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Ferrofluidic Manipulator: Theoretical
Model for Single-Particle Velocity

Zoran M. Cenev , Ville Havu, Jaakko V. I. Timonen , and Quan Zhou

Abstract—Theoretical models have crucial importance in
the design of algorithms for feedback control of robotic
micromanipulation platforms. More importantly, theoretical
models provide an understanding of the limits of each
manipulation approach along with the identification of the
key parameters that influence motion performance. Here,
we provide a mathematical framework and numerical im-
plementation of the velocity field for a single diamagnetic
particle pinned at the air–ferrofluid interface when it is ac-
tuated by one or more inclined electromagnets in a sys-
tem previously introduced as the ferrofluidic manipulator
(Cenev et al., 2021). The theoretical model uses a magnetic
dipole approximation for a dipole located between the tip
of a solenoid and the end of the coil. The model reveals
that the forces due to gravitation, the applied magnetic
field, and the capillary action have decreasing contribu-
tions to the overall velocity field, respectively. The model
assumes overdamped dynamics, and therefore, it is time-
independent. The model is valid for an infinite number of
electromagnetic solenoids. The theoretical predictions are
in good agreement with the estimations from experimental
data realized for one and two actuated solenoids.

Index Terms—Microelectromechanical systems, smart
material-based devices, soft robotics systems.

I. INTRODUCTION

ACTUATION and manipulation of a single particle or a
particle collective at the fluid–fluid interface have received

particular attention due to the rich phenomenology occurring
at the interface. Techniques utilizing light-controlled interfacial
flows were used for transporting oil droplets [2], [3], liquid
marbles [4], and steel beads [5]. Micropost perturbed interfaces
[6], [7] and bubble-induced capillary forces [8] were used to
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transport objects by tuning the shape of the fluid–fluid interfacial
contact area.

Studies on the manipulation of microscale matter at the air–
liquid interface by magnetic means can be also found in the
literature. For example, Snezhko et al. [9], [10], [11] studied
active and dynamic self-assembled structures, such as snakes,
stars, and pulsating clusters induced by a vertical alternating
magnetic field in a population of magnetic particles suspended
on a fluid–fluid (air–water and oil–water) interfaces. Grosjean
et al. [12], [13], [14] reported magnetocapillary self-assemblies
that are able to move along the air–water interface when pow-
ered by oscillatory, uniform magnetic fields. Dkhil et al. [15]
developed a closed-loop controller for positioning a magnetic
particle at the air–water interface. Dong and Sitti [16] reported
the formation and cooperative behavior of a swarm of magnetic
agents at the air–water interface, and Wang et al. [17] demon-
strated embedding information into structures of spinning mag-
netic microdisks at the air–water interface. Droplets and liquid
marbles pinned at the air–paramagnetic liquid interface were
actuated (or manipulated) by the application of a nonuniform
magnetic field arising from a permanent magnet by Vialetto
et al. [18].

Similarly, we have experimentally demonstrated and theo-
retically described the physical mechanism behind the motion
and trapping of micro- and millimeter-sized particles pinned
at the air–paramagnetic liquid interface in the presence of
a nonuniform magnetic field [19]. The paramagnetic liquid
was an aqueous solution of paramagnetic salts such as man-
ganese dichloride (MnCl2) or holmium (III) nitrate pentahydrate
(Ho(NO3)5H2O). This study examined the interaction among
the particle, the liquid, and the magnet in an axisymmetric case.
The motion of a particle on an air–paramagnetic liquid interface
is a sum of the gravitational potential energy, the capillary
energy from the interface deformation created by the nonuniform
magnetic field, and the magnetic energy from the particle and
the liquid. Consequently, a particle can be pulled toward and
eventually trapped or pushed away from the magnet based on
the particle magnetization, density, and contact angle with the
liquid.

Other types of magnetic liquids similar to salt-based para-
magnetic liquids are ferrofluids. Ferrofluids represent colloidal
dispersions of magnetic nanoparticles within a carrier liquid with
numerous applications recently reviewed in [20]. Recent devel-
opments also involve ferrofluid droplet formation under varying
magnetic energy landscapes [21], [22], bubble manipulation on
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Fig. 1. Principle of operation of the FF manipulator (adapted and modified from [1]). (a) Diamagnetic particle with water-like density is pinned at
the air–ferrofluid interface and is pushed away from a solenoid when it is actuated (electric current supplied to it). The actuation by single solenoid
observed by (i) front view; (ii) side view; and (iii) top view. (b) Cut-view of a computer-aided design (CAD) rendered image of the FF manipulator’s
mechanical assembly consisting of a holding block enclosing the eight solenoids located on top of a Petri dish. The Petri dish contains a ferrofluid
and a particle pinned at the air–ferrofluid interface. (c) Photograph of the FF manipulator showing the holding block with the solenoids and the dish
with the ferrofluid. (d) CAD image of the top-view of the FF manipulator with the eight solenoids enumerated from 1 to 8 and a single particle (e.g.,
PE particle) in the workspace at an initial distance from Solenoid 1 along the Y-axis.

ferrofluid-infused surfaces [23], and manipulation of ferrofluid
droplets in a two-dimensional (2-D) environment [24] to name
a few.

