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Abstract: Detailed modeling of floodplain flows and associated processes requires data on 

mixed, heterogeneous vegetation at river reach scale, though the collection of vegetation 

data is typically limited in resolution or lack spatial information. This study investigates 

physically-based characterization of mixed floodplain vegetation by means of terrestrial 

laser scanning (TLS). The work aimed at developing an approach for deriving the 

characteristic reference areas of herbaceous and foliated woody vegetation, and estimating 

the vertical distribution of woody vegetation. Detailed experimental data on vegetation 

properties were gathered both in a floodplain site for herbaceous vegetation, and under 

laboratory conditions for 2–3 m tall trees. The total plant area (Atot) of woody vegetation 

correlated linearly with the TLS-based voxel count, whereas the Atot of herbaceous 

vegetation showed a linear correlation with TLS-based vegetation mean height. For woody 

vegetation, 1 cm voxel size was found suitable for estimating both the Atot and its vertical 

distribution. A new concept was proposed for deriving Atot for larger areas from the point 

cloud attributes of small sub-areas. The results indicated that the relationships between the 

TLS attributes and Atot of the sub-areas can be derived either by mm resolution TLS or by 

manual vegetation sampling. 
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1. Introduction 

Vegetation influences flow of water in rivers and floodplains with implications on many physical, 

chemical, and biological processes (e.g., [1,2]). In the context of flood flow analyses, vegetation is a 

critical factor in determining hydraulic resistance and water levels [3–5]. Generally, flow-vegetation 

interactions affect sediment and solute transport, channel morphology, and habitat quality. In 

environmentally sensitive engineering practices, vegetation is used for riverbank stabilization, increasing 

biodiversity, and forming riparian buffer zones, where the monitoring of vegetation structure and 

diversity is essential for improving future practices [6]. For the monitoring and modeling of riverine 

environments and floodplain flows, vegetation characteristics describing the structure and distribution 

of vegetation are needed. Physically-based parameterization of complex natural vegetation is essential 

in developing reliable hydro-environmental models [3]. 

Conventional hydraulic modeling applications are typically based on calibrated values of resistance 

coefficients such as Manning’s n or Darcy–Weisbach f, or on values from similar reference sites, e.g., [1]. 

Many models simplify natural vegetation to cylindrical elements (see [3]). For such cylinders, the drag 

force (F) resulting from viscous and pressure drag can be parameterized by 

21
2 D CF C A U= ρ

 
(1)

where, ρ = fluid density; CD = drag coefficient; AC = characteristic plant area; and U = reference 

velocity. AC is often defined as the frontal projected area AP (bl, where b = width and l = height), and 

the CD depends on the Reynolds number. In estimating resistance coefficients and water levels, 

vegetation is often assumed to be linearly distributed over the height [3]. For complex shaped natural 

flexible vegetation, the approximations derived for cylinders are inadequate, as plants reconfigure in a 

flow (i.e., change their shape due to streamlining and bending). 

Modern research recommends the use of leaf and stem (including branches) areas as characteristic 

reference area properties for flow resistance estimations [7–9]. Furthermore, the characteristic plant 

area over height needs to be correctly estimated to account for the impact of the vertical vegetation 

structure on the flow resistance for different stages of submersion [10]. To diminish calibration, recent 

studies on modeling vegetated flows have focused on physically-based parameterization of  

woody [7,9,11,12] and aquatic [13–16] vegetation. The area occupied by vegetation plays a key role in 

the estimates, and various area-based parameterizations are presented for different types of vegetation: 

the leaf area index (LAI) [9,17,18], the total area of the trees (Atot) [11], the cross-sectional blockage 

factor [13,15], and the frontal area per unit volume (AC/V) [19]. 

Conventional ground-based monitoring of vegetation characteristics is time-demanding and 

laborious. Remote sensing methods exist to derive floodplain hydraulic roughness from satellites 

(digital and radar imagery) or from airborne platforms (LiDAR and orto-photography) [20,21]. Laser 

scanning (LS) provides a means to derive the spatially explicit horizontal and vertical distribution of 
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vegetation characteristics applied in the flow models. LS gathers three-dimensional (3D) information 

about objects, and is widely adopted in the monitoring of built and natural environments. The 3D LS 

point clouds allow for estimating the total vegetation area in contrast to photographic analyses, which 

estimate the frontal projected area. In hydraulic analyses the total area is important, as all of the leaves 

and branches contribute to the resistance and the shaded plant parts behind the frontal area should also 

be accounted for [9]. Moreover, photographic analyses overestimate the portion of vegetation closer to 

the camera due to the central projection on the image [22]. 

