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Sinkless Orientation Made Simple
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Dennis Olivetti∗ Shreyas Pai§ Ami Paz¶ Joel Rybicki‖ Stefan Schmid†

Jan Studený§ Jukka Suomela§ Jara Uitto§

Abstract

The sinkless orientation problem plays a key role in understanding the foundations of distributed
computing. The problem can be used to separate two fundamental models of distributed graph
algorithms, LOCAL and SLOCAL: the locality of sinkless orientation is Ω(log n) in the deterministic
LOCAL model and O(log log n) in the deterministic SLOCAL model. Both of these results are known
by prior work, but here we give new simple, self-contained proofs for them.

1 Introduction
One of the fundamental challenges in the study of graph algorithms concerns the understanding of the
locality of the considered graph problem: given a node in the middle of a large graph, how far do we need
to see around that node to choose its output? For example, if we are interested in the graph coloring
problem, how far do we need to see around a node before we can choose its color, so that the end result
is a globally consistent coloring?

The notion of locality plays a particularly important role in characterizing the distributed complexity
of graph problems [23, 24]—for example, problems that are local can be solved in a distributed setting
with a small number of communication rounds. The past decade has seen a successful research
program [1, 2, 9, 11, 14, 17, 18, 25] contributing to our systematic understanding of the fundamental
interplay between locality, randomness, and the computational power of different models of distributed
graph algorithms.

In this work, we give a new, simple proof for one of the key results in this area: the so-called
sinkless orientation problem gives an exponential separation between the LOCAL and SLOCAL models
of computing. The standard approach for proving this result relies on fairly heavy-weight machinery,
whereas our new proof is elementary and self-contained.

1.1 Sinkless Orientation. In the sinkless orientation problem, we are given an undirected graph as
input, and the task is to orient all edges so that all nodes of degree at least 3 have at least one outgoing
edge (i.e., they are not sinks). Here are some examples of valid solutions:
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A sinkless orientation always exists in any graph and it is easy to find given a global view of the
input graph: Process each connected component separately. If the component is a tree, we can choose a
leaf node v and orient everything towards v. Otherwise there is a cycle C, and we can then orient C in a
consistent direction and orient all other edges towards C, breaking ties arbitrarily. The following figure
illustrates both of these cases:

However, this simple algorithm is inherently global—the orientation of a given edge depends on
information arbitrarily far from it. The key question that was first explicitly asked in 2016 [9] regards
the locality of the sinkless orientation problem: Can one come up with a rule that always results in a
sinkless orientation such that each edge is oriented based on the information that is within its radius-T (n)
neighborhood, where n is the size of the input graph? How small can we make T (n)? Or is there some
lower limit for T (n) that we cannot cross? How are the answers affected by our model of computation?
In this paper, we aim to give lower and upper bounds for T (n) in the LOCAL and SLOCAL models of
computation, and show that the sinkless orientation problem separates these models.

1.2 LOCAL and SLOCAL Models. In this work, we consider the LOCAL and SLOCAL models of
(distributed) graph algorithms. For both models, the setting is as follows. We are given an input graph
G = (V,E) on n nodes and the goal is to compute a sinkless orientation on G. Each node v ∈ V has to
produce a local output, which is in our case an orientation of all edges incident to v. The local output of
v is determined by an algorithm that has access to the information available in G within distance T (n)
from v, where T : N → N is a function of the size of the input graph.

The key difference between the LOCAL and SLOCAL models is in the way nodes are processed (see
Fig. 1):

Deterministic LOCAL model: Each node v ∈ V chooses its local output simultaneously in parallel
based on the information available within distance T (n) from v. That is, each node v maps its
radius-T (n) neighborhood in G to an output value.

Deterministic SLOCAL model: The nodes are processed sequentially in some arbitrary order chosen
by an adversary. When node v ∈ V is processed, it chooses its internal state and output based on
the information available within distance T (n) in the graph. This information also includes the
internal states of the nodes processed before node v.
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LOCAL model:

3 15 2 8 4 10 7

SLOCAL model:

3 15 2 8 4 10 7

= node has chosen its local output
= node has not yet chosen its local output

Figure 1: Information flow in the LOCAL and SLOCAL models; in this example we consider locality
T (n) = 1, i.e., each node chooses its output based on its radius-1 neighborhoods. The input graph here is
a path with 7 nodes; the nodes are labeled by the adversary with unique identifiers. In the LOCAL model,
all nodes choose their final state simultaneously in parallel, while in the SLOCAL model, the nodes make
their choices sequentially, in some order chosen by the adversary.

In both models, we assume that the number of nodes n is known and that the nodes of the graph are
labeled with unique identifiers from 1 to poly(n); this is particularly important for the LOCAL model so
that one can distinguish nodes from each other.