We have also built the ferrofluidic (FF) manipulator, which
successfully was used in the automatic manipulation of indi-
vidual polyethylene (PE) and polystyrene spherical particles,
a silicon chip, and poppy and sesame seeds, all pinned at the
air–ferrofluid interface [1]. The operation principle of the FF
manipulator is illustrated in Fig. 1(a). When a direct current is
supplied to a solenoid, it generates magnetic field, which de-
forms the ferrofluid causing an interface deformation (a bump).
The interface deformation acts as a slope onto which a single
particle slides down. Note that the particle must have a density
similar to the fluid’s density to be pushed. Fig. 1(b) shows a
3-D cut-view of the FF manipulator with solenoids arranged
in a circular pattern with 45° offset between each other and
45° offset with respect to the air–ferrofluid interface. Fig. 1(c)
shows a photograph of the device. A water-like density particle
such as PE is placed on the air–ferrofluid interface and can
be manipulated in a quasi-2D workspace of about 8 mm, as
shown in Fig. 1(d). There are eight solenoids in total, four short
solenoids (denoting core neck length 1–2 mm) enumerated with
odd numbers and four long solenoids (denoting core neck length
4–6 mm), enumerated with even numbers. In the scope of this
work, we consider the particle to be at an initial distance from
solenoid 1 along the Y-direction.

The motion of a single diamagnetic particle in the case of the
FF manipulator cannot be simply described by the same energy
minimization equations as in [19] or the velocity equation as in
[18] since these equations are applicable to an axis-symmetric
case only. Describing the motion of a single particle in the case
of the FF manipulator necessities conversion to the Cartesian
coordinates since the inclination of the solenoids should be
considered. Such conversion is not a trivial problem because
gravitational and capillary energies will depend on the nonlinear
properties of the interface deformation and its derivatives. More-
over, the open-loop analysis in [1] characterized the velocity
of a particle by studying the actuation velocity, i.e., the mean
particle velocity during the first second. This characterization
was sufficient to provide knowledge for building the control

algorithm based on heuristically obtained and mathematically
optimized parameters. However, the open-loop characterization
does not quantify the overall velocity profile of a single particle
and therefore limits the understanding of its velocity profile.

Here, we provide a theoretical framework that models the ve-
locity of a single diamagnetic particle pinned at the air–ferrofluid
interface when actuated by one or more inclined electromagnets
as in the case of the FF manipulator. The validity of the theo-
retical model was verified against the velocity estimated from
the experimental data for one and two actuated electromagnetic
solenoids. The theoretical model is built on first principles and
does not involve fitting parameters or extracting information
from the experimental data of the motion of the particles.

II. EXPERIMENTAL DATA

A 550 ± 50 μm PE particle (WPMS-1.25, Cospheric LLC,
USA) was carefully placed on the air–liquid interface of an in-
house developed ferrofluid [1] and brought into the workspace.
The particle was displaced by supplying electrical power to
solenoid 1 only or simultaneously to solenoids 1 and 8.

The experimental data were generated for the purpose of [1].
In the context of this work, the raw data has been processed
differently. The particle position data were loaded and smoothed
with a smoothing spline for X and Y axes separately to minimize
the fluctuations and consequently ease the computation of the
derivative for each axis. The axial derivative essentially repre-
sents the velocity along each axis. Finally, the total velocity was
calculated as a vector sum of the velocity components vx and vy.
Each velocity component was also smoothed with a smoothing
spline to minimize the fluctuations.

Here, we assume that the initial velocity was 0 mm/s. During
the experimental work, however, a feedback control was used to
bring the particle to a specific location, stop the controller for
∼1 s, and then actuate a solenoid or two to quantify the open-loop
behavior. Also note that here we show the data where the sum
of gravitational, magnetic, and capillary forces is nonzero; and
we dismiss the data associated with a random movement that
usually occurs at the end of each experimental trial. We also
want to emphasize that we disregard the torque induced to the
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Fig. 2. Estimated particle velocity (µm/s) from experimental data over time (s) at different actuation conditions. (a) Actuation of a single particle
at three different initial distances 2.23, 2.94, and 4.36 mm of the particle from solenoid 1 at actuation current of 1.43 A. (b) Actuation of a single
particle at three different actuation currents 0.95, 1.19, and 1.43 A of solenoid 1 for the initial distance of 2.48 mm. (c) Simultaneous actuation of a
single particle with short + long (SL) solenoids (solenoids 1 and 8) for actuation current of 1.43 A in each solenoid and initial distance of 4.16 mm
from solenoid 1. In all cases, each actuation experiment has been repeated for five times. The error bars denote 95% confidence interval.

particle when the magnetic field gradient comes at an angle
to the particle. We assume that the magnitude is negligibly
small since we have not observed any meaningful rotation of
a particle under manipulation in the experimental setup, the
analyzed data for open-loop actuation, and the data from the
automatic manipulation [1]. Appendixes A and B comment on
the data acquisition and processing. The first comment refers to
the calibration of the data and the second to the limits of the
estimation of the particle velocity from the experimental data.