LS is employed in terrestrial (TLS), airborne (ALS) and mobile (MLS) platforms. In MLS the 

scanner can be mounted on a car, boat or backpack [23]. The resolution and accuracy of LS 

measurements depend on the scanner and its distance to the object, and the platform. Large areas are 

often surveyed with ALS or MLS, whereas TLS is commonly applied in small-scale analyses in 

estimating riverbed morphology, roughness, and river bank retreat with as high as grain-scale 

accuracy [24–28] and in detecting centimeter-resolution bathymetry in gravel bed rivers in clear and 

shallow waters [29]. To reduce occlusion and to cover larger areas, TLS point clouds are produced 

from multiple sub-scans [30]. The occlusion effects can be decreased further by combining 

measurements conducted from different platforms and by combining them with TLS from multiple 

scan stations [20,23,31,32]. 

TLS has been proved to be a suitable tool for the estimation of vegetation density from the number 

of points passing through a 3D voxel and from the points intercepted in the voxel [22,33]. A voxel 

refers to a data point or a cell in a regularly spaced, three-dimensional grid. Leaf area can be analyzed 

from voxelization of the point clouds [34,35], and the vertical leaf area distribution by the optical laser  

point-quadrate method [36] and by the gap fraction and the Beer–Lambert law [37]. Many of the 

methods are derived for trees, and the properties of a varying floodplain cover of bushy and grassy type 

of vegetation are less explored. Such mixed low vegetation is often considered in LS applications a factor 

to be eliminated from the data as it complicates the ground detection [38], but for hydraulic modeling 

applications, detecting detailed information about the vegetation and its distribution is essential.  

It is evident that for estimating physically-based and spatially accurate vegetation characteristics for 

hydro-environmental modeling applications, methods are needed for analyzing registered multi-station 

or multi-platform point clouds. Consequently, this paper investigates the estimation of the 

characteristic reference areas of mixed floodplain vegetation by employing multi-station TLS both in 

field and laboratory conditions. Specifically, the work aimed at developing a practice-oriented approach 

(1) to derive the total plant areas of herbaceous vegetation and foliated woody vegetation; and (2) to 

estimate the vertical distribution of the total plant area of foliated woody vegetation for different levels 

of submergence. 

2. Methods 

Terrestrial laser scanning of herbaceous vegetation was conducted at a field site, where vegetation 

samples were collected from quadrates of 1 m2 in size (Section 2.1). For obtaining characteristics of 

woody vegetation (Section 2.2), TLS of trees was conducted in laboratory conditions in connection 

with an experimental investigation on hydraulic resistance of woody vegetation [11] (Section 2.2). 

Regressions between attributes of TLS-based point cloud and characteristic vegetation areas were 
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derived for woody and herbaceous vegetation (Section 2.3). These regressions were tested against 

independent field data from a TLS campaign conducted two years earlier (Section 2.3). 

2.1. Herbaceous Vegetation: TLS Campaign and Manual Vegetation Sampling in the Field 

The field investigations were conducted in a 200 m long two-stage channel having 20 m long test 

reaches of different floodplain vegetation in Sipoo in southern Finland [39]. The two-stage channel  

had a bankful width of 11 m, where the width of the floodplain was 4–6 m. The site was laser scanned in 

August 2013 (Figures 1 and 2) with Faro Focus 3D scanner (FARO Technologies, Lake Mary, FL, 

USA) which has a 305° × 360° field of view, a range up to 153 m, a scan rate up to 976,000 points/sec, 

and beam divergence of 0.19 mrad. The scanning resolution used produced a point spacing of 6 mm at a 

distance of 10 m. Three test reaches were scanned from multiple locations (from both of the banks and 

the floodplain) after which vegetation samples were collected by harvesting the vegetation from two 1 m2 

sampling quadrates of each test reach (Figures 1 and 2). To obtain ground level, the quadrates were 

scanned after the removal of vegetation, and the DTM of the sampling quadrates was obtained from 

the scan by selecting the lowest elevations in a 1 cm grid. The point clouds were registered using 

georeferenced spherical targets located at the channel banks (Figure 2). The stray points were filtered 

with a statistical outlier removal filter (SOR, [40]) in CloudCompare, which computes the mean distance 

for each point. The resulted points whose mean distances are outside an interval defined by the global 

distances mean and standard deviation are considered as outliers and removed from the data. The 

number of points used for the mean distance estimation was ten and the standard deviation multiplier 

threshold was one. 

