstly, we provide an annotation
mask (Xm) to avoid the label assignment over entities with no specific meaning,
by leveraging the following pre-defined rules:

– Set Xm
i as “False” if the POS of Xi does not belong to [“NOUN ”, “VERB ”,

“ADJ ”, “ADV ”].
– Set Xm

i as “False” if the Xi is a unit, e.g., “cm”, “kg”, “sec”, to name a few.
– Remove all Finnish stop words provided by stopwords-fi5.

Secondly, the pipeline lemmatizes the token Xi and returns the original format of
the token. The reason for extracting tokens’ lemmatization is that tokens in the
clinical notes have different formats, such as past tense, plural, or misspellings,
which might affect the string mapping during the entity-level annotation. Finally,
the generated vectors, i.e., Xo, X l, and Xm, align with the lengths of input
sentence X to prevent dislocation mapping when the vectors participate in the
following label assignment.

5 https://github.com/stopwords-iso/stopwords-fi.

https://github.com/stopwords-iso/stopwords-fi
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Weak Label Assignment. We develop an algorithm called beam mapping to
assign weak labels to entities in the sentence. We adopt BIO scheme to define the
entity boundaries. BIO stands for the beginning, inside, and outside of a textual
segmentation. For example, NER systems assign [‘O’, ‘O’, ‘B-medical-condition’,
‘I-medical-condition’] for a given sequence [‘He’, ‘has’, ‘prostate’, ‘cancer’]. The
algorithm iterates through all tokens in the sentence X and generates BIO scheme
labels, i.e., a combination of tokens can be annotated, within the receptive windows
Win containing a list of w position shifting, Win ∈ [s1, s2, · · · , sw], where sw is a
token at w position of a given sequence. For example, “prostate cancer” should
be annotated as “B-Medical-condition” and “I-Medical-condition” rather than “B-
Anatomical-structure” and “B-Medical-conditional” because it is plausible to treat
the phrase “prostate cancer” as a unit instead of splitting them up.

Assume the beam mapping algorithm provides labels to tokens ranging from
Xi to Xi+sj where j ∈ {1, 2, · · · , w}. Firstly, we check the ith element in the
annotation mask Xm and see whether Xm

i is True because we directly assign
“O” to the Xi without executing the algorithm on the position i if the mask item
is False. Secondly, a token mapping function generates the candidate labels on
the lemmatizations of tokens {X l

i}i=i+sj
i=i by mapping each item in the anno-

tation dictionary A to the lemmatizations. During the mapping, the algorithm
selects candidates, i.e., terms in the annotation dictionary Aj , if the number of
input tokens and lengths of each token equal the dictionary’s terms. We denote z
selected candidates as C = {Ci}zi=1 and calculate Levenshtein distance between
the input string and the candidate to estimate the similarity between two strings
for choosing the most matched candidate. Merge the input list {X l

i}i=i+sj
i=i sepa-

rated by the space character to provide the input string Si:i+sj . The Levenshtein
distance between two strings (a and b) is shown as follows:

lev(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|a| if |b| = 0,
|b| if |a| = 0,
lev

(
tail(a), tail(b)

)
if a[0] = b[0]

1 + min

⎧
⎪⎨

⎪⎩

lev
(
tail(a), b

)

lev
(
a, tail(b)

)

lev
(
tail(a), tail(b)

)
otherwise,

(1)

where the tail(.) is to retrieve all elements in a string except the first one. Thirdly,
we get the best-matched terms for the tokens {Xi}i=i+sj

i=i based on the distances.
The weak labels {Y ′

i }i=i+sj
i=i is provided by leveraging the indexes of the best

candidates to look up the annotation dictionary A. The annotation rules for the
BIO scheme are shown as follows:

– If the first label is empty, i.e., Y ′
i = “O”, we re-run the algorithm on the

position i + 1.
– If the first label is not empty, the weak labels {Y ′

i }i=i+sj
i=i are:

• The first element is the beginning of the text segment, Y ′
i = “B-lb”.

