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ABSTRACT Addressing complexity in transportation in cases such as disruptive trends or disaggregated
management strategies has become increasingly important. This in turn is resulting in the rising adoption
of Agent-Based and Activity-Based modeling. Still, a broad adoption is hindered by the high complexity
and computational needs. For example, hundreds of parameters are involved in the calibration of Activity-
Based models focused on behavioral theory, to properly frame the required detailed socio-economical
characteristics. To address this challenge, this paper presents a novel Bayesian Optimization approach
that incorporates a surrogate model defined as an improved Random Forest to automate the calibration
process of the behavioral parameters. The presented solution calibrates the largest set of parameters yet,
according to the literature, by combining state-of-the-art methods. To the best of the authors’ knowledge,
this is the first work in which such a high dimensionality is tackled in sequential model-based algorithm
configuration theory. The proposed method is tested in the city of Tallinn, Estonia, for which the calibration
of 477 behavioral parameters is carried out. The calibration process results in a satisfactory performance
for all the major indicators, the OD matrix average mismatch is equal to 15.92 vehicles per day while
the error for the overall number of trips is equal to 4%.

INDEX TERMS Activity-based transport modeling, model calibration, machine learning, Bayesian

optimization, surrogate model.

. INTRODUCTION

ARGE-SCALE transportation problems have always

been prone to high complexity, approximations, and
a lack of a univocal mathematical formulation [1]. This is
especially the case for models involving human behavior and
the numerous factors ruling over mobility choices, which
have been applied to narrow scopes (e.g., modal choices) or
have been designed as aggregated (e.g., four-step models).

The review of this article was arranged by Associate Editor Jiaqi Ma.

Still, current and future transportation challenges — e.g.,
urbanization, population growth, and congestion [2], [3]
but also disruptive events such as pandemics [4] or the
climate crisis — require solutions able to frame transport
demand through the lenses of individual choices on a large
scale. Future innovations on the transport supply spec-
trum [5], [6] are also foreseen to have disruptive effects
on mobility demand. To evaluate said innovations, tools
able to frame changed mobility choices and travel habits
are needed. Currently, agent-based modeling (ABM) is

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/li foy/4.0/
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the most promising solution due to the ability to frame
both demand and supply at the agent level (the agent
being either the individual or the single vehicle) in a dis-
aggregate fashion, allowing the investigation of emergent
behaviors [7]. Specifically, activity-based models are a par-
ticular kind of ABM, where the population is modeled in a
disaggregate fashion, with each individual as an agent. To
do so, allows one to frame each behavioral choice based
on individual socio-economic features. Activity-based and
ABM models have already successfully been used in policy
analyses [8], accessibility studies [9], and forecasting exper-
iments [10], [11], [12], [13] focusing on automated mobility.
The disaggregated approach is particularly fit for scenarios
involving automated vehicles because historical data cannot
be exploited in these scenarios to forecast a realistic demand,
which is necessary in turn to address problems such as fleet
sizing or routing algorithms. Behavioral modelling offers an
alternative to the lack of historical patterns. Another ABM
application addressing the reported long-term challenges and
strongly benefitting from a properly calibrated large-scale
activity-based model is the modeling of remote and hybrid
working patterns during public health crises [14].

Still, despite these needs, the state-of-the-art concerning
activity-based models behind most ABM is limited, espe-
cially when it comes to the underlying calibration. The
different structures of the available activity-based tools and
the different magnitude of parameters to be calibrated each
time are still a barrier against a wider adoption. A uni-
fied calibration approach, not dependent on specific software
and able to include hundreds of parameters, is still needed
to fill this research gap and foster the usage of behavioral
activity-based models [15], [16]. The presented work tries to
tackle the issue and thus to foster the adoption of activity-
based models thanks to the global optimization (BO) and the
resulting calibration. By doing so for a large-scale urban sce-
nario, the presented work removes one of the main hurdles
in the field, further advances the applicability of ABMs, and
improves the performance of current calibration approaches.

BO [17], [18] exploits sequential sampling designing,
a surrogate model and the resulting response surface to
search for the global optimum. By exploiting a surrogate
model, the computational time is strongly reduced and an
extensive search process is made possible. By doing so, it
becomes possible to balance the trade-off between explo-
ration and exploitation. As such, the method is designed
for optimization problems that feature “expensive” functions
in terms of computational time, which are approximated
through the surrogate surface. This study focuses on the
development of a high-dimensional BO method that con-
verges within a given computational budget and avoids the
necessity to master the implementation of the underlying
large-scale ABM. The proposed algorithm and the modifi-
cations to the BO approach are designed to be transferable
to other large-scale problems involving dozens of parame-
ters and fit to be analyzed through a surrogate model. The
amount of calibrated parameters considered (up to 477) for
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BO has yet to be matched, as it will be shown in Section II.
Besides, this work reports the first large-scale solution to
the ABM calibration problem without the constraint of a
specific tool or data structure. Automating the calibration
process for an urban case study would remove one of the
main obstacles to the wider adoption of ABM, as will be
further reported in Section IL

In Section II, a review of the current literature is car-
ried out, concerning the calibration of large-scale transport
models and BO; Section III elaborates on the proposed
methodology; Section IV describes the case study, while
Section V reports the results obtained by applying the
proposed methodology to the case study; Section VI dis-
cusses the results and highlights the main conclusions for
this work.

The work presented in the paper aims to foster the adop-
tion of both large-scale behavioral activity-based models and
BO methods by reporting a methodological approach for the
calibration of hundreds of parameters in the transportation
domain. As it will be shown in Section II, no other work
manages to calibrate 477 parameters at once through a sur-
rogate model and BO techniques. Besides, the code and data
used for all the experiments are made publicly available to
foster replicability.