We conducted two different types of experiments to examine
the velocity profiles of the single nonmagnetic PE particle when
actuated by a single solenoid. Each experimental trial was re-
peated five times. The first experiment examined the dependence
of the particle velocity when the initial position of the particle
was set to 2.23, 2.94, and 4.36 mm away from solenoid 1,
respectively. In the absolute Y coordinate, the initial distances
are –1.77, –1.06, and 0.36 mm. The velocity profiles estimated
from the experimental data as a function of time are shown in
Fig. 2(a). In all cases, the estimated velocity increased slightly in
the beginning, and peaked at about 1 s time point, followed by a
monotonic decay. The second experiment examined the particle
velocity versus the actuation current with actuation currents of
0.95, 1.19, and 1.43 A applied to solenoid 1. The estimated
velocities from the experimental data are plotted in Fig. 2(b).
Similar to the results with varying initial distances, the estimated
velocity initially slightly increased, and peaked at about 1 s,
followed by a monotonic decay.

Finally, a third experiment studied the dependence of the
particle velocity when it was simultaneously actuated by one
short (solenoid 1) and one long solenoid (solenoid 8) at 1.43 A
excitation current in each solenoid. As evident from Fig. 2(c),
and similar to the first two experiments, the estimated veloc-
ity from the experimental data initially slightly increased, and
peaked at about 1 s timepoint, following a monotonic descent.

III. MATHEMATICAL MODEL

This mathematical model encompasses the magnetic, the
capillary, and the gravitational energy of a particle floating at

the surface of a ferrofluid. In the first step, we discuss how
the interface deformation arises from the nonuniform magnetic
field generated by an inclined dipole at a distance z above the
interface. Then we consider a spherical particle trapped at this
interface, followed by performing force decomposition. Finally,
we determine the velocity. We consider the general case where
the magnetic field has no symmetry and arises from several
solenoids at arbitrary positions and orientations.

A. Magnetic Stress Tensor

The solenoids, numbered by i = 1, . . . , n, are at positions
Ri = Xiex + Yiey + Ziez , in respect to the origin O(0, 0, 0)
where ei are the unit vectors and Zi is the height of the center
of the magnetic dipole above the ferrofluid interface. Xi and Yi

are the in-plane coordinates of the magnetic dipole of the ith
solenoid. The magnetic dipoles are oriented according to

mi = mixex + miyey + mizez. (1)

Then, the magnetic field is the sum of the dipolar fields

B (r) =
μ0

4π

n∑
i=1

(
mi

|r −Ri|3
− 3

[mi · (r −Ri)] (r −Ri)

|r −Ri|5
)

(2)
where μ0 is the magnetic permeability of vacuum and r =
xex + yey + zez is the position vector of interest (e.g., the
center of gravity of a spherical particle) with respect to the origin
in Cartesian coordinates x, y, z. The difference r′ = r −Ri is
the vector from the magnetic dipole to the position of the particle.
The scalar product of two vectors m and r is

mi · r = mixx+ miyy + mizz (3)

with the magnitude of the vector

|r| =
√

x2 + y2 + z2. (4)

The interfacial magnetic pressure Π is defined through the
square of the magnetic field B2 = |B2| = B2

x + B2
y +B2

z ,
evaluated at the interface z = 0, same as in [19]. Hence, we
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obtain

Π(x, y) =
μff − μ0

2μffμ0
B(x, y, 0)2 (5)

where μff and μ0 are the magnetic permeabilities of the fer-
rofluid and free space, respectively.

B. Young–Laplace Equation

The Young–Laplace equation is a mathematical description
of the interfacial capillary pressure difference between two
static fluids. Therefore, the Young–Laplace equation for the FF
manipulator can be described as follows:

γH (x, y)− gρffu (x, y) + Π (x, y) = 0 (6)

where γ is the surface tension of the ferrofluid, u(x, y) is the
interface deformation with H(x, y) being its mean curvature, g
is the gravitational acceleration constant, ρff is the density of
the ferrofluid, and Π(x, y) is the magnetic pressure subjected to
the air–ferrofluid interface defined in (5). Since the pressure Π
is given as an explicit function of the coordinates x and y , it is
convenient to express the gradient of u as

∇u (x, y) = ex ux (x, y) + ey uy (x, y) (7)

such that ux = ∂u/∂x and uy = ∂u/∂y. Here, we denote
the gradient operator with ∇. Similarly, let us define uxx =
∂2u/∂x2 and uyy = ∂2u/∂y2, then the mean curvature has the
following form:

H (x, y) = uxx (x, y) + uyy (x, y) (8)

with its gradient

∇H (x, y) = ex Hx (x, y) + ey Hy (x, y) (9)

where Hx = ∂H/∂x and Hy = ∂H/∂y.
The analytical expressions for the solutions of the interface

deformationu(x, y) and its derivatives are provided in Appendix
C.