The locality of a graph problem Π is the smallest distance sufficient to solving Π in the given model.
That is, if Π has locality T (n), then there is an algorithm A such that

(1) the algorithm A uses only information available within distance T (n) to compute the output of
any node v, and

(2) the output of A is correct on any input graph, on any choice of unique identifiers, and, in the
SLOCAL model, on any processing order of nodes.

1.3 Is SLOCAL Any Stronger Than LOCAL? It is natural to ask whether the locality of a given
problem differs between these two models. It is straightforward to see that the locality in the SLOCAL
model is always at most as large as in the LOCAL model: If we can solve problem Π in the LOCAL model
so that each node makes a choice based on its radius-T (n) neighborhood, we can do the same in the
SLOCAL model, as the algorithm can just ignore the internal states of nodes. However, this still leaves
open the key question of whether the locality of a problem can be much smaller in the SLOCAL model
than in the LOCAL model.

The answer may seem obvious. For example, consider the problem of coloring a path with 3 colors:

– In the SLOCAL model, we can solve this problem with locality T (n) = 1: each node can greedily
pick a free color that is not yet used by any of its neighbors.

– In the LOCAL model, there is no constant-locality algorithm—this is the seminal result by Linial
[23], and there exists a simple proof for it [22].
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However, this problem only gives a slightly super-constant separation between the models: there is an
algorithm with locality T (n) = O(log∗ n) that solves the problem in the LOCAL model by making clever
use of the unique identifiers [6, 13]; here log∗ is the inverse of a power tower, i.e., a very slowly-growing
function. More generally, for graphs with constant degree, any problem that can be solved in the SLOCAL
model with locality O(1) can be solved in the LOCAL model with locality O(log∗ n) [18].

If we could always turn any SLOCAL algorithms into LOCAL algorithms with only O(log∗ n) overhead
in locality, this would be great news for the designers of distributed algorithms: it is often much easier to
reason about sequential SLOCAL algorithms than about parallel LOCAL algorithms. However, sinkless
orientation shows that this is not the case.

1.4 Sinkless Orientation Separates LOCAL and SLOCAL. Sinkless orientation can be used
to prove a strong separation between deterministic LOCAL and deterministic SLOCAL. By prior work
[9, 11, 16, 18], we know that:

Theorem 1.1. The locality of the sinkless orientation problem in the deterministic LOCAL model is
Ω(log n).

Theorem 1.2. The locality of the sinkless orientation problem in the deterministic SLOCAL model is
O(log log n).

Unfortunately, even though these results play a key role in understanding the landscape of models of
distributed computing (see Section 4 for the broader context), there have not been simple proofs for either
of these results. While the theorems are related to deterministic models, the prior proofs of Theorems 1.1
and 1.2 take a detour through randomized models, and apply fairly heavyweight machinery:

– The prior proof of Theorem 1.1 first shows that the locality is Ω(log logn) in the randomized LOCAL
model [9]; this requires a careful analysis of how the local failure probability of a randomized
algorithm behaves in the so-called round elimination technique. Then we can conclude that the
locality is also Ω(log log n) in the deterministic LOCAL model. Finally, we can apply a general gap
result to extend the lower bound to Ω(log n) [11].

– The prior proof of Theorem 1.2 first constructs an algorithm with locality O(log log n) in the
randomized LOCAL model [16]; here one can use the so-called shattering technique, and argue that
after the randomized shattering phase, which orients only some edges of the graph, the connected
components of what remains to be processed are small enough so that even if one solves them
deterministically, locality of O(log log n) suffices. Then one can apply a generic derandomization
result that enables the simulation of randomized LOCAL with deterministic SLOCAL [18], and the
result follows.

1.5 Contributions and Key Ideas. We provide new short, elementary, and entirely self-contained
proofs for Theorems 1.1 and 1.2.

The lower bound. To obtain Theorem 1.1, we prove a stronger lower bound: it turns out to be
convenient to work in the supported version of the LOCAL model [26]. In the supported LOCAL model,
there is a fixed support graph G with a fixed assignment of unique identifiers that is known to all nodes
in advance, and the input graph H is a subgraph of G.

The fact that G is globally known makes the supported model stronger than the usual LOCAL model
(e.g. graph coloring with sufficiently many colors is trivial, as a proper vertex coloring of G gives a proper
vertex coloring of H). We show that the locality of the sinkless orientation problem is Ω(log n) in the
supported LOCAL model, which implies the same lower bound in the LOCAL model.
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The upper bound. To prove Theorem 1.2, we introduce the high-degree sinkless orientation problem, in
which we only care that nodes with high degree are not sinks. This problem is trivial to solve in the
SLOCAL model. We then provide an SLOCAL algorithm which constructs a virtual graph on top of the
actual graph and solves the high-degree sinkless orientation problem on the virtual graph. The algorithm
then lowers the solution on the virtual graph to a solution for the ordinary sinkless orientation problem
on the original graph.