 

Figure 1. Field campaign: Acquisition of the point clouds and manual vegetation samples. 

The vegetation cover consisted mostly of different types of grassy plants with occasional small  

(≈1 m) willows, birches and lupines amidst. The sampling quadrates were selected to represent grassy 

herbaceous vegetation (i.e., not woody or bushy vegetation). From the vegetation samples of the 

quadrates, the dry and wet mass, and volume were analyzed in laboratory. To obtain the total plant area 

(Atot), the vegetation samples were photographed against a white background. Due to the large 

sampling size, the vegetation from a sampling quadrate was divided to several small samples 

photographed individually (Figure 2c). The total plant area (Atot) was obtained from the photographs by 

counting the pixels representing vegetation. The scale was obtained from a ruler placed at the sides of 

the white background. The total plant area per ground area (Atot/AB) was obtained from the sum of the 

vegetation in the photographs divided by the ground area of the sampling quadrate (1 m2). 

A) Vegetation point cloud 
acquisition with TLS

Multiple scan stations on 
top of the banks and on 
the floodplain

Collection of vegetation 
samples from 1 m2 
quadrates

B) Manual vegetation 
sampling

C) TLS of the ground 
surface

TLS of the quadrates after 
removal of vegetation
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Figure 2. Field campaign: (a) locations of the scanner and vegetation sampling quadrates; 

(b) the TLS campaign at the reach in dry conditions; and (c) example of sampled 

vegetation photographed for the estimation of Atot. 

TLS campaigns at the field site were conducted in November 2011 and after snowmelt in May 2012 

(see [30]), and these independent datasets are used in the testing procedure of the TLS characteristic 

area analyses described below. The manual samples of the grassy test reaches were collected from the 

test reaches from 5 to 6 sampling quadrates of 12.5 × 12.5 cm2 in size by [30,39]. The vegetation 

samples were photographed against a white canvas with a scale adjusted to the side, and the Atot was 

estimated by counting the pixels representing vegetation [30]. The samples were taken from randomly 

selected quadrates to obtain test reach averaged plant area, and thus the exact sampling locations were 

not recorded. The willow samples were collected from a quadrate of 1.12 × 1.12 m2 by [39]. Three test 

reaches were used in the testing process: grasses in the upstream part of the reach (Grasses-U, mean 

height Hm = 0.5 m), grasses in the downstream part (Grasses-D, Hm = 0.4 m) and willow vegetated test 

reach with cut grasses (Willows-M, ≈1 m tall). The May 2012 data (TLS after snowmelt) was used to 

create a DTM of the ground topography for the independent test data.  

2.2. Woody Vegetation: TLS and Manual Measurements of Trees in the Laboratory 

Three foliated Alnus glutinosa (Common Alder, AG) and Salix caprea (Goat Willow, SC) 

specimens of 1.8–3.4 m in height were laser scanned in a laboratory. The specimens were taken from a 

wetland area in Espoo, southern Finland in the beginning of June when vegetation had reached full 

foliage [11]. The LS was conducted at 3–4 m distance of the object from three directions with Leica 

ScanStation C10 (Leica Geosystems AG, Heerbrugg, Switzerland). The ScanStation C10 has a  

360° × 270° field of view, a range up to 300 m, a scan rate up to 50,000 points/s, and 4 mm spot size  

(at a distance of 0–50 m). The scanning resolution was set to 5 mm at a distance of 10 m. The laser 

pulse follows a spherical geometry, and thus the resolution is higher closer to the scanner than at long 
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distances. The individual scans were co-registered in Leica’s Cyclone software using spherical targets, 

and the segments from the scan area around the tree were manually removed from the point cloud. The 

co-registration error was 0–2 mm. Prior to the analyses, the incorrect points were filtered with  

SOR [40] (see Section 2.1). Fifty points were used for the mean distance estimation and the standard 

deviation multiplier threshold was one. These stray points were caused by the point size of the laser, 

and error points appeared e.g., from the edges of leaves. 

