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Abstract: This paper presents a novel, effective method to handle critical sensor faults affecting
a control system devised to operate a biomass boiler. In particular, the proposed method consists
of integrating a data reconciliation algorithm in a model predictive control loop, so as to annihilate
the effects of faults occurring in the sensor of the flue gas oxygen concentration, by feeding the
controller with the reconciled measurements. Indeed, the oxygen content in flue gas is a key variable
in control of biomass boilers due its close connections with both combustion efficiency and polluting
emissions. The main benefit of including the data reconciliation algorithm in the loop, as a fault
tolerant component, with respect to applying standard fault tolerant methods, is that controller
reconfiguration is not required anymore, since the original controller operates on the restored, reliable
data. The integrated data reconciliation–model predictive control (MPC) strategy has been validated
by running simulations on a specific type of biomass boiler—the KPA Unicon BioGrate boiler.

Keywords: data reconciliation; model predictive control; fault-tolerant contro; BioGrate boiler

1. Introduction

Renewable energy production is acknowledged worldwide as a key factor for sustainable growth.
As for the energy sources used to replace the fossil fuel sources in power and heat production, local
fuel supplies such as biomass fuel, which includes wood chips, bark, and sawdust, have relevant
advantages for on-site industries and municipalities, such as, primarily, secure availability and price
stability [1]. However, biofuels are inherently affected by highly variable properties, which makes
achieving efficient and reliable combustion and low polluting emissions a challenging task in terms of
control and monitoring system design [2–4].

In particular, in the operation of a biomass boiler, a crucial role is played by the residual oxygen
content in the flue gas. Indeed, this oxygen concentration, which basically depends on the total air
supply to the furnace and on the thermal composition of the biofuel, provides the information needed
to estimate both the power developed by the combustion process and the level of polluting emissions to
the extent that several countries’ regulations make explicit reference to this index [5]. Hence, in control
systems devised to operate biomass boilers, the oxygen content in the flue gas is directly measured
by appropriate sensors and represents a key feedback variable [3,6]. It is therefore obvious that faults
occurring in the sensors of the oxygen concentration in the flue gas degrade the performance of the
control systems and that, consequently, it is highly advisable to take measures aimed at rendering the
control systems tolerant to this type of fault.
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A practical way of addressing sensor failures and improving measurement reliability, widely
adopted also in biomass boiler operation, includes redundant sensors. However, redundancy implies
higher installation and running costs, so that the possibility of implementing more sophisticated fault
tolerance techniques is worth being investigated. An evolutionary algorithm for detecting discrepancies
in the measurement of the oxygen content in the flue gas, while avoiding hardware redundancy, was
developed in [7]. This method, however, did not address the issue of complete sensor breakdown.
However, in recent years, several other fault detection methods have been devised in order to handle
typical faults occurring in industrial boilers, including boilers exploiting conventional sources of
energy. None of them explicitly addresses faults in the oxygen content sensor or even conveniently
adapts to detect this kind of fault. In [8], a principal component analysis (PCA) method was developed
to detect faults occurring in the sensors of the air flow rate and of the fuel flow rate of an industrial
boiler and to consequently reconstruct the faulty measurements. Similarly, in [9], a PCA method was
devised to detect malfunctions in the sensors of the air flow rate, fuel flow rate, stack pressure, and
wind-box pressure. The methods presented in [8,9] are data-driven methods and, as such, they require
a special effort in data preprocessing and validation at the design stage. Furthermore, these methods
are required to handle missing values and data outliers, which brings increased complication at their
developing phase, as pointed out in [10]. In [11], a generalized likelihood ratio method was devised
to detect and accomodate faults occurring in the fuel bed height sensor. Nevertheless, the solution
devised in [11] implies an appreciable delay in the reaction to the fault, mainly due to the algorithm
run to detect the fault and to the consequent controller reconfiguration.