2 Sinkless Orientation Has Locality Ω(logn) in LOCAL
In this section, we show that the locality of the sinkless orientation problem in the deterministic LOCAL
model is Ω(log n). We in fact prove the lower bound in the stronger supported LOCAL model. In this
variant of the LOCAL model, there is a globally known support graph G = (V,E) with known assignment
of unique identifiers, and the input is a subgraph H of G. In an algorithm with locality T (n), each node
v receives as input the entire structure of the support graph G, including all the unique identifiers, and
information about which edges in its radius-T (n) neighborhood in G, including the boundary edges,
belong to H; we refer to edges of H as input edges. In our case, we would like to find a sinkless orientation
in the input graph H.

By working in the supported LOCAL model, we can obtain a fairly simple proof of the Ω(log n) lower
bound result. As we will see below, the support graph and the fixed unique identifier assignment allows
us to easily apply the round elimination technique in the presence of the unique identifiers to show a
lower bound directly for deterministic algorithms – without the hurdle of going through randomized
algorithms as in prior proofs. While our new proof could be presented without explicit reference to the
supported LOCAL model, the notion of a support graph is a convenient way to obtain the properties
that are needed, and the supported LOCAL model is already an established model that has been studied
independently in the literature [14, 19, 26]; see Section 4 for further discussion.

Roadmap. For technical convenience, we prove the result in a stronger bipartite version of the supported
LOCAL model. The lower bound in this setting then implies lower bounds for (non-bipartite) LOCAL
and supported LOCAL models, by observing that algorithms from a weaker model can be translated to
the stronger models with no overhead in locality.

The overall structure of our lower bound proof is as follows. We fix a bipartite 5-regular graph G with
girth Ω(log n), and an assignment of unique identifiers on G. We then show that in bipartite supported
LOCAL, any algorithm that solves sinkless orientation, even with the promise that the support graph is
G, has locality Ω(log n).

The proof has two main steps. First, we give a round elimination lemma showing that any sinkless
orientation algorithm with locality T on H can be converted into an algorithm with locality T − 1, if T
is sufficiently less than the girth of G. By iterating this lemma, we can turn an algorithm with locality T
into an algorithm with locality 0. Second, we show that such trivial algorithms with locality 0 cannot
exist, implying that any algorithm requires Ω(log n) locality.

2.1 Setup

Bipartite model. In bipartite supported LOCAL, we are given a promise that the support graph G is
bipartite, and a 2-coloring is given to the nodes as an input; we refer to the two colors as black and white.
In the bipartite model, we consider either the black or white nodes to be active, and the other color to be
passive. All nodes of the graph run an algorithm as per the supported LOCAL model; upon termination
of the algorithm, the active nodes produce an output, and the passive nodes output nothing. The outputs
of the active nodes must form a globally valid solution; in particular, for the sinkless orientation problem,
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the outputs of the active nodes already orient all edges, and neither active or passive nodes having degree
at least 3 can be sinks.

Sinkless orientation in bipartite model. We encode the sinkless orientation problem in the bipartite
supported LOCAL model as follows. Each active node outputs, for each incident input edge, one label
from the alphabet Σ = {O, I}. The edge-output O indicates that the edge is outgoing from the active
node, and the edge-output I indicates it is incoming to the active node:

O

O O

I
I I

I= active
= passive

≈

An output is correct if

– for each active node of degree at least 3, there is at least one output O on an incident input edge,
and

– for each passive node of degree at least 3, there is at least one output I on an incident input edge.

Bipartite vs. non-bipartite. One can immediately observe that any sinkless orientation algorithm
for the supported LOCAL model can be translated to a sinkless orientation algorithm in the bipartite
supported LOCAL model. Therefore, it follows that lower bounds for bipartite algorithms are also lower
bounds for the standard models.

In more detail, consider a sinkless orientation algorithm A with locality T in the (supported) LOCAL
model, with some reasonable output encoding. To turn this into a bipartite (supported) LOCAL algorithm,
one first runs algorithm A in the bipartite model—this requires no modifications, as computation in the
bipartite model is done exactly as in the original. After the algorithm A has terminated,

(1) the passive nodes discard the output of A and output nothing, and

(2) the active nodes inspect the output of A, and output I for each incident edge directed towards
them, and O for each edge directed away from them in the output of A.

Since A is a sinkless orientation algorithm, these outputs also guarantee that each passive node has one
edge with output I incident to it.

2.2 Step One: Round Elimination. As the first step of the proof, we give a round elimination
lemma for the sinkless orientation problem. In its basic form, a round elimination lemma shows that if
there is an algorithm with locality T > 0 smaller than the lower bound, then we can use it to construct a
new algorithm with locality T − 1 solving the same problem.

Lemma 2.1. Let G be a fixed 5-regular bipartite graph with girth g, fixed unique identifiers, and a 2-
coloring of the nodes. Let 0 < T < g/2, and assume that there is an algorithm AT that solves sinkless
orientation with locality T on graph H supported by G. Then there is an algorithm AT−1 that solves
sinkless orientation on H with locality T − 1.