The surface areas of the tree stems were obtained from manual measurements by recording the 

diameter and length of each of the branches and main stem in 20 cm segments assuming that the stems 

and branches were cylindrical elements (see [41]). Consequently, AS was defined as half of the circular 

stem area, which represents the area exposed to the flow attack. The leaf areas were obtained by 

scanning the leaves with a flatbed document scanner. Due to the large size of the trees, the total leaf 

area was estimated using the specific leaf area, which is the leaf area to dry mass ratio (SLA = AL/md,L, 

commonly used for estimating the leaf area index [42]). For the leaf dry mass (md,L) and leaf area 

analyses, the trees were divided into four height sections (quartiles). For the second highest section of 

a specimen, three samples were taken and the SLA was determined for each of them. To guarantee the 

accuracy of SLA, the results of the three samples were compared. The differences between the SLA of 

a sample and the average of three varied between 0% and 6%. The dry mass (md) was estimated for all 

the four height quartiles, and the SLA was used to obtain the AL of each quartile [11]. The total plant 

area of the tree (Atot) was estimated as the sum of the manually measured AL and AS.  

2.3. Characteristic Reference Areas: Regressions between TLS-Based Point Cloud Attributes and Total 

Plant Area 

The process of obtaining the TLS-based characteristic reference areas for the herbaceous and woody 

vegetation is described in Figure 3. For woody vegetation, the linear regression between the count of 

voxels and manually sampled total area was derived for the trees in laboratory. The voxel sizes of  

1 cm, 5 cm, and 10 cm were investigated. The point cloud was subsampled by a minimum distance of 

1 cm, 5 cm and 10 cm between the points and sampled to a voxel grid with the centroids of the voxels 

recorded using CloudCompare 2.5.4.1 (GPL software, EDF R&D, Telecom ParisTech, Paris, France) 

and Matlab R2014a (The MathWorks, Inc., Natick, MA, USA) (Figure 4). The vertical distribution 

(Az) of the total plant area of trees was obtained from the linear regression of Atot vs. voxel count, and 

the differences between the manual samples of the quartiles and Az,TLS were determined. For 

herbaceous vegetation a digital surface model (DSM) was created by selecting the highest elevations 

at 1 cm and 5 cm grids in ArcGIS 10.2.2 (ESRI, Redlands, CA, USA) and by interpolating the missing 

values with natural neighbor interpolation. To obtain vegetation heights, the DTM of the quadrates 

after vegetation removal was subtracted from the DSM and the mean heights were estimated from 

the resulting height map. A linear regression between the vegetation mean height and total plant area 

was derived for the 1 m2 quadrates. 
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Figure 3. The process of deriving the characteristic reference areas for herbaceous and 

woody vegetation in the field and laboratory investigations. 

 

Figure 4. A voxelized branch of a S. caprea specimen (SC3) with (a) 1 cm voxel size and 

(b) 1 mm voxel size and (c) a photograph of the branch (note slightly different angle of view). 

The independent point cloud data from November 2011 [30] were used to test the linear regressions 

(Figure 3) for three test reaches: one with planted willows of Salix viminalis (Willows-M), and two 

grassy reaches (Grasses-D and -U). The DTM for the test reaches was obtained from a scan after 

snowmelt in May 2012 [30]. The vegetation points from November 2011 were classified with Canupo 

tools ([27]). Canupo classifies point clouds according to the geometrical shape of the point cloud. The 

classifier was trained using selected sections representing grasses and ground. Consequently, a 

classifier identifying willows was created for the Willows-M. The classification accuracy [27] of the 

vegetation was estimated from the number of points truly (t)/falsely (f) classified into the vegetation 

(v)/ground (g) classes, as 
fgtv

tv
av +

= . Similarly to the quadrates, the highest elevations were selected 

for the Grasses-D and -U, and the gaps were filled with the natural neighbor interpolation. To obtain 

the voxel count for the willows of the field site, the same workflow as for the laboratory specimens 

was carried out. The centroids of the voxels were determined and a raster map was generated 

containing the number of voxels for each raster cell, which allowed for estimating the Atot/AB from the 

relationship between the total number of the voxels and Atot. 
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3. Results and Discussion 

3.1. Woody Vegetation 

In deriving the total tree areas, a linear relationship was found between the manually measured Atot 

and TLS voxel count (Nvox) (Figure 5). The linear regression intercept was constrained to zero, 

resulting in Atot = 0.000062Nvox with R2 = 0.95 (Figure 5a). The Pearson correlation between the manually 

measured Atot and Nvox was statistically significant (0.98, p < 0.01). A similar R2 value was obtained using  

5 cm (Atot = 0.0015Nvox, R2 = 0.948) and 10 cm (Atot = 0.0056Nvox, R2 = 0.914) voxels. The linear 

regressions depend on the point spacing, and thus prior to the voxel count the point clouds need to be 

subsampled (for large trees, lower resolution is adequate). 