In [12], model predictive control technology for boiler control was presented to enable the
coordination of air and fuel flows during transients. It was shown that this approach can be used to
increase the boiler efficiency, and also considerably reduce the production of nitrogen oxides (NOx).
In [4], model predictive control was used as a tool to obtain improved process operation performance
for municipal solid waste (MSW) combustion plants. In particular, the conclusion resulting from the
comparison with conventional (proportional) P-based control was that the linear model predictive
control (LMPC)-based combustion control system outperformed the conventional combustion control
system; it was much more capable of handling large temporarily upsets. In [13], an improvement
based on the radiation intensity of the flame was presented. The fast response and high sensitivity
of the radiation intensity increased the load following capacity of the power plant while keeping
the steam pressure stable. In [14], the method to further improve the load change capacity for the
water cooled plants through cold source follow adjustment (CSFA) was proposed. Then, an improved
control strategy which combines coordinated control system with CSFA was brought forward to be
used for the flexible load control in [15]. Still, according to practical tests, the oxygen consumption
measurement is the best measure of the heat released in the furnace [3,16].

For these reasons, in this work, a fault tolerant control scheme is proposed, where a data
reconciliation algorithm is included in the loop and is activated when the control system has reached
the steady state. In particular, the data reconciliation unit acts in such a way that the occurred oxygen
content sensor fault is made invisible to the model predictive controller, which is fed with the reconciled
data. The idea of exploiting data reconciliation as a means to achieve fault tolerance in a control system
is novel. Indeed, data reconciliation methods have been employed in control systems either with the
goal of minimizing the noise level in process measurements or with the target of detecting faults in
combination with data-based fault detection methods. In particular, in [17,18], data reconciliation
was exploited to reduce the noise level in measurements and improve the performance of the control
strategy for a continuous stirred tank. In [19], data reconciliation was applied with the same purpose
in a distributed control system for a distillation column. Instead, in [20], data reconciliation was used
in synergy with PCA for monitoring and sensor fault detection in a modelled ammonia synthesis plant.
In [21], data reconciliation improved the estimation of process variables and enabled improved sensor
quality control and identification of process anomalies.
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As to the effectiveness of the proposed data-reconciliation based fault-tolerant control scheme, this
has been shown by integrating data reconciliation with an improved version of the model predictive
control (MPC) strategy earlier developed in [2] for a specific type of biomass boiler—the KPA Unicon
BioGrate boiler (KPA Unicon Group Oy, Pieksämäki, Finland). Indeed, the MPC strategy presented in
this work is based on a more detailed model of the BioGrate boiler, which also includes the dynamics
of the oxygen content in the flue gas. The data reconciliation algorithm is based on the constrained
optimization of a quadratic cost, which exploits the process static model derived from the dynamic
one used for the MPC design. The performance of the overall fault tolerant control system has been
evaluated by running simulations on recorded data concerning the measurement of the oxygen content
in the flue gas of an actual process under faulty conditions. A schematic diagram of the integrated
data reconciliation-model predictive control (DR-MPC) strategy is shown in Figure 1.

Figure 1. Integrated data reconciliation-model predictive control based fault-tolerant control
(FTC) system.

The remainder of the paper is organized as follows. Section 2 describes the process and an
improved version of the MPC strategy developed in [2] for the BioGrate boiler. Section 2.1 provides
the process description of the BioGrate boiler. Section 2.2 describes the mathematical model of the
process. Section 2.3 presents the MPC strategy. Section 3 describes the data reconciliation algorithm
implemented on the BioGrate boiler. Section 4 shows the effectiveness of the proposed DR-MPC
strategy through the simulation results obtained by using faulty measurements recorded from the real
industrial process.