• The rest elements are the inside of the text segment, {Y ′
i }i=i+sj

i=i+1 = “I-lb”.
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where “lb” is an arbitrary label from the annotation dictionary A. The
weakly labeled data for the sentence X with n tokens can be represented as
{(Xi, Y

′
i )}ni=1.

3.2 NER Backbone Network

We use the weakly labeled data provided by the HAM as input samples to
train a NER model. Also, the weakly labeled data contains inherent label noise
of distant supervision approaches, affecting predictions’ reliability. The noise
stability property [2] shows that the noise will gradually attenuate when the noise
propagates through a deep neural network. Therefore, a trained NER model, i.e.,
HAM-net, identifies and classifies entities into labels in a low-latency way. The
label noise can be suppressed by the deep neural network or additional noise-
suppressed approaches.

We leverage the word embedding technique to provide the word embedding
matrix Xi ∈ R

de×n of the ith sentence with n tokens. The input data is denoted
as {(Xi,Y′

i)}Ni=1 where N is the total number of sentences and the Y′
i ∈ R

1×n

is to store the indexes of labels. We load the domain-specific model obtained
with continual pretraining to initialize the encoder whose mapping function is
denoted as F ′(.). The vector Xi is encoded as:

Z′
i = Softmax(O′F ′(Xi)), (2)

where O′ ∈ R
dm×dh is the weight matrix of the fully-connected layer and dm is

the dimension of predefined label space. Z′ ∈ R
dm×n represents the encoder’s

output.
We also consider a CRF layer as the decoder of the NER model, denoted as

f(Z′
i, j,Y

′
j−1,Y

′
j) where j is the position of the label to predict, Y′

j−1 represents
the label for the (j − 1)th token of the input sequence X, and Y′

j is the label
for the jth token of the input sequence X. The conditional probability vectors
of the ith sentence is denoted as:

P (Y′
i|Z′

i, λ) =
1

G(Z′)
exp

n∑

j=1

λjfj(Z′
i, j,Y

′
i,j−1,Y

′
i,j)), (3)

G(Z′) = exp
N∑

i=1

n∑

j=1

λjfj(Z′
i, j,Y

′
i,j−1,Yi,j), (4)

where the λj is the learn-able weight of jth CRF feature function. The G(Z′)
represents the normalization factor of the CRF feature functions. The overall
training loss of the HAM-net is:

L(Z′, λ,Y′) =
N∑

i=1

logP (Y′
i|X′

i, λ) −
m∑

j=1

λ2
j

2σ2
, (5)

We train the model until convergence and use the Viterbi algorithm [11] to
generate a label sequence for a new input sentence in the inference stage.
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3.3 Sample Selection Module

To validate the effectiveness of our data annotation mechanism and NER model,
we need the test set with a small set of samples annotated by clinicians. How-
ever, human annotation is expensive and labor-intensive, especially for doctors
to assign entity-level labels to the test samples. To mitigate this problem, we
developed the Sample Selection Module (SSM) to select samples that largely
represent the datasets when constructing the test set. Compared with the ran-
dom selection, the distributions of test samples provided by the SSM are closer to
the distributions of each dataset. We provide the details about the SSM module
as follows.

Note a set of g sentences φ ∈ {φ1, φ2, · · · , φg} from an arbitrary dataset.
Firstly, we use the Finnish sentence transformer6 to embed sentences {φi}gi=1

into vectors {Φi}gi=1, where the ith vector is Φi ∈ R
1×ds . The principal compo-

nent analysis (PCA) [1] projects the high-dimension vector Φi ∈ R
1×ds into a

low-dimension vector Φ̂i ∈ R
1×dr for dimensionality reduction while retraining

the main patterns of the vectors. Secondly, we segment data points into different
clusters by applying the Kmeans++ algorithm on the dimension-reduced vec-
tors {Φ̂i}gi=1. For simplicity, we assume the vectors are in the same cluster, and
the center point of the cluster is referred to as Φ̂c

i ∈ R
1×dr . Note that the center

point might not be one of the vectors {Φ̂i}gi=1. The Euclidean distance between
the center point Φ̂c and the ith vector Φ̂i is denoted as follows:

d(Φ̂c, Φ̂i) =

√
√
√
√

n∑

j=1

(Φ̂c[j] − Φ̂i[j])2, (6)

where Φ̂c[j] is the ith element in the vector Φ̂c. We refer to the reciprocal of
the normalized distances as the data sampling probabilities so that the sampling
probability for the ith data point is denoted as:

p(i) =
invp(i)