 

Figure 5. Manually measured Atot of the A. glutinosa and S. caprea specimens as a 

function of the count of 1 cm voxels for (a) all trees and (b) the same data divided to 

vertical quartiles. 

The linear fit using 1 cm voxels is shown for four vertical quartiles, Az, divided evenly over the 

specimen height in Figure 5b. The correlation between the vertical areas, Az, and Nvox was significant 

(0.95, p < 0.01) and the R2 was similar to the linear regression of the total plant area, although 

deviation from the mean was higher (Figure 5b). The Atot vs. Nvox values of the investigated S. caprea 

(SC) and A. glutinosa (AG) specimens were close to each other, and thus the linear regression was 

estimated for the two investigated species combined in Figure 5. This was justified, as the linear 

regression for the vertical quartiles with more data points (Figure 5b) showed comparable linear 

regression for the two species. However, it is expected that the linear regressions vary for different 

species due to interspecies variability in tree morphology. 

The difference to the manual measurements in the vertical quartiles estimated with the linear 

regression was 11% (Az,TLS larger than Az,man), while absolute difference was 28% (Figure 6). The 

estimation of the height sections with the manual sampling deviated slightly from the TLS height 

estimate, which may be a source of the larger deviation from the mean for the Az than Atot in 

comparison to manual sampling (Figures 5 and 6). The vertical distribution of the total plant area 

deviated largely from a linear increase of area over height, particularly for the specimens of S. caprea 

(Figure 6b). This observation was in accordance with studies of vertical projected areas, where the 
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cumulative projected areas, AP, deviated from a linear relationship over height assumed in cylinder 

based analyses [3]. 

 

Figure 6. Cumulative vertical distribution of the total plant area from TLS and manual 

sampling for the three specimens of (a) A. glutinosa and (b) S. caprea. The open symbols 

denote the manual measurements, and the colored symbols denote the TLS measurements 

with 1 cm voxels. 

The TLS analyses showed a difference in the plant structure between the specimens of the two 

species; the plant area of S. caprea was concentrated on the upper parts of the tree (Az/Atot ≈ 0.1 at  

hz/htot = 0.4, Figure 6b) whereas the plant area of A. glutinosa was concentrated on the lower parts of 

the tree (Az/Atot ≈ 0.5 at hz/htot = 0.4, Figure 6a). The different vertical distributions of the A. glutinosa 

and S. caprea species (Figure 6) implied a need for species-dependent approximations of the reference 

areas over height. However, the vertical plant distribution depends on habitat and age of the trees [1], 

and the species specific approximations may not be adequate for sites with trees of different sizes and 

ages. TLS allows for estimating the location-based total area of the trees in contrast to analyses based 

on digital photography, which approximate the frontal projected area and are limited by the camera 

perspective, thus resulting in overestimated area for nearest features [22]. The accuracy of the total 

area is important, as all of the leaves and branches contribute to hydraulic resistance [9]. 

3.2. Herbaceous Vegetation 

For the investigated test reaches 1–3 (Figure 2) consisting of herbaceous vegetation, a linear 

regression between the mean heights from 1 cm grid and Atot/AB was derived (Figure 7). The 1 cm grid 

resolution provided more accurate linear regression (R2 = 0.79) than the 5 cm resolution with  

R2 = 0.64. The 1 cm grid reflected better the structure of the herbaceous vegetation, as the 5 cm grid 

did not fully reproduce the variable height distribution in the quadrates and exaggerated the amount of 

vegetation cover. Using the 1 cm grid size, the standard deviation of the heights varied between 11 and 

25 cm. Thus, a larger grid of 10 cm was found inadequate for deriving reliable results. The goodness of 

fit was larger for the trees in laboratory (Figure 5a) than for the herbaceous vegetation in the field site 

(Figure 7). The Pearson correlation was statistically significant for both but larger for the woody 

vegetation than for the herbaceous vegetation (0.904, p < 0.05). This was caused by the varying 

distances of the scanner to the sampling quadrates in the field site (Figure 2). 
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Figure 7. Manually determined Atot/AB as a function of TLS-based mean heights per 

ground area for the six field quadrates (see Table 1 for the vegetation characteristics). 