Il. LITERATURE REVIEW

This work tackles two streams of literature in an interdis-
ciplinary fashion: activity-based modeling for large trans-
portation case studies and Bayesian Optimization techniques.
Accordingly, this literature review is divided into two
parts. The first subsection reports current calibration tech-
niques focusing on activity-based transportation models and
behavioral parameters. This means that the wider literature
concerning the supply-side parameters is not addressed here,
being the number and the nature of the calibrated parameters
not comparable between behavioral activity-based models
and traffic assignment ones. The subsection on Bayesian
Optimization focuses instead on the current methodological
approaches, their perks and limitations, as well as their scale
and their applications.

A. CALIBRATION APPROACHES IN TRANSPORT
MODELING

The calibration of behavioral activity-based models in trans-
port has received far less attention than the calibration
of other supply-focused ABMs, while existing approaches
mainly rely on heuristics, which, in turn, is hindering the
potentialities of these tools. Still, some notable works can
be found in literature.

The work presented in [15] describes a gradient- and
simulation-based optimization procedure designed to cali-
brate 28 parameters in a utility-based nested logit system.
Similarly, [19] exploits the WSPSA algorithm to calibrate
94 behavioral parameters on the demand side, still, it does
not exploit a surrogate model and thus needs multiple com-
putationally expensive runs. Besides, the WSPSA requires
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the definition of a weight matrix, which becomes difficult
to define as the number of parameters increases. Different
SPSA techniques have been more extensively designed and
used to calibrate the aggregated demand in traffic assignment
models rather than activity-based ones, examples of such
applications are [20], [21], [22], [23], [24]. Not all works
exploit an algorithm to calibrate the behavioral parameters
in an activity-based model. In [25], for example, a trial-and-
error approach is carried out to calibrate against the recorded
modal share and departure times. The model is built for the
city of Barcelona through the use of Call Detail Records.
Somehow more attention has been dedicated to the calibra-
tion of the demand against supply-side parameters in ABMs.
This is probably due to the availability of tools encompassing
both dimensions and thus requiring a joint calibration. While
this approach has many advantages (e.g., wider applicability),
as it will be shown in the following the added complexity
usually requires to compromise on some aspects of the cal-
ibration. In [26], [27], an iterative black box approach is
adopted to calibrate an activity-based transport model, with
the former applied to a small network (24 zones) and the
latter calibrating only 9 behavioral parameters. Paper [28]
succeeds in calibrating 25 behavioral parameters through a
maximum-likelihood method exploiting link counts and/or
plate scanning data. In [29], [30], [31], an activity-based
model and a traffic assignment model are jointly calibrated.
Papers [29], [30] calibrate both the MATSim software and
CEMDAP [32], with MATSim receiving the final calibra-
tion based on traffic counts. In [29], for example, CEMDAP
after the calibration produces a set of 5 eligible daily activ-
ity schedules but then it is up to MATSim (and the related
module CaDyTS) to score them according to how well they
reproduce the supply side measurements so that the supply
performance does not result in a change of behavioral param-
eters. Besides, the modal share is manually calibrated at the
end of the process. A similar approach for the demand is fol-
lowed in [24] while the supply is calibrated through SPSA.
A general description of the scoring system and the under-
lying behavioral models in MATSim is provided in [33],
the work also crucially highlights some of the challenges
currently related to integrating the demand and supply com-
ponents. Besides, when different calibration steps are carried
out separately for demand and supply, a complete traffic
assignment model is needed, which increases the overall cal-
ibration effort by increasing the number of factors but also
by somehow putting the two modules (activity-based and
traffic assignment) “against” each other whereas a univocal
optimization criterion for the two modules is not defined,
with convergence being decided by supply-side metrics. This
issue is tackled in [34], where MATSim is integrated with
a multinomial discrete choice model considering 12 behav-
ioral parameters. Results show that the choice of behavioral
parameters becomes a key element in the simulation pipeline,
without which it is not possible to reach a good integration
with an ABM while avoiding convergence issues. To address
this limitation, [35] decouples the traffic assignment from the
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behavioral components; however, the resulting agents’ fea-
tures and the related behavioral constants in a logit model
remain not calibrated, which limits the transferability or even
the usability of the calibrated model. Overall, MATSim appli-
cations, while generally more widespread, are more limited
in their ability to predict new technologies and disruptive sce-
narios while, also, relying on a smaller number of parameters
to be calibrated [36]. Based on the above, it is possible to
state the following limitations concerning the state-of-the-art:

1) Existing literature tackling the calibration of behavioral
parameters for activity-based models on large-scale
scenarios is scarce and only a handful of works try to
solve the problem without recurring to heuristics.

2) Many calibration methods aim to reproduce outputs
of the activity-based models matching the desired
supply-side measurements, rather than to calibrate the
underlying behavioral parameters. Thus, the calibration
of the supply overrules the calibration of the demand.

3) Even the works trying to formalize a rigorous method-
ology do not consider more than a few dozen
parameters (the maximum number being 98 in [19]).

B. BAYESIAN OPTIMIZATION

BO finds applications in various scientific and indus-
trial domains, e.g., machine learning for hyperparameter
optimization [37], [38], modeling of population genetics [39],
spreading of pathogens [40], atomic structure of materi-
als [41], [42], as well as cosmology [43], and establishes
as a state-of-the-art method in lower-dimensional prob-
lems [17], [44]. However, the BO performances and its
computational efficiency decline as the dimensionality of
a problem increases [37], [45], [46], [47], which is the case
with the calibration of large-scale ABM that features a large
number of behavioral parameters to be tuned.