Copyright © 2023
Copyright for this paper is retained by the authors180

D
ow

nl
oa

de
d 

10
/3

1/
23

 to
 1

30
.2

33
.5

8.
35

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



B (v1, 2) \ B (u, 1)

A1 computes here S (u, v1) = the set of
all values A2 might output for this edge,
given what we see in B (u, 1), for any
possible extension in B (v1, 2) \ B (u, 1)

A1 computes here S (u, v2) = the set of
all values A2 might output for this edge,
given what we see in B (u, 1), for any
possible extension in B (v2, 2) \ B (u, 1)

Support
graph G

v

B (v, 2) = radius-2 neighborhood of node v
B (v, 2) = what node v sees when it runs A2

u

B (u, 1) = radius-1 neighborhoods of node u
B (v, 2) = what node u sees when it runs A1

v1
v2

B (v2, 2) \ B (u, 1)

Disjoint subgraphs:
all input combinations are possible!

Figure 2: The proof of Lemma 2.1 (round elimination). Here we have illustrated the case of T = 2, i.e.,
we are given an algorithm A2 that solves sinkless orientation with locality 2 so that black nodes are
active, and we construct a new algorithm A1 that solves the same problem with locality 1 so that white
nodes are active.
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Proof. Let us assume without loss of generality that black nodes are active in AT . For any non-negative
integer t and node v ∈ V , we use B(v, t) to denote the nodes within distance t from the node v in the
support graph G; see Fig. 2 for illustrations. We construct an algorithm AT−1 where white nodes are
active. In the algorithm AT−1, each white node u ∈ V performs the following steps:

(1) Node u gathers the inputs in its (T − 1)-radius neighborhood B(u, T − 1).

(2) For each neighbor v of u, the node u enumerates all possible input graphs H ′ on B(v, T ) which
are compatible with the actual input graph H on B(u, T − 1). For each such H ′, u simulates AT

to compute what v would output on the edge {u, v} under input H ′. Let S(u, v) denote the set
of all possible outputs obtained for the edge {u, v} this way.

(3) If S(u, v) = {I}, then node u outputs O on the edge {u, v}, and otherwise u outputs I on it.

We now prove that AT−1 produces a valid solution for the sinkless orientation problem.
Consider a white node u, and its neighbors v1, v2, . . . , vk in H. Since T < g/2, we have

B(vi, T )∩B(vj , T ) = B(u, T − 1) for all i ̸= j, and thus the inputs in B(vi, T ) \B(u, T − 1) do not affect
the output of vj in AT for any j ̸= i. Thus, any combination of labels Lv1 ∈ S(u, v1), . . . , Lvk ∈ S(u, vk)
may occur as an output: for any such labels Lv1 , . . . , Lvk , there is some input graph1 such that vi in AT

outputs the label Li for the edge {u, vi}.
Let u be a white node of degree at least 3 in H with neighbors N(u) in H. By the above argument,

for any choice of one Lv ∈ S(u, v) for each neighbor v ∈ N(u) of u, there is an input graph on which
AT outputs Lv for the edge {u, v}. If each S(u, v) contains O, there would be an input graph on which
AT outputs O for all incident input edges of u, implying that AT is not a correct sinkless orientation
algorithm. Hence, at least one neighbor v′ of u satisfies S(u, v′) = {I}, and in AT−1 where u is active, u
outputs O on the edge {u, v′}.

On the other hand, consider black node v of degree at least 3 with neighbors N(v) in H. On the
actual input H node v in AT will output O on an incident edge {v, u}, for some u ∈ N(v). In AT−1, the
node u will consider the input H on B(v, T ) (among other inputs), so we have O ∈ S(u, v). Thus, in
AT−1 the node u will output I on {v, u}, and v has an incident edge labeled I as desired.

2.3 Step Two: There Exists No Algorithm with Locality 0. As the second step of the proof, we
show that the sinkless orientation problem does not admit trivial algorithms, i.e., there are no algorithms
with locality 0. Recall that in a locality-0 algorithm in the supported LOCAL model, a node v knows the
entire structure of the support graph G, as well as which of the edges incident to v belong to the input
graph H. Unlike in locality-0 LOCAL algorithms, node v also knows the identifiers of the other endpoints
of its incident edges.

Lemma 2.2. Let G be a fixed 5-regular bipartite graph with fixed unique identifiers and a 2-coloring of
the nodes. The locality of sinkless orientation in bipartite supported LOCAL on support graph G is greater
than 0.