The manually measured Atot/AB and dry mass per ground area, (md/AB) values are shown in Table 1 

with the TLS point cloud density of the quadrates. The TLS point cloud density (Table 1) corresponds 

to the number of points in the quadrates. The field TLS dataset demonstrated a common characteristic 

of TLS measurements, where the point cloud density varies spatially (Table 1). In addition, it may be 

difficult to position the scanner high enough so that large areas are covered and occlusion is as small as 

possible. For dense point clouds and sparse vegetation cover (in this case a single tree) where the 

scanning was subjected to a small occlusion effect, voxels could be applied (Figure 5). Dense 

herbaceous vegetation considerably occludes the laser beam [30], which prevented the use of voxels. 

However, in most cases, for herbaceous vegetation using the mean height estimated from the highest 

elevations in a grid cell may be adequate, as herbaceous vegetation grows fairly uniformly over height 

in contrast to woody vegetation. The grid resolution of 1 cm is suitable for estimating plant height 

(e.g., paddy rice [43]), but grid resolutions larger than 1 cm may be sufficient for homogenously 

growing herbaceous vegetation [44]. The mean height was used for the linear regression; however, in 

some cases the percentiles (95th, 85th) may be more appropriate [44]. 

Table 1. Vegetation characteristics from manual samples and the resulting point cloud 

density in the vegetated quadrates in August 2013. 

Sample Atot/AB (m2/m2) md/AB (kg/m2) TLS Density (pts/m2) 

1–1 2.16 0.23 7,377 
1–2 2.66 0.34 13,477 
2–1 1.21 0.14 7,961 
2–2 1.74 0.19 494,952 
3–1 0.93 0.14 135,618 
3–2 1.04 0.21 4,449 

3.3. Testing of the Proposed TLS Method for the Characteristic Area Determination 

Independent field data were used for the testing of the linear regressions between the total areas and 

mean heights (herbaceous vegetation) and between the total areas and voxel count (woody vegetation). 
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Three differently vegetated test reaches were explored (Grasses-U and -D, and a test reach growing 

willows with cut grasses: Willows-M, see [30]). The classification with the Canupo tools [27] selected 

50% of the points in the Willows-M as vegetation, while 36% were classified as ground and 14% were 

unclassified. Some points clearly above the ground surface were classified as ground, but the 

percentage of the error points was small (≈0.1%). The classification accuracy of the willows was 

98.7%. For the herbaceous vegetation, only few points were classified as ground (<1%), as the 

floodplain was densely covered with vegetation.  

The relationship between Atot/AB and Hm (Figure 7) was used for the herbaceous test reaches as  

Atot/AB = 4.92Hm for each cell. The 1 cm grid resolution was used in the analyses as the vegetation 

heights varied in the test reaches (see Section 3.1). For the willows, the relationship between Atot and 

count of the 1 cm voxels derived for the trees was used as Atot/AB = 0.000062Nvox per corresponding 

grid area (see Figure 5a). The testing with the independent TLS yielded Atot/AB values between 0 and 

5.4 for the herbaceous test reaches, and the measured Atot/AB values fell within the ranges of the TLS 

analyses (Table 2). The Atot/AB ranges and standard deviations in Table 2 are calculated for a 0.12 m 

grid to be comparable with the manual measurement quadrate size (0.125 × 0.125 m2). The mean Atot/AB 

for Willows-M was 28% lower from manual measurements in comparison to TLS. For the Grasses-U 

and -D, the mean Atot/AB value from TLS was one third of the manual measurements. These differences 

between the TLS and manual sampling of the independent data may be caused by the changes in the 

herbaceous vegetation during the two years. The differences between the manual sampling and TLS-based 

Atot/AB for the test reaches emphasize the need for site-specific linear regressions (or species-specific) 

for the upscaling process (see Section 3.4 for the proposed method). 

Table 2. TLS-based areas from the independent field-test data in comparison to the  

manual sampling. 

Test Reach 
Atot/AB (−) Atot/AB (−) from TLS Description 

Manual Mean Range St. Dev.  