In state-of-the-art applications of the BO, the Gaussian
processes (GP) is usually exploited as a prior distribution
to both model the surrogate surface and to approximate the
posterior distribution of the parameters [17], [18], [48]. The
advantages of GP are tied to its probabilistic nature, thanks
to which it is possible to quantify the prediction uncertainty
by assessing the distance in mathematical spaces between the
known regions and the new samples. Such quantified uncer-
tainty allows for an efficient trade-off that guides the search
for better samples to be sampled, which helps the BO
to achieve state-of-the-art performances. However, the GP
comes with a computation bottleneck when applied to
high-dimensional problems, which in turn hinders a wider
adoption for complex parameter spaces [37], [45], [46], [47].
Therefore, the straightforward adoption of the BO method
in the calibration of activity-based models is hampered by
the large number of parameters to be tuned [15], [49].

For that purpose, various methods for dimensionality
reduction are adopted [26], [27], [50], or transforma-
tions (including partitioning) of the parameter space are
applied [51], [52], [53], [54], [55], [56], [57], but neither
solve the issue since a higher number of runs is needed in
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the former while two strong assumptions are required from
the latter (i.e., low intrinsic dimensionality and compounding
effects). References [26], [27] invest a significant amount of
effort to introduce BO in the field of transportation modeling,
but fails to do so without an expensive dimensionality reduc-
tion using a deep learning methodology, i.e., auto-encoders.
The deep learning methodology has been shown in numerous
applications to be a valuable approach in high-dimensional
spaces, but it is known to be data-intensive [58], which in
the context of transportation activity-based models means
a greater number of executions of the models. Outside the
activity-based applications, deep learning has nevertheless
been applied in the transportation domain, e.g., to estimate
the intersection’s queue length and dissipation time [59] or
to enhance prediction fairness in spatial-temporal demand
forecasting of ride-hailing services [60].

Approaches based on transforming the parameter space
and decomposing the optimization problem into sub-
problems — each mapped to a lower-dimensional space
— depend on space properties, among which the intrin-
sic dimensionality is the most important. In that context,
previous works explore a latent space where the func-
tion is decomposable, either by latent structures [52] or
additive structures [61], [62]. Another approach to dimen-
sionality reduction involves random projections into a latent
space [51], [54], [55], [56] or low-rank matrix approxi-
mation [63]. Alternatively, a cylindrical transformation of
the parameter space [53] and sequential optimization along
with a subset of dimensions [64] are adopted in recent
studies. However, the authors of these studies report the
performance on benchmark optimization functions, showing
that the methods perform well on problems with low intrin-
sic dimensionality, but fail to depart significantly from the
initial points in optimization problems with high intrinsic
dimensionality.

Without prior knowledge of the intrinsic dimensionality
of the large-scale activity-based models and the correspond-
ing calibration process, we consider a variation of the
BO method that uses a dimensionality-wise more robust
method to approximate the posterior of the parameters, i.e.,
Random forests [65]. Previously, the method of Random
forests has been used in a study with low dimensional
optimization problems, featuring discrete mathematical
spaces [66].

lll. METHODOLOGY

A. ACTIVITY-BASED TRANSPORT MODELS

An activity-based ABM aims at describing the behavior of
potentially millions of agents, each representing a traveler
(and/or a vehicle), each one capable of multiple choices
through the simulation horizon. The decision process for
each agent is typically modeled via a nested tree, where
each node represents a choice, which is in turn defined via
utility maximization, solved via evaluating multiple (utility)
functions, each described by several parameters and, cru-
cially, the corresponding weights. Utility functions are of
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the form
Uchuice :f(V, Echoice), (1)

where V is a set of (known) parameters characterizing the
agent, which could include, e.g., the socioeconomic features
of each agent (defined while creating the synthetic popula-
tion), and B choice are the weights defining how much these
parameters concur to the utility function. The hundreds of
possible combinations among weights result in a problem
for which it is impossible to calculate an analytical solu-
tion, while the stochastic nature of the utility-maximizing
theory makes employing a numerical solution a necessity. In
the following, all weights B cheice present in all utility func-
tions defined in a decision tree are grouped in @, while the
observations are measurements resulting from the emergent
behavior of the agents.

B. THE CONCEPTUAL DESIGN

BO [17], [18] as a methodology exploits sequential sampling
design and a surrogate model over a surrogate (response) sur-
face approximating a likelihood function. By doing so, BO
seeks the global optima. The parameter space and the dis-
crepancy between observations and simulation results both
characterize the surrogate surface. The approach is iterative
and each iteration produces new parameters’ values (i.e.,
samples) maximizing the expected utility. Said utility cor-
responds to a capacity of the new parameters’ values to
minimize the optimizing quantity - cost and is estimated
with an acquisition function, which balances the trade-off
between exploration and exploitation of the search space
and efficiently guides towards the global optima (Fig. 1).
An iteration starts with fitting a surrogate function (data-
driven model) based on previous evidence and simulations.
Then, the BO generates a large number of candidate samples
(parameters’ values) that are attributed with a utility by using
the surrogate function and an acquisition function. Finally,
the candidate with the highest utility, i.e., the greatest esti-
mated capacity to reduce the optimization cost, is selected
and used in a run of a simulation model (e.g., activity-based
ABM), a result of which updates the evidence for the next
iterations.

Formally, a simulation model is a generative stochastic
process and its calibration corresponds to a statistical infer-
ence of a finite number of parameters 6 € R? based on a
set of observations Y,:

po1y,) = LI PO, @

p(¥,)

where p(0) is the prior belief on the distribution of parameter
values and p(Y,|@) is the likelihood of the observations, given
the parameters, resulting from a known function £(#). L(9)
is used instead of L£(#) because the analytical form of the
latter is not known a priori. L(@) is approximated over a set
of N samples - N (6). As the marginal distribution p(¥,)
does not depend on 8, we omit it from the formulation,
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FIGURE 1. cConceptual design of the iterative Bayesian optimization method with Random Forest as a surrogate model and Expected Impi t (El) as an acquisition
function.
which becomes: Given a dataset, each regression tree outputs a prediction of
the target for the specific region it is exploring within the
p@1Y,) o« L(©) - p(0), (3)

L(#) is reconstructed as the number of samples increases:

Jim IN®) = L®). 4)

C. THE SURROGATE FUNCTION AND THE SAMPLING
DESIGN

The approximation (E,N (0)) of the likelihood function (L(8))
is the formal task we address with the BO methodol-
ogy, using a surrogate function and the sequential sampling
design [18]. To model the surrogate function, we use a
regressor such as Random forests (RF) [65], which is used to
estimate the acquisition utility of newly sampled parameter
values through the Expected Improvement (EI) [77]:

EI(9| i, o, f*) =0O)[zd@) + ¢ @)] (5)
_f—u0)
= —0’(9) , (6)

where o(f) and w(0) are the standard deviation and the
mean of the inferred posterior distribution, f* is the active
optima discovered in the previous iterations, and ® and ¢
are probability density and cumulative distribution function
in terms of the standard normal distribution, respectively.
The expected improvement EI(8) = 0 if o(8) = 0. Eq. (5)
represents the exploration-exploitation trade-off that favors
higher uncertainties that are close to the latest discovered
optimal region(s).

The RF [65] is an ensemble method composed of C regres-
sion trees, which follow the decision tree concept, with a
structure of decision binary nodes built iteratively in a top-
down fashion. Each regression tree is built from random
subsets of the features and from bootstrap samples. Trees
are conceived to explore a portion of the parameter space.
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search space. The prediction of the ensemble is instead an
average of the outcomes of all C tree base predictors:

C
RFOIO.1) ==Y w=T00;¥), ()

i=1

where C is the number of tree predictors, ®; and Y; are
training datasets of i-th regression tree T; that provides a
prediction t;, while ® and Y are global training dataset
and the corresponding label set, respectively. RF has been
chosen for its robustness and scalability when compared to
other machine learning models. Namely, RF performs well
in cases of high-dimensional problems with limited dataset
sizes, which is not the case with more advanced techniques
like neural networks and deep learning [49], [65]. The lat-
ter requires much more data in order to generalize over a
given problem domain. Additionally, RF de-prioritizes cer-
tain sections of the search space by handling conditional
variables [17]. The outcome of the RF method can be
strongly influenced by a limited number of hyper-parameters,
usually, the ones undergoing a tuning process are: the num-
ber of tree components C, the minimum number of samples
in a terminating node that controls the structure growth and
over-fitting settings of the individual tree components, and
the number of features to design a sub-space or partition.
Additionally, the RF method is characterized by very high
robustness over high-dimensional data, which results in a
limited bias of the overall predictions due to the maximizing
of the variance between predictors [67].

Still, RF models as surrogates for BO have the fol-
lowing limits: (a) they do not frame uncertainties while
quantifying the predictions due to their non-probabilistic
output and (b) the values outside the observed space are
not predicted. Therefore, the efficiency of the probabilistic
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acquisition function (EI) is greatly affected by the RF during
the acquisition of new promising samples [17], [66].

D. THE IMPROVED RANDOM FOREST

In order to comply with the expected probabilistic output,
the RF method is adapted so that it approximates a paramet-
ric (normal) probability distribution of the evaluated input
parameter values (8), through empirically derived mean (1)
and standard deviation (op):

[
1
ug =RF@©10,Y) = = En; ®)

gy =

(€))

where 7; corresponds to a prediction of a single decision
tree model in the RF, as described in Eq. (7).

As we adapt the RF into a compatible method for modeling
the surrogate function that enables estimation of the acqui-
sition utility for each new sampled parameter value, a
component of BO, yet to be formalized in our calibra-
tion framework, is the optimization of the acquisition utility
at each iteration of the iterative optimization process. The
optimization of the acquisition utility corresponds to finding
a set of parameters values (9*) maximizing the utility:

0" = arg;naxEI(pg,ag,EJ;m), (10)

where ngv is the optimal set of parameter values obtained
in previous iterations of the process.

Finding the set of parameters’ values that maximizes
the acquisition utility (estimated to perform best) can
be performed in various ways, including Random search,
Thompson sampling, gradient-based, or population-based
(evolutionary) optimization methods [17], [18], [38]. In this
study, we examined the performances of the Random search,
gradient-based, and population-based methods, observing
that the gradient-based outperforms the rest. Therefore,
for our case study, we adopt the gradient-based Limited-
memory Broyden—Fletcher—Goldfarb—Shanno algorithm with
box constraints (L-BFGS-B) [68], [69]. L-BFGS-B is
an efficient optimization method for unconstrained and
bounded-constrained optimization problems. Its efficiency
is reflected through limited-memory approximation of the
inverse Hessian matrix and gradient information, which are
improved iteratively.

E. THE SELECTION OF THE BEST-PERFORMING
SIMULATION

The stochastic nature of the proposed method requires that
the optimization is performed multiple times, by which
the possibility of finding a locally optimal solution is
eliminated. However, depending on the complexity of the
high-dimensional problem at a glance and the definition
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FIGURE 2. Spatial distributions of residents and grid corresponding to the 616
zones conslidered In the modeling.

of the optimization objectives (cost), it may be not fea-
sible to completely avoid locally optimal regions of the
problem space, as there may be more of them. Therefore,
ex-post Pareto analyses of simulated candidates according
to a broader set of criteria is recommended. These shall
represent some important benchmarks or margins of the con-
sidered case study and have to be defined accordingly. They
differ from the optimization objectives (performance mea-
sure) that are exploited to guide the algorithm through the
learning process, and they are used to filter out non-robust
simulations in accordance with the Pareto objectives.

Pareto analysis [70] is a quantitative method that seeks to
identify and prioritize the options that contribute most signif-
icantly to a particular outcome. It is based on the observation
that a small subset of the options (located at the Pareto front)
often accounts for a majority of the observed effects and
dominates the rest of the options in terms of a quantifiable
objective.