Proof. Assume for contradiction that there is an algorithm A0 with locality 0 for the sinkless orientation
problem. Without loss of generality, we may assume that black nodes are active in A0. We mark each
edge e of G with the set of all outputs that A0 can produce for e when e is part of the input. For any

1Note that this step is where we require the existence of the support graph: in the LOCAL model, it might be the case that
there exists a combination of labels Lvi and Lvj such that nodes vi and vj output these labels only when B(vi, T ) \B(u, T − 1) and
B(vj , T ) \ B(u, T − 1), respectively, contain a node with some specific unique identifier. This means that there does not exist any
concrete input graph such that algorithm AT outputs labels Lvi and Lvj for edges {u, vi} and {u, vj}. The support graph G fixes this
problem by ensuring that the identifiers are unique across all possible input graphs H′ compatible with the real input graph H.
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black node v, there must be at least three edges marked with either {O} or {O, I}. Otherwise at least
three edges of v are marked with {I}, which implies that there exists some input where v has exactly
three incident input edges and it would output I on all of them, contradicting the assumption that A0

produces a correct output for the sinkless orientation problem in the bipartite model.
Since every edge is incident to exactly one black node, at most a fraction of 2/5 of the edges are

marked with {I}. Hence, there is a white node u such that u is incident to at least three edges {u, v1},
{u, v2} and {u, v3} marked with either {O} or {O, I}. Now consider an input where these three edges
are the only input edges incident to u. Since the output of each node vi depends only on its incident
input edges, we can select for each vi an input where vi outputs O for edge {u, vi}. Moreover, since A0 is
an algorithm with locality 0 and black nodes v1, v2 and v3 are not neighbors, we can do this for all of
them simultaneously. Thus, there exists an input where A0 outputs O on all incident input edges of the
passive node u, a contradiction.

2.4 Putting Things Together

Theorem 2.1. The locality of the sinkless orientation problem in the deterministic supported LOCAL
model is T (n) = Ω(logn).

Proof. Let G be a bipartite 5-regular graph with girth g = Ω(log n). Observe that we can obtain one
e.g. by taking the bipartite double cover of any 5-regular graph of girth Ω(log n), which are known to
exist (see e.g. [7, Ch. 3]).

Assume that there is a supported LOCAL algorithm AT that solves sinkless orientation with locality
T < g/2 on support graph G. This implies that there is a bipartite supported LOCAL algorithm for
sinkless orientation on G running in time T . By repeated application of Lemma 2.1, there is a sequence
of bipartite supported LOCAL algorithms AT ,AT−1, . . . ,A1,A0, where algorithm Ai solves sinkless
orientation with locality i.

In particular, A0 solves sinkless orientation with locality 0. By Lemma 2.2, this is impossible, so
algorithm AT cannot exist.

The above result readily implies Theorem 1.1.

Theorem 1.1. The locality of the sinkless orientation problem in the deterministic LOCAL model is
Ω(log n).

Proof. Assume that there exists a LOCAL algorithm A solving sinkless orientation with locality T (n) =
o(log n). This implies that there exists a supported LOCAL algorithm with the same locality solving
sinkless orientation, as the supported LOCAL algorithm can simulate the LOCAL algorithm A on the real
input graph H by ignoring its knowledge of the support. This is impossible by Theorem 2.1, and hence
the locality of sinkless orientation must be Ω(log n) also in the LOCAL model.

3 Sinkless Orientation Has Locality O(log logn) in SLOCAL
We now show that the locality of the sinkless orientation problem in the deterministic SLOCAL model is
O(log logn). Together with the lower bound result of the previous section, this separates the deterministic
LOCAL and SLOCAL models.

Roadmap. As the first step, we consider a variant of the sinkless orientation problem called high-degree
sinkless orientation, where only nodes with degree Ω(log n) are required not to be sinks. We show that
this problem can be solved with a simple greedy algorithm that processes edges one at a time, and this
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algorithm can be implemented in the SLOCAL model with locality O(1). As the second step, we show
how to reduce the general sinkless orientation problem to the high-degree problem.

As the high-level idea, we compute a clustering of the nodes using a maximal distance-k independent
set, where all nodes in the independent set are separated by distance at least k = Θ(log logn), and solve
high-degree sinkless orientation on the graph formed by the clusters and edges between the clusters. We
can then orient edges inside each cluster independently without creating sinks; high-degree clusters will
already have one outgoing edge oriented away from the cluster, and low-degree clusters contain either a
node of degree at most two or a cycle. Moreover, this idea can be implemented as an SLOCAL algorithm
with locality O(log log n).

3.1 Step One: High-Degree Sinkless Orientation. The high-degree sinkless orientation problem is
a variation of the sinkless orientation problem in which we only care that nodes with degree of at least
⌊log2 n⌋+ 1 are not sinks; we call such nodes high-degree nodes. For technical purposes, we will assume
in this section that the input graph G = (V,E) is a multigraph.

Greedy algorithm. We describe a greedy algorithm A for solving high-degree sinkless orientation that
orients the edges of the input multigraph G = (V,E) one at a time. During the execution of A, we say
that a node v ∈ V is satisfied if it either is not a high-degree node or at least one incident edge has been
oriented away from v; otherwise, v is unsatisfied. Algorithm A processes each edge e = {u, v} using the
following rules:

(1) If either u or v is already satisfied, the algorithm orients the edge towards the satisfied node,
breaking ties arbitrarily.

