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Discrete-Impedance Metasurfaces for Wireless
Communications in D-Band
S. Kosulnikov, X. Wang, and S. A. Tretyakov, Fellow, IEEE

Abstract—Engineering and optimization of wireless propaga-
tion channels will be one of the key elements of future commu-
nication technologies. Metasurfaces may offer a wide spectrum
of functionalities for passive and tunable reflecting devices,
overcoming fundamental limits of commonly used conventional
phase-gradient reflectarrays and metasurfaces. In this paper we
develop an efficient way for the design and implementation
of metasurfaces with high-efficiency anomalous reflector func-
tionalities. The developed numerical method provides accurate,
fast, and simple metasurface designs, taking into account non-
local near-field interactions between array elements. The design
method is validated by manufacturing and experimental testing
of highly efficient anomalous reflectors for the millimeter-wave
band.

Index Terms—Metasurface, diffraction grating, reflection co-
efficient, far-field scattering

I. INTRODUCTION

Novel wireless communication technologies are targeted for
the need of growing data transfer rates, which leads to a
shift to higher operational frequencies. The millimeter-wave
(MM-wave) technologies become a basis for new generations
of the wireless communication systems. However, commu-
nications at such high frequencies suffer from high free-
space attenuation even in indoor scenarios. For this reason,
it is necessary to use highly directive antennas, losing the
advantages of multi-path propagation that usually provides
connectivity even without a direct line of sight (LOS) between
the antennas. One of the very noticeable techniques potentially
solving this issue is based not on modifications of the source
and/or receiver itself, but on modifications and optimizations
of the propagation environment. Indeed, especially indoors, it
is very attractive to realize a scenario where the signal will
be efficiently relayed from some off-site objects. It is worth
noting that repeater-like-devices do not have to be active: even
a passive but smart optimization of the signal propagation
path can improve the communication channel by reflecting
or transmitting wave beams towards the desired directions.
We also note that this approach is in line with the “green
trends” for efficient and ecological resource utilization. In this
work, we consider a particular example of passive anomalous
reflectors that reflect incident waves to arbitrarily set reflection
angles. This functionality can be used to create an effective
wireless link for non-line-of-sight (NLOS) communications
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even for MM-wave systems based on the use of high-gain
antennas. Figure 1 illustrates the considered scenario, where
the signal from the transmitter cannot reach the receiver in the
LOS mode due to a wall obstacle, but still a reliable wireless
channel is set due to redirecting and focusing the reflected
signal by an anomalously reflecting metasurface.

The research of anomalous reflectors has been actively
going on from 60’s. Perhaps the earliest anomalous reflectors
are reflectarrays where each element separated by λ/2 distance
from neighboring elements locally reflects at different phases,
forming a desired reflection wavefront [1], [2]. However, for
grazing reflection angles, the device efficiency significantly
drops. Later, this idea was implanted in arrays with subwave-
length unit cells: phase-gradient metasurfaces [3], [4]. The
reflection phase of each unit cell of the metasurface (realized
as a periodical lattice of cells) is linearly and periodically
varying on the surface. Still, such phase-gradient metasurfaces
inherit the main drawbacks of reflectarrays: high reflection
efficiency is achievable only when the deviation from the
usual reflection law is not large. At sharp reflection angles
spurious scattering dramatically increases. Since 2016, it is
recognized that low efficiency of a device operating far from
the specular or retro-reflection regimes is caused mainly by
the impedance mismatch of the incident and reflected waves
[5], [6]. For a given plane-wave incidence, considering only a
single plane wave reflection, it is not enough to satisfy the local
lossless boundary condition of the metasurface [6]. In [7], it
was pointed out that evanescent fields have to be engaged and
optimized to realize a purely reactive boundary that perfectly
directs an incident plane wave to an anomalous direction.
Based on this general principle, different design methods have
been proposed. For example, in [8], [9], the evanescent fields
are optimized by ensuring local power conservation on the
surface and finding a locally reactive surface. In contrast,
the design methods in [10]–[12] are based on the global
power conservation where the structures of meta-atoms are
collectively optimized within a super-cell. This method was
recently used for the creation of anomalous reflectors in D-
band [13], where patch sizes in a super-cell were collectively
optimized starting from the local periodic approximation as an
initial guess, with good results. In parallel, the meta-grating
method [14], [15] was suggested as another alternative to
realize perfect anomalous reflection with a reduced number
of meta-atoms.

In this paper, we propose an effective design method for
the realization of perfect anomalous reflection into arbitrary
directions. As a basis for design, we select an impedance
sheet placed on a grounded dielectric substrate. We first dis-
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Fig. 1. Application scenario of an anomalous reflector in MM-wave wireless
communications.

cretize the impedance sheet into finite elements with uniform
values of the sheet reactance. For this discretized structure
we derive an analytical formula for all the scattered Floquet
modes of the metasurface. Then we use an inverse design
optimization method to optimize the discrete impedances until
the amplitudes (and possibly phases) of the scattered modes
satisfy the design objectives. This method is different from
the known impedance-based methods [8], [16], where the
sheet impedance is first assumed to be continuous in the
optimization process and discretized into finite elements only
after optimization. After discretization, such metasurfaces may
not behave as perfect as expected from the theoretical results
of the continuous-profile optimization. In contrast, in the
proposed method, the sheet impedance is optimized already
in the discretized form. Therefore, the performance does not
suffer from degradations caused by surface discretization. In
addition, the proposed method is not limited by the require-
ment of the local power conservation on the surface: the input
impedance seen at the input surface can take purely imaginary
or complex values. The overall passivity of the device is
automatically ensured due to the passivity of the impedance
sheet and the substrate material. Therefore, the optimized
results encompass both realization possibilities (local or global
power conservation), which is more general than in the earlier
developed methods. In addition, using the same approach, it
is possible to design other devices for wave shaping, such as
multi-channel beam splitters with arbitrarily assigned power
ratios.