IV. CASE STUDY

The proposed algorithm is tested by modeling Tallinn (the
capital city of Estonia). The reference year is 2015 as the
mobility survey used both for the generation of the database
population and for the calibration was carried out in the
said year (Fig. 2). SimMobility Preday [71] is employed as
the activity-based model, which takes as input a Postgres
database containing the following features:

1) A population of ~400.000 synthetic individuals,
matching the city’s whole population, while each indi-
vidual is characterized by socioeconomic features such
as age, gender, income, workplace, etc.

2) A spatial map of 616 zones, each 500x500 meters wide
(Fig. 2).

3) Skim tables detailing the costs of different travel
modes, including waiting time, time on board, etc.,
among the different zones.

Four transport modes are considered: Public Transport,

Private Vehicles, Walking, and Others (e.g., motorcycles).
The spatial resolution has been set to 500 m to realistically
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Stap Time of Day

FIGURE 3. Nested logit in SimMobility - levels and cholces included in the
calibration [75].

capture the Walking mode of transport, while the skim matrix
for public transport has been extracted through Open Trip
Planner [72]. More details about the synthetic population,
its generation, and assignment, may be found in [73].

As detailed in [71], SimMobility is an agent-based, fully
econometric, activity-based demand model. Its structure is
fully modular and allows us to focus independently on the
demand side of the tool, called Preday. A run of SimMobility
Preday results in a Daily Activity Schedule, a dataset includ-
ing one entry item for each leg of each tour. An extract
is provided in Table 1 for a randomly chosen individual
(ID 107).

The main strength of SimMobility Preday lies in the
behavioral models used, i.e., a series of nested logit functions
allowing to simulate the travel demand based on an estab-
lished methodology [9], [71], [74]. This feature of the model
allows simulating future scenarios for which the ground data
(e.g., traffic counts) are not yet available, which is done via
computing utilities at different levels (binary choice to leave
the residence, type and number of tours, modes and des-
tinations, time of the day, and stops). These choices are
interrelated, an aspect that is accounted for through the
computation of logsums (defined in [9] as the log of the
denominator of a logit choice probability).

A representation of all the levels of the choice tree is
provided in Figure 3. Each level is characterized by its own
utility functions and a specific set of B s. Figure 3 shows the
model components and process flow of the Preday model.
The overall system can be viewed as a hierarchical (or
nested) series of choice models. The solid arrows indicate
that models from lower levels are conditioned on decisions
made with models from higher levels. There are three dif-
ferent hierarchies in the Preday model: day pattern level,
tour level, and intermediate stop level. Each level consists
of several models. The first of the three levels (day pattern)
characterizes the choice of each agent in participating in
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one of the available activities (i.e., education, work, shops,
or other). It results in a list of tours and intermediate stop
availability for the agents. The tour level on the other hand
includes the choices made within a tour, such as the mode
choice, the destination, eventual sub-tours, etc. Finally, the
intermediate stop level includes two types of discrete choices,
mode/destination (for the intermediate stop), and time of day.
Preday consists of 22 behavioral models overall, which are
described in detail in the Supplementary Informationl and
in [19].

Besides, while the choice process is carried out individu-
ally for each agent, SimMobility Preday considers household
data through B s which are dedicated to framing the
impacts of the household structure on the choices [71].
Examples are B malenone.q, Which weights the number
of education trips of a single man with no children or
B femaleage515.4,, weighting the number of education trips
in a family with a female child (5 to 15 years old). The
structure of SimMobility [71] guarantees that when drafting
the activity schedule, these interactions are accounted for
through different probability distributions, allowing to frame
trips to school in which an adult on their way to work drives
their child to school first. It does so by extracting the house-
hold structure from the population database and then using
the relevant B s (e.g., f malenone and 8 femaleage515)
at each level to define how many chained trips are carried
out. It should be explicitly stated, though, that SimMobility
Preday considers household features through probabilities
and not constraints, so it does not completely frame intra-
household constraints. For this specific case study, a synthetic
population was designed in a previous work [73], in which
relevant information (e.g., the number of private vehicles in
a household, age and gender distribution) was used to build
a realistic database for SimMobility. Finally, it should be
highlighted how a specific structure for the nested logit is
not by itself a fundamental requirement of the developed
methodology, so the method may be easily transferable to
similar activity-based models (e.g., CT-RAMP [76]). Still, to
guarantee this transferability, further work should be carried
out by applying the proposed methodology to other tools, to
ensure the lack of unforeseen barriers.

In the following, the formulation of utility for the binary
choice to perform an activity or not (top level of the nested
logit tree) and the mode choice (bottom level of the nested
logit tree) are reported (11), (12) to highlight the high num-
ber of behavioral parameters involved (and, crucially, to be
calibrated).

Ubinary = f (Vcase_study, E female_travel® B age_category’

E children_in_household”’ E income’ E missing_income’

B B

— work_at_home’ == number_of_cars_in_household’

B

E dptour_logsum” = emplo)fment_status)

(1

1. https://github.com/smart-fm/simmobility-prod/wiki/Mid-Term-
Parameters
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TABLE 1. The daily activity schedule for individual 107.

|| person id  tour no  tourType stop mo stop type stop location stop mode primary stop arrival time departure time prev stop location prev stop departure time ||
107-1 1 Education 1 Education 166 BusTravel True 7.25 13.75 569 725
107-1 1 Education 2 Home 569 BusTravel False 13.75 15.75 166 13.75
107-1 2 Work 1 Work 415 BusTravel True 15.75 18.25 569 15.75
107-1 2 Work 2 Home 569 BusTravel False 18.25 19.25 415 18.25
107-1 3 Shop 1 Shop 496 ‘Walk True 19.75 2325 569 19.25
107-1 3 Shop 2 Home 569 ‘Walk False 23.95 26.75 496 2325

Note that each variable in (11) is a vector of 8 s, including
as many behavioral variables as categories considered. For
example, B for age category is a vector with 5 B s, since
5 are the_age categories considered. Overall, binary alone
includes 25 B s to be calibrated.