2. Process and Control Description of the BioPower Combined Heat and Power Process

2.1. Process description of the BioGrate boiler

The BioGrate boiler consists of a furnace and a steam-water circulation system as illustrated in
Figure 2. The furnace comprises conical-shaped grate rings that are surrounded by heat-insulating
refracting brick walls. The grate consists of several rings, half of which rotate while the other half are
stationary. Two consecutive rotating rings rotate in opposite directions. This setup ensures a uniform
distribution of fuel throughout the grate. Fuel is fed from the bottom of the grate where it spreads
towards the outer rings and undergoes combustion. The refracting brick walls radiate the heat
generated during combustion back to the grate. The furnace is equipped with air register systems for
combustion. Primary air flows from the bottom in a direction perpendicular to the fuel feed movement
(cross-flow reactor) to ensure efficient mixing of air and fuel. The secondary air flows from the nozzles
in the grate-wall to completely combust volatiles present in the over-bed region [22].

The steam-water circulation system absorbs the heat from the furnace and the flue gas to heat
water-steam flowing through it. The important components of the steam-water circulation system
include an economizer, a drum and evaporator system and two superheaters. The feedwater is pumped
into the economizer where the water absorbs the remaining heat from the flue gas before the flue gas is
released into the atmosphere. The heated water is then transferred to the drum and evaporator system.
The evaporator consists of downcomers and risers that are located in the walls of the furnace. It absorbs
heat from biomass combustion and produces a mixture of water and steam. The steam, separated in
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the drum, is then passed to the two superheaters where it is further heated with the flue gas to form
superheated steam. The superheated steam is transferred to the steam turbine to generate electricity.

Figure 2. BioPower 5 combined heat and power (CHP) process [23]: 1—primary air; 2—secondary air;
3—economizer; 4—drum; 5—superheaters; 6—evaporator.

The main objective of the BioPower 5 CHP plant is to produce power for the generator and
for the hot water network. The split ratio of 2.9 MW electricity and 13.5 MW of heat is defined by
the drum pressure and turbine back-pressure. The difference between the consumed and produced
power disturbs the pressure in the drum, and the control strategy equalizes the steam production and
consumption by controlling the drum pressure, which is achieved by manipulating the fuel and air
supply to the furnace.

2.2. Model Description of the BioGrate Boiler

The set of mathematical equations describing the process is given as ([2]):

ẋ1(t) = cdsx1(t)− cthdβthdu2(t) + cds,inu1(t), (1)

ẋ2(t) = −cwevβwevx2(t) + cw,ind1(t), (2)

ẋ3(t) = −x3(t) + qw f (cthdβthdu2(t)− cdsx1(t))− 0.0244cwevβwevx2(t), (3)

ẋ4(t) = −x4(t) + d2(t), (4)

ẋ5(t) =
1

αmetal
(x3(t)− x4(t)), (5)

ẋ6(t) = −x6(t) + cds,O2 x1(t) + cwev,O2 x2(t) + cthd,O2 u2(t) + csa,O2 u3(t) + cds,in,O2 u1(t), (6)

where x1(t), x2(t), x3(t), x4(t), x5(t) and x6(t) are the fuel bed height, the moisture content in the
furnace, the power generated from the biomass combustion, the filtered steam demand, the drum
pressure and the oxygen content in flue gas, respectively; u1(t), u2(t) and u3(t) are the fuel flow rate,
the primary air flow rate and the secondary air flow rate, respectively; d1(t) and d2(t) are measured
disturbances and consist of the moisture content in the fuel and the steam demand, respectively;
cds, cthd, cds,in, cwev and cw,in are model coefficients identified from process data; βthd describes the
dependence on the position of the moving grate; βwev is the coefficient for a dependence on the position
from the centre to the periphery of the moving grate; αmetal is a coefficient that depends on the material
type of the metal tubes of the evaporator system; and cds,O2 , cwev,O2 , cthd,O2 , csa,O2 and cds,in,O2 are the
parameters for the linearized model of the oxygen content.
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Equation (1) describes the dynamics of the amount of dry fuel in the furnace. The first two terms
on the right side represent the thermal decomposition rate, whereas the last term describes the fuel
feed to the furnace. Equation (2) represents the dynamics of water evaporation. The energy for the
water evaporation is mainly provided by the combustion of biomass near the surface of the grate.
The temperature near the bottom of the biomass layer is almost independent of the primary air
flow; thus, the water evaporation rate is assumed to be independent of the primary air flow as
well. Equation (3) is the equation representing the power generated from the biomass combustion.
The power is a filtered difference of the power released by the fuel thermal decomposition and the
power consumed by water evaporation. The second term on the right-hand side represents the power
of the fuel thermal decomposition and the last term describes the power needed for water evaporation.
Equation (4) represents the filtered steam demand. Equation (5) represents the dynamics of the drum
pressure. The drum level is kept constant by its controller, and, therefore, the variations in the steam
volume are neglected. Equation (6) describes the dynamics of the residual oxygen in the flue gas after
the complete combustion.