∑g
j=1 invp(j)

, invp(i) =
1

d(Φ̂c, Φ̂i)
. (7)

We sample the data point from the cluster with the probabilities p as a part
of the test sample. After traversing all clusters, we obtain a collection of test
samples that can better represent the whole dataset.

4 Experiments

4.1 Dataset

We conduct experiments on these two real-world datasets, namely medical radi-
ology and medical surgery. We retrieve patient clinical records from the hospital’s
data lake to build the basic medical corpus. Following the clinicians’ suggestions,
6 https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase.

https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase
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we split the medical corpus into four text sets based on the medical specialties,
i.e., “RTG (radiology reports)”, “KIR (surgery text)”, “SAD (radiotherapy docu-
ments)”, “OPER (procedures notes)”. The detailed specialty information can be
found in the Kela - the Social Insurance Institution in Finland7. We combine the
RTG and SAD sets into the medical radiology dataset, and the KIR and OPER
sets into the medical surgery dataset. We only keep the main body of documents
as a medical corpus for each clinical document and split some documents into
sentences when constructing these two medical datasets. To better explore the
model performance variation on different datasets, we truncate and maintain
datasets at the same scale to eliminate the effect of data size.

Table 1. Numbers of weakly labeled entities based on four medical specialties. “B-X”
and “I-X” represents the beginning and inside of a clinical term. To ensure anonymity,
we represent values lower than 10 in the results as “<10”.

Medical Specialty Stru Meas Cond Devi Proc Medi O
B-X I-X B-X I-X B-X I-X B-X I-X B-X I-X I-X B-X

KIR 10002 23 3689 27 10705 189 1773 11 13756 101 2984 14 142002
SAD 6993 <10 2722 33 10602 273 913 <10 14292 108 3494 11 123220
RTG 8623 64 1957 <10 8204 138 1219 <10 6740 22 1674 <10 99083
OPER 12784 61 2663 <10 7913 74 2696 <10 8577 40 2457 <10 137150

We leverage the SSM module and HAM scheme for each medical specialty
to construct a human-annotated testing set and machine-annotated training set,
respectively. We select 1000 sentences from both datasets based on the dataset
sentence ratios, i.e., the number of sentences in each dataset over the number of
sentences in all datasets. The number of sentences in different human-annotated
datasets is 214 (KIR), 192 (RTG), 210 (SAD), and 192 (OPER). The rest of
the sentences are used to construct the machine-annotated datasets by applying
the HAM scheme mentioned in Sect. 3.1. Weakly labeled datasets generated by
the HAM and clinician-annotated data are divided into training, validation, and
test sets according to the predefined ratio, i.e., 7:2:1. For simplicity, we denote
predefined NER labels as “Anatomical Structure (Stru)”, “Body Function and
Measurement (Meas)”, “Medical Condition (Cond)”, “Medical Device (Devi)”,
“Medical Procedure (Proc)”, and “Medication (Medi)”. Table 1 shows the statis-
tical summary.

4.2 Baselines and Setup

We compare the three zero-shot baselines with different token classification layers
and two variants of our proposed method. Three baselines are ZS-BERT (i.e.,
a Zero-Shot BERT-based model), ZS-BERT-LSR (i.e., Zero-Shot BERT with
Label Smoothing Regularization), and ZS-BERT-CRF (i.e., Zero-Shot BERT
7 https://tinyurl.com/3ybbdyjr.

https://tinyurl.com/3ybbdyjr
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with Conditional Random Field). We equip two token classification layers, i.e.,
softmax-based linear layers (Linear) and conditional random fields (CRF). The
BERT model is pretrained over the collected corpus. All baselines are in the
zero-shot setting and summarized as follows:

– ZS-BERT: A BERT model encodes input documents, and the linear layer
decodes features into entity labels.