On the other side of the tree (Mode/Destination choice),
the utility related to the bus mode is computed as:

B

B

Ubus = f(vcase_smdys E cons_bus’ E tt’ E walk_time’

B B B

L cost_over_income” Z= central_district” =

B B

B

—agecat_nu m_of_ca:s)

wait_time’ L= cost’

transfer’

female_num_of_cars’ == number_of_cars_in_hh’

(12)

Also in this case, the above is a simplified version for
presentation purposes and the number of B s required to
compute Upys is 18. When all the modes and levels of the
nested logit tree are considered (Figure 3), 477 is the total
number of behavioral parameters (8 s) characterizing the
calibration problem. The whole set of 8 s represents the 6
parameters described in Section II1, they constitute the search
space explored by the algorithm. The full list of B8 s is
publicly available.?

The calibration is carried out against the following
baseline data:

1) OD matrix at subdistrict level. Tallinn has 82 subdis-
tricts and the movements across them at each time of
the day are extracted and upscaled from a mobility
survey obtained from Taltech University.

Statistical margins concerning workplace distributions
and totals at the cell level (500x500m). The method-
ology behind these is detailed in [73]. A similar
method, albeit simplified, was applied for the margins
concerning school institutions.

3) Modal share, as detailed in [?].

These represent the observations Y, introduced in (2) and
the achieved match is detailed in the calibration and results
section.

2)

V. CALIBRATION AND RESULTS
A. THE OBJECTIVE FUNCTION
The design of the calibration process with the proposed
methodology features a) a custom objective function, b) an
iteration process for the calibration runs, and c) the definition

2. https://github.com/Angelo3452/Tallinn-Synthetic-Population/tree/
main/SimMobility %20MT%20Database/Postgres %20database
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of hyperparameters for both optimization methods, i.e., the
global objective and the inner acquisition function.
Formally, the calibration of a simulation model is an
optimization task that aims to minimize the discrepancy
between a set of simulated and observed outputs. The dis-
crepancy is measured via an objective function and, within
this study, we compile a custom function that comprises three
components: (i) Origin-Destination (OD) matrix; (ii) share
of transportation modes; and (iii) coverage of the employed
individuals with scheduled work tours. All three compo-
nents are adjusted to result in similar ranges and as such
share equal contributions to the final objective function:

€global = €od * € MM * €workers (13)
1 1 n n ~ 2
€d =105 |~ > Z(od,;; - od,-j) (14)
i=1 j=1
-2
em=1+ Z(M,‘-M,’) (15)
ieM

M = {public, car, walk, other} (16)
Eworkers = 2 — wassignf‘wtotals (17)

where n is the number of districts covered within the OD
matrix, od;; and oﬁ,j are numbers of observed and simulated
tour legs for a given element of the OD matrix, respec-
tively, where i is the origin and j is the destination. M;
and M; are shares of observed and simulated transportation
modes, respectively, whereby, for both, holds > ieM M;=1
and ) ;g M; = 1. Regarding the workers component in
Eq. (17) (i.e., the ratio between the number of assigned work-
ers in the daily activity schedule and the number of workers
within the whole dataset), Wassign corresponds to the number
of employed individuals with scheduled at least one work-
based tour, and wy, is the total number of employed adults
in the population. The choice of the elements to include in
the discrepancy function was guided by the calibration objec-
tives. The function guides the algorithm towards a solution
with a small discrepancy, which means that a modeler may
want to prioritize the error elements that are considered to
be most important to their model/analysis. In this work, the
first two items in Equation (17) were chosen because of
the importance of the represented measure to the calibra-
tion quality, while the last item was chosen after noticing
a higher than acceptable error in the number of work trips,
also in sets of simulations converging to small errors. The
authors’ hypothesis is that this bias arose from a conflict
between the general OD and the specific spatial distribution
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of work-related trips. Without an explicit mention in the dis-
crepancy function, the developed algorithm was fulfilling its
objective in the most efficient way but failed to properly
frame the work category of trips. Also in other case studies,
the discrepancy function should be monitored in the initial
runs and adapted accordingly to properly frame all the impor-
tant dimensions of the problem at hand. Finally, it should be
highlighted that the presented methodology would still be
applicable in cases where a modeler may prefer prioritizing
other measurements to assess the calibration performance
(e.g., the spatial distribution of leisure trips rather than work
ones).

B. THE ITERATIVE ALGORITHM

To consider the stochasticity of the Bayesian optimization
and produce stable results, the calibration process is repeated
multiple times with the initial dataset (five in our exper-
iments, each with a different random seed and random
initialization of the parameters). The starting values of
the behavioral parameters have been set within a realistic
range but this preadjustment does not amount to a pre-
calibration, as the results from the first simulation reported
in Figs. 4 and 5 show. The reported results are summa-
rized across all runs, with the selected optimal solution (run
no. 2) outperforming all other runs, where the difference in
the results is due to the varying random seeds and initial
parameters across the different runs.

Each independent run is performed with the same hyper-
parameters for the optimization methods. A summary of all
hyperparameters used in this study is presented in Table 2.
The selection of the hyperparameter values is done via trial-
and-error and their transferability depends on the size of
the modeled area. This, in particular, is important for the
termination conditions for both Bayesian optimization and
L-BFGS-B gradient-based optimization methods, where the
convergence is affected by the size and the underlying com-
plexity of the modeled domain, i.e., urban area. However, the
given values are good starting point for further adjustment.
The hyperparameters that reflect the choices over particular
methods for initial sampling and acquisition optimization are
transferable as-is to new studies.

In Fig. 4, the progression of the performance measure for
5 sets of iterations is reported.