The process models have been identified in [24], and the continuous-time state-space model of
the process is:

ẋ(t) = Ac x(t) + Bc u(t) + Ec d(t),

y(t) = Cc x(t),

where:

Ac =



cds 0 0 0 0 0
0 −cwevβwev 0 0 0 0

−qw f cds −0.0244cwevβwev −1 0 0 0
0 0 0 −1 0 0
0 0 1

αmetal
− 1

αmetal
0 0

cds,O2 cwev,O2 0 0 0 −1


,

Bc =



cds,in −cthdβthd 0
0 0 0
0 qw f cthdβthd 0
0 0 0
0 0 0

cds,in,O2 cthd,O2 csa,O2


,

Ec =



0 0
cw,in 0

0 0
0 1
0 0
0 0


,

Cc =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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2.3. Model Predictive Control for the BioGrate Boiler

The prime objective of the MPC strategy for the BioGrate boiler is to produce the desired amount
of power for the electricity generator and for the hot water network, while maintaining the drum
pressure, the fuel bed height and the oxygen content in flue gas at constant values. These variables
are affected by exogenous factors such as variation in the moisture content of the fuel and the steam
demand. The objective of the control strategy is achieved by utilizing the process model defined
by (1)–(6) and by manipulating the air flow rates and the fuel flow rates. In order to design the MPC,
a sample data model of the process has been obtained by zero-order hold discretization with sampling
time Ts = 1 s. Hence, from now on, we will refer to the following discrete-time system:

x(k + 1) = Ax(k) + Bu(k) + Ed(k),

y(k) = Cx(k).
(7)

According to (7), the k-step ahead prediction is formulated as:

y(k) = CAkx(0) +
k−1

∑
j=0

H(k− j)u(j), (8)

where H(k− j) contains the impulse response coefficients. Therefore, using (8), the MPC optimization
problem consists in minimizing:

φ =
1
2

Np

∑
k=1
‖y(k)− r(k)‖2

Qz
+

1
2
‖∆u(k)‖2

Qu
(9)

under the constraints:

x(k + 1) = Ax(k) + Bu(k) + Ed(k), k = 0, 1, . . . , Np − 1,

y(k) = Cx(k), k = 0, 1, . . . , Np,

umin ≤ u(k) ≤ umax, k = 0, 1, . . . , Np − 1,

∆umin ≤ ∆u(k) ≤ ∆umax, k = 0, 1, . . . , Np − 1,

ymin ≤ y(k) ≤ ymax, k = 1, 2, . . . , Np,

where r(k) is the target value and ∆u(k) = u(k)− u(k − 1). The predictions by (8) are formulated
as presented in [11] and the MPC regulator problem of (9) is then solved by convex quadric
programming algorithms.