(2) Otherwise, both u and v are unsatisfied high-degree nodes. The algorithm orients the edge
towards the node which has fewer adjacent edges already processed, breaking ties arbitrarily.

Lemma 3.1. Algorithm A produces a valid solution to high-degree sinkless orientation.

Proof. At each step of the execution of A, consider the connected components formed by the edges that
have been processed by Rule (2) up to current step. We want to show that the following invariants hold:

(a) Each connected component formed in this way is a tree with each edge oriented towards the
root. Moreover, all unsatisfied nodes are roots of the trees.

(b) If an unsatisfied node v ∈ V has b edges oriented towards v, then the current connected
component has at least 2b nodes. In other words, node v is a root of a tree with at least 2b nodes.

These suffice to prove the theorem, as any unsatisfied node after the termination of the algorithm would
need to be part of a component containing at least 2⌊log2 n⌋+1 > n nodes, and therefore the component
needs to be larger than the whole graph, a contradiction.

The invariants trivially hold before any edges have been processed, as each node has 0 edges directed
towards them and thus each node is the root of its own tree. The invariants also trivially remain true
after any step where we process an edge e = {u, v}, where u or v is satisfied, as we invoke Rule (1) instead
of Rule (2).

Consider now the case where the algorithm processes an edge e = {u, v} with both u and v unsatisfied,
and let the number of processed edges incident to u and v be bu and bv, respectively. Without loss of
generality, we may assume that bv ≤ bu and that A orients e towards v. Node u is now satisfied, and
node v has indegree bv + 1. Since Invariant (b) held before this step, we have that the new connected
component containing v now has size at least 2bv + 2bu ≥ 2bv + 2bv = 2bv+1, implying that the invariant
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continues to hold. Moreover, node u is no longer the root of its component but has an edge oriented
towards the new root v, and therefore Invariant (a) holds.

3.2 Step Two: Sinkless Orientation on General Graphs. We start by describing our algorithm
for sinkless orientation on general graphs in three steps. Each one of these steps can be implemented
in the SLOCAL model with locality O(log log n), assuming that the output from previous steps is
available at the nodes. We defer the proof that these steps can be combined into a single-step
SLOCAL algorithm with locality O(log log n) until the end of the section. In the following, let
T = ⌈log2(⌊log2 n⌋+ 1)⌉ = O(log log n).

Clustering. Let G = (V,E) be the input graph. A set I ⊆ V is said to be a distance-k independent set
of G if any two nodes in I are at least distance k apart. We construct a clustering of the input graph G
by computing a maximal distance-(2T + 2) independent set I and assigning each node to the cluster of
the closest independent set node v ∈ I, breaking ties arbitrarily. For node v ∈ I, we denote by Cv the
cluster corresponding to v. We say that an edge e ∈ E is an inter-cluster edge if its endpoints are in
different clusters, and an intra-cluster edge otherwise.

We note that the radii of the clusters are bounded: All nodes in the radius-T neighborhood of node
v ∈ I belong to cluster Cv. On the other hand, for every node u in Cv, the distance between u and the
cluster center v is at most 2T + 1.

We now define a virtual cluster graph with a node for each cluster Cv for v ∈ I, and adding an edge
between Cv and Cu for every edge of the original graph that connects a node in Cv to Cu, preserving
duplicate edges. That is, the cluster graph can be a multigraph.

Finally, we note that this clustering can be done with locality O(T ) by a simple greedy SLOCAL
algorithm: When the algorithm processes node v, it checks whether there are any other nodes belonging
to set I in the radius-(2T + 1) neighborhood of v. If there are, then node v belongs to the cluster of the
nearest such node, and otherwise the algorithm adds node v to set I.

Orienting inter-cluster edges. As the next step, we compute a high-degree orientation of the cluster
graph, using the greedy algorithm of Section 3.1. Since there is a one-to-one correspondence between the
edges of the cluster graph and edges between the clusters in the input graph G, this naturally induces an
orientation of inter-cluster edges in G. We observe that under this partial orientation, any cluster Cv

with degree at least ⌊log2 n⌋+ 1 has at least one edge oriented away from Cv, as the number of nodes in
the cluster graph is at most n and thus Cv counts as a high-degree node.

Again, this step can be implemented in the SLOCAL model with locality O(T ): When the algorithm
processes a node that is adjacent to an unprocessed inter-cluster edge, it can fully see both of the clusters
in its radius-O(T ) neighborhood, including the directions of inter-cluster edges that have been previously
processed. The algorithm can then orient all adjacent inter-cluster edges one-by-one using the greedy
algorithm of Section 3.1.

Orienting intra-cluster edges. Finally, we show that given the orientation of inter-cluster edges as
above, the intra-cluster edges can be oriented without creating any sinks of degree 3 or higher. We have
two cases to consider:

– High-degree clusters with at least ⌊log2 n⌋ + 1 inter-cluster edges have at least one outgoing
inter-cluster edge.