In order to investigate broader aspects of the solutions
and confirm their robustness, we examine the Pareto front
of all potential solutions through six additional criteria: i) the
modal share (M; — J\;[,- < 10%), the spatial distribution of
ii) work and iii) education trips, iv) the absolute number of
workers, the v) total legs, and vi) the spatially distributed
legs (note that the last two items are directly derived from
the OD matrix). Hence, the defined cost function guides the
algorithm in its optimization process, but the final results
are analyzed and a selection is made against a broader set
of criteria. The post analysis confirms that run number 2
outperforms the others after slightly more than 150 iterations
and reaches a performance value €globa = 1.06.
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FIGURE 5. Comparison between the starting point (1) and the best simulation In
run 2 (182) — benchmarks against the baseline and residual error; the y-axis
represents the percentage for worker_coverage and mode distribution, and the
number of legs for all the other benchmarks.

C. CALIBRATION AGAINST THE BASELINE

The results reported in the following are the ones aris-
ing from run 2. The overall improvement is evident in
Figs. 4 and 5. Fig. 5 shows the best-performing simulation
in run 2, namely 182. It is compared with the initial sim-
ulation which results instead in O satisfactory benchmarks
and high errors across all the measurements. The second and
third benchmarks (legs_by_rType and educational spatial, not
perfectly met in 182) reflect instead absolute quantities and,
while the latter is quite small and can be considered a match,
the former will be further commented on in the following.
We would like to stress that these six criteria differ from the
metrics selected for the performance measure. In fact, while
the latter guides the algorithm and the learning process, the
former ones are exploited to filter the best simulations after
each iteration.

While Fig. 5 and Table 3 report only the error in the total
number of legs, their distribution across the 82 subdistricts
of Tallinn has also been compared against the baseline (i.e.,
the mobility survey). The algorithm is remarkably able to
reproduce correct spatial distributions as in Fig. 6.
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TABLE 2. Hyperparameters used for the algorithms utilized in this study. For the hyperparameters not included in this table, default values are used.

I Algorithm

Hyperparameter

Value(s) | |

Bayesian optimization

Termination conditions

500 iterations or 500 hours

Bayesian optimization

Initial sampling

Latin Hypercube Sampling

Bayesian optimization

Retrain surrogate model

every 5 iterations

Bayesian optimization

Acquisition optimization

L-BFGS-B [68], [69]

Random forests Number of trees 1000, 3000, 5000
L-BFGS-B Termination conditions 1000 iterations
L-BFGS-B Step sizes for approximation to gradient 0.5
Education-related stops
' di 600
Tours dltference_slss% 0%
78
75
72 . 400
7 ]
67 =
64 o
59 2
% @ 200
53
50
£ 48
D45
O 42 0
4 o 0 100 200 300 400 500
o Simulated
31
29 Work-related stops
23 .
20 300
18
15
12
]
NN 0O M OO — D00 MO0 - o M M 0D 200
Destination D
T
FIGURE 6. Difference between the number of trips for each OD pair, calculated @ 100
between the simulated ones and the total obtained instead by upscaling the mobility
survey to the whole population. The axis labels include every third district.
It should be stressed that these matrices cover a period of 0

24 hours. This means that, as in Fig. 6, the absolute error of
private vehicle trips outside the diagonal averages 15.92 vehi-
cles. If one considers that the magnitude of simulated trips
by private vehicles settles around 50,000 trips (each simu-
lation runs over 10% of the population), the match between
the two matrices is impressively close. The diagonal does
instead show a somewhat higher variance (albeit still within
a reasonable margin, an absolute average of 267.82 trips)
and all the cells appear to be underestimated in the number
of intrazonal trips. Still, intrazonal trips are commonly more
difficult to frame, so a higher error was expected.

The algorithm succeeds also in framing the tour types and
spatial distribution of work and education trips, somehow
trickier because mandatory, thus subject to stricter correspon-
dence against the benchmark. Table 3 reports a comparison
of the totals while Fig. 7 reports the spatial distributions of
school and work trips.

As can be seen, the algorithm faithfully frames both edu-
cation and totals, while slightly overestimating work tours.
The overestimation has been considered less of a problem
than an underestimation since it was considered mandatory

VOLUME 4, 2023

0 100 _ 200 300
Simulated

FIGURE 7. Comparison of attendances at anchor points for education-related and
work-related reasons. x-axis: number of irips to the anchor point in the calibrated
simulation; y-axis: baseline number of trips to the anchor point from the baseline.

that all the work trips would be framed (every employed
person goes to the workplace). An overestimation of work
trips does instead mistake only the aim of a tour, this is
probably caused by the “emphasis” that the performance
measure puts on simulating all the employees going to their
workplace.

The distribution of work and education destinations mod-
eled has been checked against the workplaces and education
anchor points previously assigned to each eligible individ-
ual in the synthetic population [73]. Fig. 7 shows a good
match between the two, which implies that the calibrated
utility parameters do indeed result in the right number of
trips and spatial distribution for these two categories. Modal
share also reaches a reasonable level of precision against the
share recorded in [77], as shown in Fig. 8.
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TABLE 3. Numerical comparison between the best-performing simulation 182 in run 2 and the baseline.

H Variable Category  Simulated Baseline Difference  Percentage Error H
legs [abs]  Education 19259 19563 =304 1.55
legs [abs] Total 117093 112481 4612 4.10
legs [abs] Work 44521 36788 7733 21.02
mode [%] car 0.420 0.488 -0.069 -
mode [%] other 0.014 0.012 0.003 -
mode [%] PT 0.366 0.256 0.110 -
mode [%] walk 0.2 0.239 -0.039 -

Cavoll C. (2017)

® Private vehicle ® Public transport m Walking = Other

Calibrated results

a

® Private vehicle ® Public transport ®m Walking » Other

FIGURE 8. Baseline modal share from [77] (top) and modal share arising from the
calibrated simulation (bottom).
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FIGURE 9. Temporal distribution of tours throughout the day for the
best-performing simulation 182 in run 2.