Grasses-U 3.51 1 1.90 0.0–5.4 0.91 Sown pasture grasses, upstream reach 
Willows-M 0.29 2 0.40 0.0–5.1 0.50 Small, young willows with cut grasses, maintained 
Grasses-D 3.41 1 1.10 0.0–3.8 0.51 Sown pasture grasses, downstream reach 

Note: Data sources: 1 [30,39]; 2 [39]. 

The spatial distribution of the floodplain vegetation in the test reaches is shown in Figure 8 for the  

12-m-long parts of the test reaches. The scale bars show the classification of Atot/AB values in the 30 cm 

grid. The detected highest elevations were affected by the May DTM accuracy; hence the DTM accuracy 

also impacted the estimated Atot/AB. The ground level estimated from TLS depends on the vegetation 

height and density, incidence angle, scan resolution, location, and number of scan stations [30]. For the 

Grasses-U the DTM error was circa 3 cm (compared to manual cross-sectional survey, see [30]), 

decreasing the Atot/AB by 10%. For the Grasses-D mean error in DTM of 30 cm window size was circa 

5 cm [30], and the ground level inaccuracy reduced the Atot/AB 18%. The application of the linear 

relationships of the Atot vs. Nvox for 5 cm and 10 cm voxels doubled the Atot/AB in comparison to using 

the 1 cm voxels (Atot/AB was 0.80 and 0.74 for the 5 and 10 cm voxel sizes, respectively). This can be 

attributed to the small size (≈1 m) of the willows in the field as the width of the willows including 
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branches was only around 20 cm, and thus the 5 and 10 cm voxel sizes were large in comparison to the 

tree size. 

 

Figure 8. TLS-based Atot/AB in 30 cm grid in the floodplain area of the test reaches  

(a) Grasses-U; (b) Willows-M; and (c) Grasses-D. 

3.4. Summarizing the Process of Characterizing Mixed Floodplain Vegetation from Point Cloud Data 

The proposed workflow to estimate the characteristic reference areas of floodplain vegetation is 

described in Figure 9. The high R2-values of the linear regressions suggested that the relationships 

between characteristic vegetation area and voxel count or vegetation height can be first derived for 

each vegetation type from small sub-areas, and upscaled to a reach with similar vegetation cover. The 

linear regressions of the herbaceous vegetation were significant, but the testing of the linear 

regressions (Table 2) was only indicative due to differences in the vegetation cover. During the field 

campaign in 2013 the monitoring of the field site [39] was finished, and the vegetation cover was more 

variable than the originally established test reaches [39] of the 2011 TLS data [30] used for the testing. 

Thus, the applicability of the sub-scale linear regressions for the upscaling (Figure 9) remains to be 

evaluated more thoroughly in future studies. 

 

Figure 9. Floodplain vegetation analyses: Proposed work-flow of processing multi-station 

TLS point clouds for hydro-environmental modeling applications. 
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The required point cloud resolution and the resulting grid or voxel resolution depended on the 

vegetation cover. Although the 1 cm voxel size was required for the small thin willows in the field site 

(Table 2), the 5 cm and 10 cm voxel sizes for the trees in laboratory showed a linear regression with Atot 

and Nvox, which indicated that larger voxel sizes than 1 cm are adequate in most cases. On the other hand, 

for the herbaceous vegetation with variable height distribution, a grid resolution of 1 cm was required. 

Obtaining the total plant area of a tree manually in the field is invasive and laborious. Thus, the  

sub-scale total plant area is more viable to estimate from high-resolution scan of the sub-area than by 

manual sampling. The Atot for sub-areas can be obtained by voxelizing the point cloud to a 1 mm  

grid [34] and estimating the Atot from the voxel count multiplied with the voxel size (Figure 10).  

Figure 10 shows the Atot,TLS estimated both with mm resolution TLS and with the linear regression derived 

in Figure 5. The bars highlight the difference to the manual measurements of Atot as Atot,man–Atot,TLS. The 

averaged difference of the mm resolution TLS-based Atot in comparison to the manual sampling was 

10%. Note that the 1 mm voxelization method used yields twofold values of the actual stem surface area 

(i.e., the area exposed to the flow, see Section 2.2). To obtain the Atot, the manually measured (one-sided) 

AS was subtracted from the total one-sided area of the voxels (=Nvox × 1 mm2). To derive the actual AS, 

the stem area may also be predicted by the basal diameter (Db) [41]. The stem points can also be 

separated from the foliage by coloring the point cloud by the integrated camera image [21], by intensity 

values [45] or by selecting the stem manually in TLS software. To separate the stem from the foliage 

based on intensity values is difficult, as the process is sensitive to the instrument properties such as the 

wavelength or footprint size, and differences in the leaf spectral properties [35]. 