– ZS-BERTLSR: Overall architecture is the same as the ZS-BERT, except the
loss function is adjusted by the LSR.

– ZS-BERTCRF: A CRF rather than a linear layer follows a BERT model to
generate entity labels.

Accordingly, two variants of our proposed methods are HAM-Linear and HAM-
LSR. HAM-Linear replaces the CRF layer of the HAM-net with a linear layer
to generate token-level predictions; 2) HAM-LSR is the same as the HAM-
Linear except for the model optimization part. The HAM-LSR leverages the
label smoothing regularization (LSR) over the cross-entropy loss function.

We manually tune the hyper-parameter, select the best model evaluated on
the validation set and report the results on the clinician-annotated test set. We
use the base configuration of the BERT model to encode input sequences. The
batch size is 1. The maximum length of the input is 512. We set the drop rate
of all dropout layers as 0.03. The learning rate is 1e−5. We trained our neural
network with mixed precision, i.e., FP16, to accelerate the training speed. We
apply the early stopping strategy by monitoring the validation loss while the
patience round is 5. The optimal PCA dimension for four datasets is ten, and
the number of clusters is 2.

4.3 Main Results

To compare with baseline models, we report the model’s results on the precision,
recall, and F1 scores. Table 2 reports the performance of all models.

Table 2. Experimental results, i.e., precision (P), recall (R) & F1 scores in %, on the
medical surgery and medical radiology datasets.

Models Medical Surgery Dataset Medical Radiology Dataset
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ZS-BERT 8.87 13.77 10.78 8.55 11.64 9.86
ZS-BERTLSR 8.87 13.74 10.78 8.56 11.65 9.87
ZS-BERTCRF 8.14 11.68 9.59 7.94 10.01 8.85
HAM-Linear 32.34 8.84 13.53 24.31 9.91 13.50
HAM-LSR 31.31 8.48 13.06 23.70 9.04 12.92
HAM 33.37 9.20 13.74 25.38 10.04 14.19
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Medical Surgery Dataset: Our model outperforms all baselines across evalu-
ation metrics. The HAM achieved better scores compared with the best linear-
decoding model, i.e., HAM-Linear. The HAM outperforms the HAM-LSR by
2.06, 0.72, and 0.68% points on precision, recall, and F1 scores.

Medical Radiology Dataset: Our model improves all evaluation scores on the
medical radiology dataset. Compared with the HAM-Liner, the HAM improves
the precision, recall, and F1 scores by 1.04, 0.13, and 0.69% points, respectively.
The HAM also outperforms the HAM-LSR with 1.68, 1.00, and 1.27% points on
all evaluation metrics.

4.4 The Effect of Sample Selection Module

We leverage Davies Bouldin scores [4] to find the optimal combination of the PCA
projection dimension and clustering number. Figure 3 shows the distributions of
Davies Bouldin scores with different PCA projection dimensions and clustering
numbers on four datasets. From the figure, we can observe that cluster num-
bers largely affect the Davies Bouldin scores while the lower values indicating
better clustering. Besides, we use different clustering algorithms, i.e., bisecting
k-means and ward agglomerative clustering algorithm, to plot distributions of
Davies Bouldin scores. The distributions show the same patterns as the k-means
algorithm.

Fig. 3. Davies Bouldin scores by different PCA projection dimensions and the number
of clusters.

To compare the random selection and SSM module, we exploit the Jensen-
Shannon divergence [15] to measure the distribution distances between the full
and selected datasets. Assume the distribution of the full dataset is P and the
selected dataset is Q so that the Jenson-Shannon divergence is shown as follows:

JSD(P ‖ Q) =
1
2
D(P ‖ M) +

1
2
D(Q ‖ M). (8)
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Table 3. Jensen-Shannon divergence between original label distributions and selected
labels’ distribution provided by different selection methods.