– Low-degree clusters with less than ⌊log2 n⌋+ 1 inter-cluster edges may have all inter-cluster edges
directed towards the cluster.
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We show that in both cases, it is possible to compute an orientation of intra-cluster edges based on the
internal structure of the cluster and the orientation of the boundary edges so that no node of degree at
least 3 is a sink.

For a high-degree cluster C, we know that there is a node v ∈ C with an outgoing inter-cluster
edge. In this case, picking an arbitrary spanning tree for C, orienting its edges towards v, and orienting
remaining edges arbitrarily clearly suffices.

For a low-degree cluster C, we first observe that C cannot be locally tree-like while having only nodes
with degree at least 3:

Lemma 3.2. A low-degree cluster Cv contains either a cycle or a node with degree 1 or 2.

Proof. Assume for contradiction that the cluster does not contain a cycle and that the degree of every
node is at least 3. Recall that all nodes within distance T of the cluster center v are contained in Cv,
and thus there are at least

3 · 2T−1 > 2T = 2⌈log2(⌊log2 n⌋+1)⌉ ≥ ⌊log2 n⌋+ 1

nodes in Cv at distance T from v. Moreover, it follows that there are at least this many edges on the
boundary of the cluster, and thus the cluster is adjacent to at least ⌊log2 n⌋+ 1 inter-cluster edges, a
contradiction.

If the cluster contains a cycle, then we can orient that cycle in a consistent manner, and orient the
rest of the edges towards the cycle. Otherwise the cluster contains a node with degree 1 or 2, in which
case we orient all edges towards that node.

As the radius of each cluster is bounded by 2T + 1, every node can see the whole cluster it belongs
to within its radius-O(T ) neighborhood. Therefore the algorithm can orient the intra-cluster edges in a
consistent manner with locality O(T ).

Composability of SLOCAL algorithms. To conclude the description of our algorithm, we need to
show that one can compose a multiple-step SLOCAL algorithm into a one-step SLOCAL algorithm. This
is a well-known result [17], but we include a short proof for completeness.

Lemma 3.3. Let A and B be SLOCAL algorithms with localities TA and TB, respectively, and let B depend
on the output of A. Then there exists an SLOCAL algorithm B ◦ A with locality TA + 2TB that solves the
same problem as B without dependency on the output of A.

Proof. To construct algorithm B ◦ A, we use the fact that algorithm A works for any order of nodes,
not just the one that the adversary uses for B ◦ A. In particular, when the adversary shows a node v to
B ◦ A, algorithm B ◦ A can simulate A for all nodes in the radius-TB neighborhood of v in an arbitrary
order. Once it has done this, algorithm B ◦ A can use B to compute the output for node v.

The challenge here is that when simulating A for node u in the radius-TB neighborhood of v,
algorithm B ◦ A needs to store the output of A for u for later use, but it can only select the output
state for node v. To circumvent this problem, we allow the output of A for node u to be stored at any
node in the radius-TB neighborhood of u. In particular, its output can be stored at node v. This gives
algorithm B ◦ A its locality: When processing node v, the algorithm needs to run A for all nodes in the
radius-TB neighborhood of v. Each of those nodes needs to see its radius-TA neighborhood, including the
previous outputs, which may be stored at distance TB from the node in question. Hence algorithm B ◦ A
has locality TA + 2TB.
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Theorem 1.2. The locality of the sinkless orientation problem in the deterministic SLOCAL model is
O(log log n).

Proof. We can apply Lemma 3.3 twice to combine the three-step SLOCAL algorithm we described above
into a one-step SLOCAL algorithm. As each of the three steps has locality O(T ), the final algorithm has
locality O(T ) = O(log log n), completing the proof.

4 Discussion and Broader Context
In this work, we have presented simple, self-contained proofs of Theorems 1.1 and 1.2, which show that
the locality of the sinkless orientation problem in the LOCAL model is exponentially larger than in the
SLOCAL model. We now conclude the paper by briefly discussing the broader context and the role of
the sinkless orientation problem and the SLOCAL model in understanding the foundations of distributed
computing.

Complexity of distributed sinkless orientation. While we presented a lower bound in the LOCAL
model and an upper bound in the SLOCAL model, we note that locality of sinkless orientation is fully
understood in these models:

– In deterministic LOCAL model, sinkless orientation has locality Θ(log n) [9, 11, 16].

– In randomized LOCAL model, sinkless orientation has locality Θ(log log n) [9, 16].

– In deterministic SLOCAL model, sinkless orientation has locality Θ(log log n) [16, 18].

– In randomized SLOCAL model, sinkless orientation has locality Θ(log log log n) [16, 18].

The role of sinkless orientation in understanding the Lovász Local Lemma. The sinkless
orientation problem was introduced in [9] with the purpose of understanding the locality of the constructive
Lovász Local Lemma problem in the distributed setting.