  

Figure 10. The total plant area of the S. caprea and A. glutinosa specimens with 1 mm 

voxels and back-calculated from the linear regression (Figure 5). The bars denote the 

difference Atot,man–Atot,TLS. 

The proposed method for deriving the characteristic reference areas (Figure 9) requires that the 

vegetation points are classified to different vegetation types either by manual or automatic classification. 

After the vegetation types are distinguished, the area definitions suitable for each vegetation type are applied 

(Figure 9). 

The geometry-based classification tools designed to distinguish between different types of elements [27] 

may be feasible for classifying vegetation types. On a larger scale, in a 2 × 2 m grid, MLS point clouds 

can be classified as bare, field, shrubs, and canopy layer using point cloud statistics (mean height, 95th 

percentile, [46]). Laser pulse intensity values are used to classify buildings and trees [47], and tree 
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species [48], or the stem (wood material) and foliage of woody vegetation [45]. To locate trees from 

multi-station TLS, Liang and Hyyppä [49] developed an automatic tree-mapping algorithm. Canopy 

surfaces and tree positions derived from airborne LiDAR as well as the combination of LiDAR, 

radar and multispectral data provide useful information for defining areas of different vegetation 

type [20,31,50]. 

The developed approach (Figure 9) is not limited to TLS, but can be used for point clouds obtained 

from different LS and surveying methods depending on the data resolution. Structure-from-motion 

photogrammetry is a low-cost tool advantageous in generating point clouds in remote riverine 

environments [51]. Boat-based mobile laser scanning (BoMMS) provide centimeter resolution point 

data with a boat speed of 1–2 m/s [52], and the BoMMS data set can be improved with point clouds 

from low-altitude unmanned aerial vehicle (UAV) based photogrammetry [53]. When measurements 

are conducted from different angles (above, from boat or by combining them with TLS and multiple 

scan stations), the occlusion effects decrease. The use of multisource data is superior to sole TLS, 

though combining these data requires accurate relative orientation [32]. For areas of dense vegetation 

cover, methods that provide point clouds measured from above the vegetation, such as MLS mounted on 

a backpack [23] or on UAV [52], are expected to provide detailed information about the vegetation 

structure more efficiently than ground-based TLS. 

4. Conclusions 

In the context of modeling floodplain flows, a new experimental dataset on characteristic vegetation 

areas was derived by terrestrial laser scanning (TLS) and evaluated against comprehensive manual 

measurements. Subsequently, an approach was developed to relate attributes of the TLS data and the 

vegetation characteristics of small sub-areas to enable upscaling to larger areas of similar vegetation 

type. Two alternatives were found for determining the relationships between the TLS attributes and total 

plant area (Atot) of the sub-areas: by millimeter resolution TLS or by collecting manual vegetation 

samples. Furthermore, the results showed that different methods are needed for woody and herbaceous 

vegetation. For herbaceous vegetation, the mean heights of the digital surface model appeared sufficient 

for determining Atot but for woody vegetation voxelization was required. For woody vegetation, a linear 

regression based on the voxel count was found feasible to estimate both the Atot and its vertical 

distribution. In performing the sub-area measurements, the use of TLS was considered preferable over 

laborious and destructive manual sampling, in particular for woody vegetation. It is expected that the use 

of the regressions acquired for woody vegetation can be extended to other sites with similar vegetation 

type, but it remains to be investigated how these relationships vary for trees of different sizes and ages. 

The voxel size of 1 cm was found suitable for describing small thin trees, but for the larger trees 5 and 

10 cm voxels appeared adequate. In estimating the mean heights of the herbaceous vegetation, the 1 cm 

grid size was required as the 5 cm grid was not capable of reproducing the varying height distributions. 

Due to the variability in the herbaceous vegetation cover, the linear regressions derived between Atot and 

mean height were considered as site specific. Whether similar linear regressions exist for other types of 

herbaceous vegetation remains to be investigated. Overall, the LS-based approach presented in this 

study is expected to be useful in estimating the characteristic areas of mixed vegetation required in 

hydro-environmental modeling applications. Rapidly developing LS techniques including mobile laser 
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scanning platforms such as backpacks, boats, and unmanned aerial vehicles can be expected to ease the 

data collection. 
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