C. Forces Acting on a Particle

The effective mass of a spherical particle floating on the air–
ferrofluid can be expressed as in [19], [25]

meff = ρpVp − ρffVimm (10)

where ρp and ρff denote the density of the particle and the
ferrofluid, respectively, and Vp is the volume of the particle. The
immersion volume Vimm represents the volume of the replaced
ferrofluid by the particle and can be expressed as [19], [25]

Vimm =
π

3
a3
p

(
1 + 3 cos θ − cos3θ

)
(11)

with ap being the particle radius, and θ denoting the wetting
angle between the particle and the ferrofluid.

When a nonuniform magnetic field is subjected to a particle
floating on the air–ferrofluid interface, the particle experiences
the following forces: the magnetic force exerted on the parti-
cle FM , the gravitational force FG from the deformed air–
ferrofluid interface, the capillary force FC at the interface, and

the drag force opposing the motion of the particle FD. Hence,
we obtain

F TOT = FM + FG + FC − FD. (12)

The magnetic force has the following form:

FM =
2
μ0

(χffVimm − χpVp)∇
(
B2
)

(13)

where χff =
μff

μ0
− 1 and χp denote the magnetic suscep-

tibility of the ferrofluid and the particle. The magnetic force
has a positive sign because here the ferrofluid has much higher
magnetic susceptibility than the particle (i.e., χff � χp). The
gravitational force along the air–ferrofluid interface has the
following form:

FG = meffg ∇u. (14)

Similarly, the capillary force reads

FC = meffg l2∇H (15)

where l =
√
γ/gρff is the capillary length of the ferrofluid.

Both, the gravitational and the capillary force have a positive
sign. In the former case, the reason is that the effective mass
meff is positive due to the similarity of the densities of the
particle and the ferrofluid, and in the latter case due to the positive
curvature of the deformed interface.

When the particle is moving on the interface, it will experi-
ence a drag opposing the movement. This drag force could be
approximated as

FD = fdvp = 2Cπηr0 vp. (16)

Here, fd = 2Cπηr0 represents the friction factor and vp is
the velocity of the particle; C is a drag constant ranging from 1
to 3, η is the viscosity of the ferrofluid, and r0 = ap sin θ is the
radius of the contact line.

The expanded form of the force could be rewritten as

F TOT =
2
μ0

(χffVimm − χpVp)∇
(
B2
)
+meffg ∇u

+meffg l2∇H − 2Cπηr0 vp (17)

or

F TOT =
2
μ0

(χffVimm − χpVp)∇
(
B2
)

+meffg( ∇u+ l2∇H)− 2Cπηr0 vp. (18)

D. Velocity Exerted on a Single Particle

According to Newton’s second law, the total force acting on
the particle exerts acceleration dvp/dt; hence, we obtain

m
dvp

dt = 2
μ0

(χffVimm − χpVp)∇
(
B2
)

+ meffg(∇u+ l2∇H)− 2Cπηr0 vp.
(19)

However, assuming that the motion of the particle is over-
damped (usually 1 or maximum 2 body lengths per second), the
acceleration dvp/dt is equated to 0. Therefore, we obtain the
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velocity of the particle

vp =
1

2Cπηr0

( 2
μ0

(χffVimm − χpVp)∇
(
B2
)
+

meffg
( ∇u+ l2∇H

) )
.

(20)
Note that when a particle resides at the air–liquid interface it

exhibits a random movement due to locally induced airflow (e.g.,
from movements of the operator nearby) as well as thermocapil-
lary convective flows resulting from the heat exposure (e.g., from
illuminating source and variations in the ambient temperature)
of the interface. These contributions are not accounted in the
presented model.

IV. NUMERICAL IMPLEMENTATION

COMSOL Multiphysics 6.0 (COMSOL Group, Sweden) was
used for solving the partial differential equation (PDE) (6) for
the interface deformation u and its first and second derivatives
for obtaining the mean curvature H (8). The data for u and
its derivatives were transferred to MATLAB (v2021) where the
gradient of the curvature was computed. Finally, the velocity
was computed with (20) and the resulting velocity profiles were
compared to the estimated velocity profiles from the experi-
mental data. The density (1071 kg/m3), viscosity (0.9 mPs),
and surface tension (74.75 mN/m) of the ferrofluid are taken
from [1]. The magnetic susceptibility (0.016) was measured
with a vibrating sample magnetometer mode in Quantum Design
PPMS equipment (Quantum Design, USA). The contact angle
of the particle with the ferrofluid was estimated to ∼75°.