The original system (7) is augmented with disturbance dynamics to achieve the offset-free
tracking in the presence of model-plant mismatch or unmeasured disturbances [25]. Hence, the
extended system is the following:[

x(k + 1)
η(k + 1)

]
=

[
A Bd
0 Ad

] [
x(k)
η(k)

]
+

[
B
0

]
u(k) +

[
E
0

]
d(k) +

[
w(k)
ξ(k)

]
, (10)

y(k) =
[
C Cη

] [x(k)
η(k)

]
+ v(k), (11)

where w(k) and v(k) are white noise disturbances with zero mean. Thus, the disturbances and the
states of the system are estimated as follows:[

x̂(k|k)
η̂(k|k)

]
=

[
x̂(k|k− 1)
η̂(k|k− 1)

]
+

[
Lx

Lη

]
(y(k)− Cx̂(k|k− 1)− Cηη̂(k|k− 1)), (12)
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and the state predictions of the augmented system (10) are obtained by:[
x̂(k + 1|k)
η̂(k + 1|k)

]
=

[
A Bd
0 Ad

] [
x̂(k|k)
η̂(k|k)

]
+

[
B
0

]
u(k) +

[
E
0

]
d(k). (13)

Since η(k) are observable, their estimates are used to remove their influence from the controlled
variables. The disturbance model is defined by choosing the matrices Bd and Cη. Since the additional
disturbance modes introduced by disturbance are unstable, it is necessary to check the detectability
of the augmented system. The augmented system (10) is detectable if and only if the nonaugmented
system (7) is detectable, and the following condition holds:

rank

[
I − A −Bd

C Cη

]
= n + nη, (14)

where n is the dimension of A and nη is the dimension of Ad. In addition, if the system is augmented
with a number of integrating disturbances nη equal to the number of the measurements p (nη = p)
and, if the closed-loop system is stable and constraints are not active at a steady state, there is zero
offset in controlled variables.

3. The Data Reconciliation Algorithm for the BioGrate Boiler

The aim of this section is to describe the data reconciliation algorithm and how it works as a fault
tolerant component in the steady-state closed-loop system.

By processing the control inputs, the measured disturbances, and the measured outputs of
the process—including the faulty one—the data reconciliation algorithm provides the reconciled
measurements as the solution of a problem consisting in the minimization of a quadratic cost under
a linear equality constraint. In addition to the measurement of the flue gas oxygen content, the other
measurements benefit from corrected values. The quadratic cost is a function of the difference between
the faulty measurement and the actual measurement (i.e., the fault-free value of the measurement).
The linear constraint is the steady-state equation of the regulated plant, where the states which are not
directly measurable are replaced by the respective soft-sensors.

In order to formally state the constrained optimization problem, the vector h(k) is defined as:

h(k) =
[

y(k)> x̂2(k) x̂4(k) u(k)> d(k)>
]>

, (15)

where y(k), x̂2(k), x̂4(k), u(k), and d(k), respectively, are the measured outputs, the estimates of
x2(k) and x4(k), the control inputs, and the measurable disturbances. Likewise, the vector h f (k) is
defined as:

h f (k) =
[

y f (k)> x̂2(k) x̂4(k) u(k)> d(k)>
]>

, (16)

where y f (k) denotes the faulty measured output or, more precisely, the measured output, where,
in particular, the measurement of the oxygen content is affected by the fault occurred in the related
sensor: i.e.,

y f (k) =
[

y1(k) y2(k) y3(k) y f
4(k)

]>
. (17)

With the notation introduced in (15)–(17), the cost functional is defined as follows:

J = (h(k)− h f (k))>W (h(k)− h f (k)), (18)

where W denotes a positive definite diagonal matrix, whose entries are identified from the indstrial
data from a BioPower CHP power plant.
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The linear constraint is derived from the process steady-state equations:

(A− I) x(k) + B u(k) + E d(k) = 0, (19)

where I denotes the identity matrix, through the following reasoning. While the control input u(k) and
the disturbance d(k) are directly available, the states must be replaced by their measurement—fault-free
or actual ones, respectively—or by their estimates. In particular, the states x1(k), x3(k), and x5(k)
are replaced by the fault-free measurements y1(k), y2(k), and y3(k). The state x6(k) is replaced by
the actual measurement y4(k). Moreover, the states x2(k) and x4(k) are replaced by their estimates
x̂2(k) and x̂4(k). Hence, the linear constraint (19) can be restated in compact form as a function of h(k),
provided that a state-space basis transformation T is applied with the aim of re-ordering the state
variables consistently with the definition of h(k) and the replacements described above. Namely, with
T such that:

x′(k) = T−1 x(k) =
[

x1(k) x3(k) x5(k) x6(k) x2(k) x4(k)
]>

,

and M is defined by:
M =

[
(A′ − I) B′ E′

]
,

where A′= T−1 A T, B′= T−1 B, and E′= T−1 E, (19) can be rewritten as:

M h(k) = 0. (20)

In order to minimize the quadratic cost (18) with respect to the difference h(k)− h f (k), under
the linear equality constraint (20), one can straightforwardly apply the Lagrange multiplier method.
Then, the Lagrangian function is:

L((h(k)− h f (k)), λ) = (h(k)− h f (k))>W (h(k)− h f (k)) + λ>M h(k),

where λ denotes the vector of the Lagrangian multipliers. Therefore, solving the constrained
optimization problem reduces to solving the system of equations: 2

(
h(k)− h f (k)

)>
W + λ> M = 0,

M
(

h(k)− h f (k)
)
+ M h f (k) = 0,

which provides, for the reconciled variable:

hrec(k) = h f (k)−W−1 M> (M W−1 M>)† M h f (k). (21)

4. Results

Two case studies are presented to demonstrate the effectiveness of the integrated DR-MPC based
strategy. Simulation studies utilise industrial data from a BioPower 5 CHP power plant and the
system is identified and implemented in the MATLAB (R2016b, MathWorks Inc., Natick, MA, USA)
environment, as described in Section 2.2. The first case study discusses the performance of the DR-MPC
during an intermittent oxygen content sensor fault. The second case study analyses the performance
of the system during complete failure of the sensor.

4.1. Case Study I

This case study describes the effectiveness of the integrated DR-MPC system during an additive
intermittent fault that occurs in the flue gas oxygen content sensor from 501 s to 5400 s. The occurrence
of this fault is presented in Figure 3. The effectiveness of the system is demonstrated by comparing the



Energies 2017, 10, 194 9 of 14

performances of the DR-MPC and an MPC strategy. The faultless “normal” operation of the flue gas
oxygen content sensor is also demonstrated with the MPC strategy for both case studies.
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Figure 3. Additive intermittent sensor fault in flue gas oxygen content measurement.

In both simulation setups, the weighting matrices of the MPC controller are
Qz =diag {0.001, 0.001, 0.1, 0.01} and Qu =diag {0.1, 0.1, 0.1}, while the boundary conditions are
umin = [0 0 0]>, umax = [5 20 20]>, ∆umin = [−0.8 −0.8 −0.8]>, ∆umax = [0.8 0.8 0.8]>, ymin = [0 0 0]>

and ymax = [1 35 55 30]>. The setpoint values for combustion power, drum pressure, fuel bed
height and oxygen content are 15 MW, 50 bar, 0.5 m and 4%, respectively. The matrix W in the data
reconciliation algorithm is defined as W =diag {2.9914, 3.0297, 0.0605, 3.0216, 2.9852, 2.9808, 3.0000,
3.0000, 3.0000, 3.0000, 3.0000} × 106.

The simulation is performed for a period of 7500 s. Figures 4 and 5 present the resulting behaviour
of controlled outputs and control inputs, respectively. The results demonstrate that the closed-loop
performance of the MPC strategy (black lines) is significantly deteriorated by the fault as it introduced
undesirable oscillations to the control inputs and controlled outputs: The calculated soft-sensor value
of the combustion power [24] greatly differs from its nominal value, due to the faults in the flue gas
oxygen content measurement. In contrast, the integrated DR-MPC (red lines) was able to notably
reduce the effects of this fault on the considered process inputs and outputs. In other words, with the
data reconciliation, the fault does not affect the steady-state behavior of the system. The integrated
DR-MPC works as follows: Firstly, Equation (21) is used to calculate the reconciled measurements
shown in Figure 4. Secondly, Equation (12) is utilized to estimate the states and the disturbances of
the system. Thirdly, the optimization problem (9) is solved, giving the new inputs as illustrated in
Figure 5. Finally, new state predictions are given by Equation (13). The oscillation of the fuel bed height
is caused by the smaller weight of 0.001 used by the MPC for the fuel flow and primary air flow rates in
comparison to 0.1 of the drum pressure. Moreover, there is the small degradation of the measurements
with the DR-MPC in comparison to the ’normal’ faultless situation.