Another important result of the calibration is the time
distribution of the stops in each tour throughout the day.
This is reported in Fig. 9. As mentioned, the case study
has 2015 as the reference year (ante COVID-19 pandemic).
This means that the usual travel pattern showing two peaks
(one in the morning and one in the afternoon) was to be
expected and is coherent with the case study. Besides, the
model clearly captures the different dynamics such as an
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education peak in the early afternoon or a spike in leisure
trips in the evening (after work).

While most of the tours do fall in a realistic pattern, the
calibrated behavioral parameters result in a small percentage
of tours (4% percent) allocated in the last available time slot.
This is bound to how SimMobility Preday models the time
of the day, allocating at the very end all the tours that could
not be fitted through the day.

To assess the effectiveness of the proposed method, the
only possible comparison is against an achieved manual cali-
bration of the same case study since, as shown in Section II,
no other method can currently be adapted to account for
such a large number of parameters. Nevertheless, the aver-
age absolute error in the manual calibration is equal to 8.5%
across non-null OD pairs outside the diagonal (against a
6.7% for the BO method). Yet, the overall number of trips
falls well short of the baseline one with only 984108 trips
simulated (and thus an error of 12% against the 4% achieved
through BO). It appears how, during the manual calibration,
the OD matrix distribution was prioritized to the detriment
of the total trips, as not all the metrics could be satisfied
at once. Most importantly, the manual calibration did not
address such a large number of parameters, considering not
more than 25 ~ 30 8 s. This means that the manual calibra-
tion fails to capture all the behavioral factors contributing to
each choice (a subset of which is reported in Fig. 10 for the
BO). The Daily Activity Schedule resulting from the manual
calibration has been uploaded in the available repositoryz.
The comparison has been done in % terms, as the manual
calibration was carried out on 33% of the population rather
than 10%.

D. ANALYSIS OF THE CALIBRATED PARAMETERS

The set of results provided in this section and their compar-
ison with baseline values should clarify how the algorithm
reaches an acceptable solution in a completely automated
way. It is important to stress how this calibration process
differs from the traditional one for SimMobility Preday,
which is carried out manually by tuning the various parame-
ters,’ improving its results. Besides, in the literature review
reported above, it was highlighted how other, more complex
methods, do not encompass as many 8 s as the proposed

3. https://github.com/smart-fm/simmobility-prod/wiki/Mid-term-
calibration
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FIGURE 10. Comparison of the parameters — starting (red) and final (green) values — In the logit branch modeling the mode choice for trips to school or other educational

Institutions.

algorithm. Fig. 10 provides a snapshot of the behavioral
parameters and their original and final values for one level
of the nested logit tree. For the complete list of B s, please
refer to the publicly available repositoryz. One fundamental
aspect should be highlighted: the algorithm allows to expand
the set of parameters that are calibrated, as it appears in the
tme branch of the logit tree (the branch addressing modal
choice for education) plot in Fig. 10, where many parame-
ters have non-null values only for the calibrated results. This
is because the starting values (manually defined) could not
encompass such a large set of behavioral parameters that
were then set to 0.

VI. DISCUSSION AND CONCLUSION
The paper presented a new algorithm to calibrate a large
number of parameters by exploiting a surrogate model and
BO techniques, applied to a real-life case study to prove
the effectiveness of the proposed method in calibrating hun-
dreds of behavioral parameters for an activity-based model.
The result shows a satisfactory match between the modeled
outputs and the baseline, built from an available mobility
survey and aggregate data. By calibrating the model through
the presented algorithm, it was possible to tune a wider set of
behavioral parameters than it would have been manually or
through heuristics. As shown in the literature review, no other
work succeeded in calibrating as many as 477 parameters,
although avoiding doing so would strongly reduce the effec-
tiveness of a nested logit model detailed enough to consider
different socio-demographic features. The algorithm searches
for the best-performing solution by perturbing all 477 behav-
ioral parameters (8 s through the paper). This is a task that
could hardly be performed by hand.

By automating the process and exploiting a surrogate
model, the algorithm bypasses the need to set up and run
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the activity-based model to test each plausible combination
of parameters. The proposed approach requires instead one
run of SimMobility at each iteration, followed by multiple
runs of the surrogate model testing the candidate combina-
tions of parameters. Running one iteration of SimMobility
and surrogate model for all the candidate combinations
took approximately 20-30 min on a Triton high-performance
computing cluster part of the Finnish Grid and Cloud
Infrastructure.* The whole set of 500 iterations lasted around
6 days and was run in parallel for the 5 runs reported in
Figure 4. The proposed algorithm may be used in other
scenarios and case studies, improving the feasibility of
large-scale activity-based modeling rooted in behavioral sci-
ence, thus fostering the number of similar studies/tools. The
database, software, and the resulting behavioral parameters
are available as open-source?. Furthermore, the applicability
of the proposed algorithm is not limited to activity-based
modeling and transportation problems, greatly increasing its
applicability.

Finally, it is still worth noting that the study has some lim-
itations that may be addressed in future research directions.
Since the calibration has been carried out against aggregate
benchmarks (e.g., the modal share of the whole popula-
tion), future developments may strive to apply the calibration
algorithm to a more disaggregate set of data (calibrating,
for example, modal share for the type of tour or type of
individual) reducing local discrepancies in the modal share.
Moreover, the empirically quantified uncertainty, i.e., stan-
dard deviation, of the Random forests base predictions tends
to collapse to O in the regions of the space that are distant
from the observed points. This implies similar predictions by
all base models and hence inaccurately estimated uncertainty.

4. https://scicomp.aalto.fi/triton/overview/
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Such phenomena may exhibit greater visibility at the initial
stage of the BO, when the space is very scarcely sampled,
thus future works may allow limiting the exploration to the
distant regions of the parameter space.
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