A. Calibration to Experimental Data

The magnitude of the magnetic flux density (or magnetic field)
was numerically computed by a finite-element model (FEM)
implemented in COMSOL and experimentally measured in [1].
The magnetic dipole position and strength were adjusted in a
2-D axisymmetric study against the FEM data for two different
cut lines [Fig. 3(a)], one along the easy axis of the solenoid
[Fig. 3(b)] and one off-centered line resembling the position of
the air–ferrofluid interface [Fig. 3(c)]. For an actuation current
of 1.43 A, the identified magnetic dipole strength was 0.0021
Am2 for a short solenoid at a location of 15 mm from the tip
of the solenoid core. For a long solenoid, the magnetic dipole
strength was 0.0012 Am2 at the location of 5 mm from the tip.
The position of magnetic dipoles in global Cartesian coordinates
(i.e., with respect to the coordinate system of the FF manipulator)
were (0, –5.41, 1.50) mm and (3.82, –3.82, 1.50) mm for the short
solenoid and the long solenoid, respectively.

B. Solving for the Young–Laplace Equation and
Obtaining the Interface Deformation u and Its Derivatives

A 2-D stationary COMSOL model was defined for solving
a coefficient defined PDE with diffusion coefficient c = γ, ab-
sorption coefficients a = ρffg, and source term f = Π. The
geometry consisted of two circles, one with a diameter of 8
mm, approximating the dimensions of the workspace; and the
other one with a diameter of 57 mm, approximating the size
of the Petri dish containing the ferrofluid. The solution for u

Fig. 3. Numerical implementation and calibration of the magnetic
dipole in a short solenoid. (a) Short solenoid geometry for axisymmetric
numerical study and definition of cut lines. (b) Calibration of the magnetic
dipole against the FEM model of the solenoid line along the axis of
symmetry (cut line∗). (c) Calibration of the magnetic dipole against the
FEM model of the solenoid line along the off-centered line (cut line∗∗).

was numerically obtained. The first and second derivatives of u,
the mean curvature H , and the gradient of the mean curvature,
∇H , were computed by numerical differentiation. Finally, the
velocity was computed using (20).

V. RESULTS AND DISCUSSION

A. Numerical Results for the Interface Deformation and
the Mean Curvature

Fig. 4(a) illustrates the experimental procedure with varying
initial distances whose results are shown in Fig. 2(a). The
particle is initially located at a particular initial distance
(denoted with initDist on the figure) from the actuated solenoid
(solenoid 1). The particle is displaced, and its position change
has been recorded.

Fig. 4(b) shows a surface plot of the computed interface
deformation u when a short solenoid (solenoid 1) was actuated
with 1.43 A. The interface deformation along the Y-axis is
shown in Fig. 4(c). The peak of the interface deformation is
∼35 μm. This magnitude of the interface deformation has a
reasonable magnitude even though a precise measurement is
lacking. The interface deformation is a bump that monotonically
rises, reaches a peak, and decays. The numerically computed
peak of the interface deformation is located at –498 mm from
the origin; hence, it is outside of the workspace of the FF ma-
nipulator and at about 0.4 mm offset distance from the location
of the magnetic dipole.

The first derivative of u along X- and Y- axes and the vector
field of the negative gradient of u are shown in Fig. 8(a) and
(b), respectively. Note that the gravitational contribution in the
velocity (14) depends on the ∇u. The second derivative of u
along X- and Y-axis is shown in Fig. 8(c)(i and ii).
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Fig. 4. Numerical results for the interface deformation and mean cur-
vature when the solenoid 1 (short solenoid) is actuated at 1.43 A.
(a) Illustration of the top-view of the FF manipulator when the solenoid
1 is actuated. (b) 2-D surface deformation u (in meters) for the given
actuation input. (c) Interface deformation u and (d) mean curvature H
along the ordinate.

The mean curvature along the Y-axis is shown in Fig. 4(d).
The mean curvature contains two local peaks and one valley. The
left peak is 0.818 m-2 and the right is 0.760 m-2. The difference
of ∼7% signifies asymmetricity caused by the 45° inclination of
the solenoid with respect to the air–ferrofluid interface. The 3-D
surface plot of the mean curvature is shown in Fig. 8(d). The
gradient of the mean curvature along the X and Y axes is shown
in Fig. 8(e)(i and ii). The simulated results show that similarly to
the gravitational force the capillary force points away from the
peak of the deformation adding to the velocity of the particle.