The flue gas oxygen content measurement is still needed: in its normal operation, it measures
oxygen content fast (less than second) that is needed for fast dynamics of excess air control and to
prevent pollution.
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Figure 4. Case I—Closed-loop simulation results: Controlled outputs.
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Figure 5. Case I—Closed-loop simulation results: Control inputs.
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4.2. Case Study II

In this case study, the performance of the integrated DR-MPC strategy is evaluated during the
occurrence of an oxygen content sensor failure. The failure occurs between 500 s and 1000 s. The tuning
matrices of the MPC controller, the weighting matrix of the data reconciliation algorithm, and the
input and output constraints are given the same values of the previous case study. Figures 6 and 7
show the performance of the integrated DR-MPC.

The MPC strategy cannot perform under the absence of measurement data from the oxygen
content sensor due to the failure. Instead, when the DR-MPC strategy is active, the reconciliation
algorithm provides a reconstructed signal for the oxygen content measurement. As a result,
the closed-loop system is prevented from being unstable. When comparing DR-MPC with the other
available methods, usually the controller reconfiguration is needed.

In summary, the case studies demonstrated that the fault effects on the BioPower process,
originating from the oxygen content sensor malfunction, can be effectively minimised by integrating
the data reconciliation method into the MPC strategy.

200 400 600 800 1000 1200 1400
Time (second)

0.4

0.5

0.6

Fu
el

 b
ed

he
ig

ht
(m

) aDR-MPC
normal

200 400 600 800 1000 1200 1400
Time (second)

14

15

16

Po
w

er
 g

en
er

at
ed

 fr
om

bi
om

as
s 

co
m

bu
st

io
n

(M
W

) DR-MPC
normal

200 400 600 800 1000 1200 1400
Time (second)

49.8

49.9

50

D
ru

m
pr

es
su

re
(B

ar
) DR-MPC

normal

200 400 600 800 1000 1200 1400
Time (second)

3.5

4

4.5

O
xy

ge
n

co
nt

en
t

(%
) DR-MPC

normal

Figure 6. Case II—Closed-loop simulation results: Controlled outputs.
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Figure 7. Case II—Closed-loop simulation results: Control inputs.

5. Conclusions

In this paper, we have introduced an integrated DR-MPC strategy to achieve a control system for
the BioPower 5 CHP plant with the property of being tolerant to faults or a complete breakdown of the
flue gas oxygen content sensor.

The DR-MPC strategy presented in this work was based on a more detailed model of the
BioGrate boiler, which also includes the dynamics of the oxygen content in the flue gas. The data
reconciliation algorithm provided the reconciled measurement as the solution of a problem consisting
of the minimization of a quadratic cost under a linear equality constraint in the MPC strategy.

The effectiveness of the DR-MPC strategy has been shown by considering both an intermittent
fault in the flue gas oxygen content sensor and its failure. The results showed that the closed-loop
performance of the MPC strategy was significantly deteriorated by the fault as it introduced undesirable
oscillations to the control inputs and controlled outputs. In contrast, the integrated DR-MPC was
able to notably reduce the effects of this fault on the considered process inputs and outputs. In the
case of the complete breakdown of the oxygen content sensor, the reconciliation algorithm provided
a reconstructed signal for the oxygen content measurement .
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Abbreviations

CHP Combined heat and power
CSFA Cold source flow adjustment
DR-MPC Data-reconciliation model predictive control
LMPC Linear model predictive control
MPC Model predictive control
MSW Municipal solid waste
NOx Nitrogen oxides
PCA Principal component analysis
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