Lovász Local Lemma (LLL) is a classic result in probability theory that can be used to show the
existence of various combinatorial objects. For example, one can use LLL to prove that a sinkless
orientation exists in any graph [9].

In the distributed setting, the key question is the locality of constructive, algorithmic Lovász Local
Lemma: given a problem where LLL guarantees the existence of a solution, what can we say about the
locality of finding such a solution (e.g. in the LOCAL or SLOCAL model)? For many interesting problems
one can prove that a solution exists by using LLL, and hence a generic way to solve LLL in the distributed
setting gives a distributed algorithm for all these problems. Since LLL can be used to find a sinkless
orientation, any lower bound on the locality of sinkless orientation implies also a lower bound on the
locality of general LLL algorithms.

The role of sinkless orientation in understanding splitting problems. Sinkless orientation can
be seen as the most relaxed version of the degree splitting problem, for which two variants exist, directed
and undirected. The directed variant asks for an orientation of the edges such that each node has roughly
the same number of incoming and outgoing edges. The undirected variant asks for a coloring of the
edges with red and blue such that each node has roughly the same number of red and blue incident
edges. Observe that on bipartite two-colored graphs these two problems are equivalent. It is known
[16] that efficient algorithms for degree splitting allow us to obtain efficient algorithms for e.g. edge
coloring, and hence understanding the easiest splitting variant (sinkless orientation) may give insights for
understanding the more general case.
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The role of sinkless orientation in understanding round elimination. In order to prove the
Ω(log logn) rounds lower bound for the sinkless orientation problem, authors of [9] used the so-called round
elimination technique. Since then, this technique has been better understood, and sinkless orientation
played a key role in developing this technique, which has been since then used to show lower bounds for
many fundamental problems [3–5, 8, 12]. On a high level, the standard way of applying this technique
works as follows:

(1) First, prove a lower bound for deterministic algorithms in a weaker setting, where nodes do not
have IDs, using a strategy similar to what we do in Section 2.2.

(2) Then, lift this lower bound to a stronger setting, where nodes have no IDs but randomization is
allowed. This step is quite non-trivial, since it requires one to track how the failure probability
evolves when making the algorithm one round faster.

(3) Finally, convert the obtained randomized lower bound into a stronger deterministic lower bound
for the LOCAL model, by using non-trivial techniques typically used to prove gap results in the
LOCAL model.

One of our contributions is to simplify this three step process by showing how to directly handle unique
identifiers in a round elimination proof. A similar concept for handling unique IDs, called the ID graph
technique, was independently discovered in [10].

The role of SLOCAL. The SLOCAL model has played a key role in understanding the LOCAL model
itself. One of the major challenges that we encounter in the LOCAL model is the fact that all nodes act
in parallel, and they have to decide their output at the same time. The SLOCAL model abstracts away
this issue, since in this model nodes are processed sequentially. Hence, developing algorithms for the
SLOCAL model may be much easier than developing algorithms for the LOCAL model. Combining this
with the fact that, by paying some overhead, we have black box ways to convert SLOCAL algorithms to
LOCAL ones [18], this gives us an easier way to design LOCAL algorithms. Moreover, SLOCAL played an
important role for understanding the role of randomness in the LOCAL model. In fact, it has been shown
that any randomized LOCAL algorithm can be derandomized by paying an O(poly log n) overhead [18].
This result has been shown by providing an SLOCAL algorithm as an intermediate step.

The role of supported models in distributed computing. Our new simple proof of the Ω(log n)
lower bound for the locality of sinkless orientation in the LOCAL model also holds in the stronger
supported LOCAL model. While originally introduced in the context of software-defined networking [26],
the supported LOCAL model and its bandwidth-bound cousin, the supported CONGEST model,
have subsequently played a key role in understanding the power of preprocessing in distributed
computing [14, 15, 19, 20].

The underlying idea of these supported models is that the globally known support graph G can be
preprocessed in advance (or locally at each node) to facilitate the efficient solution of graph problems
on possible input subgraphs of G. While a priori such preprocessing may sound powerful, it turns out
that for many problems, the additional information provided by the support graph does not help much
compared to standard, non-supported model, particularly in the supported CONGEST model [15, 19, 20].

In the case of the supported LOCAL model, it is known that symmetry-breaking problems with
locality O(log∗ n) in the standard LOCAL model have locality O(1) in the supported LOCAL model [26]
and that there are problems that have Θ(n) locality in the supported LOCAL model [14]. Beyond these
results, much less is known about complexity of symmetry-breaking problems in the supported LOCAL
model. In particular, Foerster et al. [14] raised the question whether there exist so-called locally checkable
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problems with “intermediate” complexity between Ω(log n) and O(poly log n) in the supported LOCAL
model. Our new lower bound for sinkless orientations in the supported LOCAL model affirmatively
answers this question.
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