B. Velocity Profile. Comparison of the Particle Velocity
Estimations From the Theoretical Model and From the
Experimental Data

The surface plot of the particle velocity is shown in Fig. 5(a)
and has a cylinder cone shape. The cylinder cone shape features
a steep conical hill and a hollow cylinder, or crater, at the peak
of the conical hill, resembling the shape of a volcano. The peak
surface (red data points) has a tilt toward the positive Y-axis.
The surface plots of vx and vy are shown in Fig. 8(f). The vector
field of the particle velocity is shown in Fig. 5(b)(i and ii), and it
indicates that the particle velocity dominantly is directed away
from the peak of the interface deformation. The velocity field
also indicated symmetricity along the Y-axis. Fig. 5(c) shows
the velocity profile along the Y-axis. The velocity has two peaks
and one valley close to the location of the origin of the magnetic
dipole and monotonically decreases at the tails. The velocity
profile in Fig. 5(c) predicts a local minimum where a PE particle

could be trapped. Indeed, this scenario is possible, but such a
scenario would be energetically very unfavorable. One analogy
of this scenario could be to balance a ball on top of another ball,
which is theoretically possible, but practically extremely rare to
occur.

Fig. 5(d) shows the individual contributions to the particle ve-
locity. The most dominant contribution is from the gravitational
force, followed by the magnetic force contribution. The least
dominant is the capillary force (or curvature) contribution.

Finally, Fig. 5(e) shows the comparison between the theo-
retically estimated velocity and the estimated velocity from the
experimental data. The data is for a short solenoid (solenoid 1)
actuated at 1.43 A. The theoretical and experimental estimated
particle velocities follow the same trend and order of magnitude.
The discrepancy in the magnitude ranges from ∼0% (overlap-
ping curves) to a maximum of 40%. The root-mean-square errors
are 170.7, 156.6, and 191.2 μm/s, for initial distances of 2.23,
2.94, and 4.36 mm, respectively.

Fig. 6 shows the particle velocity for different actuation
currents. Fig. 6(a) illustrates the theoretically estimated particle
velocities for the three actuation currents 1.43, 1.19, and 0.95
A at the initial distance of 2.48 mm. The estimated velocity
from the experimental data in Fig. 2(b) depicts the velocity with
respect to time, whereas Fig. 6 depicts the velocity with respect
to the position of the particle. Fig. 6(b) provides a comparison
between theoretical velocity and estimated particle velocity from
the experimental data for the three actuation currents. The theo-
retical velocities match the decaying trend very well. However,
the velocity magnitude features an error rate of factor 1.3 up to
factor 2 at the initial phase of the movement. The largest error
is obtained for the highest actuation current (1.43 A), and the
smallest error for the lowest actuation current (0.95 A). The
theoretical predictions fit the estimation from the experimental
data better for distances further away from the magnetic dipole.
The root-mean-square errors are 59.1, 165.8, and 332.5 μm/s for
actuation currents of 1.43, 1.19, and 0.95 A, respectively.

Fig. 7 shows the particle velocity for the simultaneous actu-
ation of two solenoids (solenoids 1 and 8). Fig. 7(a) illustrates
the actuation scenario and Fig. 7(b) shows the surface plot of
the interface deformation. The maximum magnitude is ∼45 μm
and it is located below the magnetic dipole of solenoid 1. A
second local peak does also exist under the magnetic dipole of
the solenoid 8. Fig. 7(c) shows the surface plot of the velocity.
The surface plots of vx and vy are shown in Fig. 8(g). The surface
plot of the particle velocity shows two craters and one dominant
peak. Similar to the case of a single solenoid, the particle velocity
is largely directed away from the magnetic dipoles such that
the stronger decay is present for the stronger magnetic dipole
(solenoid 1). The vector field of the particle velocity is shown in
Fig. 7(d)(i and ii). Note that the arrows of the vector on the
left-hand side of the workspace point toward the north-west
direction, but the ones on the right-hand side point toward the
north. Finally, Fig. 7(e) shows the comparison between the
theoretically estimated particle velocity and estimated velocity
from the experimental data when a short solenoid (solenoid
1) and a long solenoid (solenoid 8) have been actuated with
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Fig. 5. Numerical results for the particle velocity when the solenoid 1 (short solenoid) is actuated at 1.43 A at three different initial distances.
(a) Magnitude of the theoretical particle velocity. (b) Vector field of the theoretical particle velocity (i) around the workspace, and (ii) close-in to the
origin of the interface deformation. The red circle denotes the workspace. (c) Theoretical particle velocity along Y-axis across the whole dish.
(d) Individual contributions to the theoretical particle velocity. (e) Comparison of the theoretical versus estimated particle velocity from the
experimental data.

Fig. 6. Results for particle velocity at different actuation currents.
(a) Theoretically estimated particle velocity for actuation currents 1.43,
1.19, and 0.95 A for the initial distance of 2.48 mm. (b) Comparison
between theoretical velocity and velocity estimated from experimental
data for actuation currents of (i) 1.43 A, (ii) 1.19 A, and (iii) 0.95 A. The-
oretical velocities are represented with circle/triangle/asterisk-marked
line and estimated velocities from experimental data with lines with error
bars.

1.43 A per solenoid. The largest error (∼60%) is obtained at the
beginning of the actuation and with time (or position change)
the error is decreased up to a point to meet the estimates from
the experimental data. The trend in both cases is matching. The
root-mean-square error is 187.3 μm/s.