Method KIR RTG OPER SAD

Random 0.292 0.285 0.300 0.298
SSM 0.275 0.278 0.285 0.275

The SSM and random selection algorithms have been performed ten times and
averaged across all results. Table 3 shows that the SSM significantly outperforms
the random selection approach because the label distribution of the SSM is closer
to the entire dataset.

4.5 The Effect of Continual Pretraining

We conduct an ablation experiment to study the effectiveness of domain-specific
continual pretraining. Table 4 shows the results of the baselines and HAM with or
without the domain-specific continual pretraining. We can observe that continual
pretraining improves all scores on two medical NER datasets, validating that
continual pretraining is important for the domain-specific application in this
study.

Table 4. Comparison of the evaluation results of the model with or without the domain
continual pertaining (DCP) on two medical NER datasets.

Models DCP Medical Surgery Dataset Medical Radiology Dataset
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ZS-BERT ✗ 6.04 6.50 6.26 6.43 6.30 6.36
✓ 8.87 13.77 10.78 8.55 11.64 9.86

ZS-BERTLSR ✗ 6.04 6.49 6.26 6.43 6.29 6.36
✓ 8.87 13.74 10.78 8.56 11.65 9.87

ZS-BERTCRF ✗ 7.56 9.84 8.55 8.29 9.72 8.95
✓ 8.14 11.68 9.59 7.94 10.01 8.85

HAM-Linear ✗ 33.50 4.46 7.82 20.83 4.95 7.98
✓ 32.34 8.84 13.53 24.31 9.91 13.50

HAM-LSR ✗ 24.95 3.24 5.69 23.06 5.96 9.30
✓ 31.31 8.48 13.06 23.70 9.04 12.92

HAM ✗ 34.00 4.43 7.80 21.79 5.16 8.32
✓ 33.37 9.20 13.74 25.38 10.04 14.19



Clinical Named Entity Recognition 457

4.6 Discussion

One key limitation of this paper is that the experimental results of our model
are not superior in terms of those evaluation scores. This is mainly because the
training of our models uses weakly annotated labels. Automated annotated labels
with distant supervision methods naturally cannot achieve superior performance
over evaluation metrics in many cases. However, the proposed HAM method
paves the way for training NER models without human-annotated data. In our
experiments, we leverage the domain-specific continual pretraining to improve
the model performance further. Developed NER systems requiring limited or
zero supervision can be deployed to extremely low-resource scenarios, such as
resource-restrained language and medical NLP applications. The medical NER
task in extremely low-resource scenarios is very challenging. Future work can
combine the proposed HAM and semi-supervised methods to build more reliable
entity recognition systems. Our study used clinical notes in Finnish as a case
study. However, our proposed method can be replicated in other languages. Tak-
ing English as an example, we can use the English MeSH as the ontology and
the corresponding preprocessing techniques for English in our hybrid annotation
mechanism to generate weakly supervised labels.

5 Conclusion

This paper developed a novel framework, Hybrid Annotation Mechanism Net-
work (HAM-net), to extract entity-level medical information from the clinical
text in an extremely low-resource scenario. We design the Hybrid Annotation
Mechanism (HAM) to detect and classify entities in documents into predefined
labels by utilizing the distant supervision signals from the Finnish medical sub-
ject headings. The weakly labeled data produced by the HAM module is further
used to train a NER model based on contextualized representations and domain-
specific continual pretraining. Due to the scarcity of annotated evaluation data,
we developed the Sample Selection Module (SSM) to select the samples which
can better represent the original datasets than the random selection approach.
The proposed SSM method can effectively select more representative samples,
thus reducing the annotation cost. The experimental results show that our frame-
work can be adapted to train neural models and establish a strong baseline for
future studies when there are no explicit supervision signals provided by human
experts. And domain-specific continual pretraining can help to improve the per-
formance of NER models trained with weakly annotated data.
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