The reasons for the mismatch of the theoretical prediction
[in Figs. 5(e), 6(b), and 7(e)] and the estimations from the
experimental data could be attributed to experimental errors due
to the constant presence of thermal noise (e.g., thermocapillary
convective flows) and its increase in dominance the further the
particle goes from the actuated solenoid(s); experimental errors
due to the ongoing evaporation and change of the magnetic
susceptibility of the ferrofluid; the estimation errors arising from
the image acquisition frequency, image processing, and data
analysis including two subsequent averaging steps and fitting
procedures, see Appendixes A and B; inaccuracy arising from
the assumed constant wetting contact angle and triple contact
line of the PE particle while residing on the deformed interface
that lead to the estimation of the deformed interface u; and the
assumption of overdamped dynamics (disregarding the initial
acceleration) in the theoretical model.

One additional reason for the discrepancy in Fig. 7(e) is the
inaccuracies in the location of the magnetic dipole of the long
solenoid (solenoid 8).
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Fig. 7. Two-solenoid actuation. (a) Illustration (to scale) of the top-view of the FF manipulator when the solenoids 1 and 8 are actuated with
1.43 A. (b) Surface deformation in meters. (c) Surface plot of the magnitude of the particle velocity. (d) Vector field of the particle velocity (i) around
the workspace, and (ii) close-in to the origin of the interface deformation. The red circle denotes the workspace. (e) Comparison of the theoretical
particle velocity versus the particle velocity estimated from the experimental data.

VI. SUMMARY AND CONCLUSION

This article reported a theoretical model and implementation
of the velocity field for a single diamagnetic particle pinned
at the air–ferrofluid interface. The theoretical model is valid
for any number of electromagnetic solenoids, even though we
have demonstrated its validity only with one particle and up
to two solenoids. Our theoretical model correctly estimates the
magnitude and the trend of the interface deformation as well as
the magnitude and trend of the velocity. The theoretical velocity
features a root-mean-square error of∼15%, 18%, and 30% of the
maximum velocity estimated from the experimental data in each
case for the variable initial distances. For the case of actuation
with variable current, we obtained a root-mean-square error of
∼11%, 24%, and 43% of the maximum velocity estimated from
the experimental data. For the case of two-solenoid actuation,
the root-mean-square error was ∼25%.

We have also theoretically analyzed the individual compo-
nents in the velocity profile and not just matched the experi-
mental results per se. We found that all forces (gravitational,
magnetic, and capillary) are contributing to the overall velocity
such that the biggest dominance comes from the gravitational
force, then from the magnetic force, and the least dominant
contribution from the capillary force. We also found that in
the magnetic dipole approximation, the location of the dipole
lies somewhere between the tip of the solenoid and the end
of the coil. The theoretical model is time-independent, i.e.,
assumes overdamped dynamics so the initial acceleration is not

captured. The changing magnetic field in the workspace of the
FF manipulator induces currents in the solenoids, which further
generates magnetic field from the induced currents. However,
we anticipate that the generated magnetic field from the induced
currents will have negligible magnitude than the magnetic field
generated by the supplied direct currents, thus such contributions
are not accounted for.

The presented model provides an understanding of the un-
derlying physics of the manipulation principle in the ferrofluid
manipulator. It also can serve as a means for the development
of control algorithms. The particle velocity is based on the
constant parameters for the particle and the ferrofluid and only
the magnetic field remains to be the only varying quantity, even
though the magnetic field gradient ∇(B2) is the one present
in (20). Note that the gradient of the deformation interface
∇u and the curvature of the deformation interface H are still
dependent on the magnetic field since (A4) and (A6) show that
the ∇u and H are proportional to the magnetic pressure Π,
which in turn is proportional to the square of the magnitude of
the magnetic field B. One infers that the velocity of the particle
is strictly proportional of the applied magnetic field, which can
be controlled by modulating the (direct) current supplied to each
solenoid.

The theoretical model and the manipulation principle of
the ferrofluid manipulator are fundamentally different from
the magnetic actuation principles in the established wire-
less/untethered magnetic methods in robotics [26]. The proposed
model may facilitate the development of other theoretical models
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Fig. 8. Intermediate numerical results. Actuation of solenoid 1 (short solenoid) at 1.43 A. (a) Gradient of the interface deformation along (i) X-axis
and (ii) Y-axis. (b) Vector field of the negative gradient of the interface deformation. The red semicircle represents part of the workspace. (c) Second
derivative of the interface deformation along (i) X-axis and (ii) Y-axis. (d) Surface plot of the mean curvature H. (e) Gradient of the mean curvature
along (i) X-axis and (ii) Y-axis. (f) Surface plot of the particle velocity along (i) X-axis and (b) Y-axis for actuation of solenoid 1 (short solenoid) at
1.43 A. (g) Surface plot of the particle velocity along (a) X-axis and (b) Y-axis for simultaneous actuation of solenoids 1 and 8 at actuation current
of 1.43 A per solenoid.

and provide design considerations for future micromanipulation
platforms that will use ferrofluids for indirect manipulation at
the air–liquid interface.

The utilization of ferrofluids to manipulate nonmagnetic
media (diamagnetic or weakly paramagnetic), specifically on
the air–ferrofluid interface, could be extended in several new
avenues. Distinct patterns may be generated if a multiparti-
cle system is considered. Such a system could be interesting
from the perspective of active matter physics, but also from
a robotic perspective because feedback control can be used
for phase shifting or motion control of entire clusters [27],
[28]. An alternative approach could be the utilization of living
matter (cells/microorganisms) or oil droplets instead of synthetic
particles.

APPENDIX

A. Comment on Experimental Data Recalibration

The experimental data has been obtained for characterizing
the actuation velocity (velocity during the first second) in an
open loop regime for demonstrating dependencies to particle
velocity from the solenoid to particle distance, actuation current,
and the number of actuated solenoids in [1]. The pixel-to-mm
calibration of the camera was performed by capturing an image

of a ruler with a resolution of 100 μm. Here, we recalibrate the
data by taking the particle diameter (datasheet value: 550 μm)
as ground truth, to which we adjust the pixel-to-mm ratio.

B. Comment on Estimation of Particle Velocity From the
Experimental Data

The camera used for recording the particle motion was used
for data acquisition and feedback control of the particle simul-
taneously. The acquisition frequency was set to 10 frames per
second. The feedback control was used to position the particle
in the initial position and then actuate it in order to examine its
open-loop behavior.

We estimate the velocity from the position data of the particle.
The particle position is obtained by using an object tracking
algorithm followed by a smoothing step to the position data (first
averaging step). A derivation is applied to the smoothed position
data to obtain the particle velocity. The obtained velocity data
is also smoothed (second averaging step) to obtain a reasonable
estimate since the fluctuating velocity is full of noise. Note that
we are applying two smoothing steps in the processing of the
data. The velocity obtained from the experimental data has an
associated error, which is difficult to estimate. Hence, it should
not be taken as ground truth.
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C. Derivatives of the Interface Deformation u

Analytically, using Green’s function, the formal solution of
(6) can be written as a convolution integral

u (x, y) = 1
2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

Π(x− x′, y − y′ )

(A1)

with K0 being the modified Bessel function of the second kind
and zeroth order and x′ and y′ are components of the vector r′.

The components of the gradient of the mean curvature ux and
uy have the following solution:

ux (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

Πx (x− x′, y − y′ )

(A2)

and

uy (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

Πy (x− x′, y − y′)

(A3)

where we defineux = ∂u/∂x,uy = ∂u/∂y,Πx = ∂Π/∂x, and
Πy = ∂Π/∂y. ∇u(x, y) can also have the following compact
form:

∇u (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

× (exΠx(x− x′, y − y′ )

+ eyΠy(x− x′, y − y′ )). (A4)

Similarly, when we define uxx = ∂2u/∂x2 and uyy =
∂2u/∂y2, the curvature can be expressed as

H (x, y) = ∇2u (x, y) = uxx + uyy

=
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

× (Πxx (x− x′, y − y′ )

+ Πyy (x− x′, y − y′)) (A5)

with the derivatives Πxx = ∂Π2/∂x2 and Πyy = ∂Π2/∂y2. Fi-
nally, the gradient of the mean curvature is

∇H (x, y) = ex Hx (x, y) + ey Hy (x, y) (A6)

with Hx = ∂H/∂x, Hy = ∂H/∂y, having the following form:

Hx (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

× (Πxxx (x− x′, y − y′ )

+ Πyyx (x− x′, y − y′)) (A7)

and

Hy (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

× (Πxxy (x− x′, y − y′ )

+ Πyyy (x− x′, y − y′)) (A8)

with the third derivative of the magnetic pressure Πxxx =
∂3Π
∂x3 , Πyyx = ∂2

∂y2
∂
∂xΠ , Πxxy = ∂2

∂x2
∂
∂yΠ, and Πyyy = ∂3Π

∂y3 .
∇H(x, y) has the following compact form:

∇H (x, y) =
1

2πγ

∞∫
−

∫
∞

dx′dy′K0

(√
x′2 + y′2

l

)

×
(
(Πxxx (x−x′, y− y′ )+ Πyyx (x−x′, y− y′))ex+
+ (Πxxy (x−x′, y− y′ )+ Πyyy (x−x′, y− y′)) ey

)
.

(A9)

Equations (A1)–(A9) present the analytical solution of the
interface deformation u, its first, second, and third derivative
necessary for the computation of the mean curvature H , and the
gradient of the mean curvature ∇H . However, in our implemen-
tation, we have numerically computed all the quantities using the
coefficient form PDE in COMSOL on a supercomputer.
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