This paper is organized as follows: in the second section
we introduce the theoretical model of the developed numerical
optimization method, in the third section we focus on a partic-
ular example implementing an anomalous reflector operating
at D-band, the fourth section is focused on the experimental
validation of the implemented anomalous reflector, the con-
clusions and discussion section is closing the paper.

II. DISCRETE SHEET IMPEDANCE MODEL FOR REFLECTION
OPTIMIZATION

In the sheet-impedance model, the metasurface is assumed
to be formed by an impedance sheet on top of a grounded
dielectric substrate with permittivity ϵd and thickness d. The
sheet is characterized by the non-uniform sheet impedance

Zs that relates the tangential component of the macroscopic
electric field and the surface current density flowing on the
sheet. Figure 2(a) shows a single unit cell of the metasur-
face with the spatial periodicity D (the size of one super-
cell). In earlier work [17], the impedance distribution Zs(x)
was assumed to be a continuous function of the tangential
coordinates. The impedance distribution was optimized to
achieve the desired performance, and next discretized into
a number of uniform-impedance strips (subsells) to allow
practical realizations as arrays of properly shaped patches.
However, discretization of the optimal continuous distribution
leads to some deterioration of performance. Here, we improve
the design method by initially optimizing piece-wise uniform
impedance sheets, corresponding to discrete sets of meta-
atoms. In this way, we avoid performance degradation caused
by discretization errors.

We discrete one super-cell into K elements, as shown in
Fig. 2(a), where the central coordinate of the m-th cell is
denoted as xm = (2m− 1)D/2K. The sheet impedance
of the m-th subcell is denoted as Zm where m ∈ [1,K].
The discretized sheet impedance profile Zs(x) is piece-wise
homogeneous and can be viewed as a cascade of K step
functions. As for any periodic function, it can be decomposed
into Fourier series as

Zs(x) =

+∞∑
m=−∞

gme−jmβMx, (1)

where gm are the Fourier coefficients. A plane wave illu-
minates the metasurface at the angle of θ = θi. Due to the
periodicity of the reflector, the scattered field is a sum of an
infinite number of Floquet harmonics, denoted by index n.
The tangential wavevector of the Floquet modes scattered from
periodical structures can be written as kxn = k0 sin θi+nβM,
where βM = 2π/D is the spatial modulation frequency of
the surface impedance, n is the mode order, θi is the incident
angle, and k0 = ω0

√
ϵ0µ0 (ω0 is the incident-wave frequency)

is the free-space wavenumber. Modes satisfying |kxn| < k0
propagate into the far-zone at the angles θn, defined by

sin θn =
k0 sin θi + nβM

k0
. (2)

For |kxn| > k0, the modes are evanescent, exponentially
decaying along the surface normal.

Next, based on the mode-matching method, we aim to find
the amplitudes of all scattered modes at the metasurface plane
(z = 0). For convenience of analysis, we use the transmission-
line model shown in Fig. 2(b). The sheet impedance is
modeled as a shunt impedance in the transmission line. The
grounded substrate is modeled as a shorted transmission line
with its length equal to the substrate thickness. The current
and voltage in the transmission-line model are analogous to
the total tangential electric and magnetic fields on the surface
(z = 0). Unlike conventional transmission-line modeling of
uniform metasurfaces, where the current and voltage only
have one mode and can be treated as scalar numbers, in this
case, the space-modulated metasurface excites infinitely many
spatial modes (including propagating and evanescent ones).
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Fig. 2. (a) Side view of a metasurface containing discrete impedance sheets
on a grounded substrate. (b) Equivalent circuit of the metasurface.

Therefore, the current and voltage in the transmission line are
not simple scalar numbers but infinite sums:

Is(x) =

+∞∑
n=−∞

ins e
−jkxnx (3a)

and

Vs(x) =

+∞∑
n=−∞

vns e
−jkxnx. (3b)

The current and voltage on the impedance sheet must obey
Ohm’s law, Vs(x) = Zs(x)Is(x). Substituting Eqs. (3a), (3b),
and (1) into Ohm’s law, we have

+∞∑
n=−∞

vns e
−jkxnx =

+∞∑
n=−∞

+∞∑
m=−∞

gmins e
−jkx,n+mx. (4)

By shifting the summation order n to n−m on the right side
of Eq. (4), we get an expression where both sides share the
same basis e−jkxnx which can be eliminated together with the
summation over n. Therefore, Eq. (4) can be simplified as

vns =

+∞∑
m=−∞

gmin−m
s . (5)

One can see from Eq. (5) that every voltage harmonic is related
to all current harmonics due to mode coupling. Considering
a finite number of Floquet modes from n = −N to n = N ,
Eq. (5) can be written in a form of matrix multiplication:

v−N
s

v1−N
s

...
v+N
s

 =


g0 g−1 · · · g−2N

g1 g0 · · · g1−2N

...
...

. . .
...

g2N g2N−1 · · · g0




i−N
s

i1−N
s

...
i+N
s

 . (6)

Denoting the current and voltage arrays in Eq. (6) as vs and is,
and the (2N+1) dimensional impedance matrix as Zs, Eq. (6)
can be written in a simple form: vs = Zs · is. The impedance
matrix accounts for mutual coupling between different modes.
This is a powerful and convenient method extensively utilized
in studies of diverse physical systems, including circuits [18],
communication systems [19], and electromagnetic systems
[15], [20].

Similarly to the sheet impedance, the input impedance of the
grounded substrate can also be written in matrix form. Since
the substrate is spatially uniform and there is no mode coupling
in the uniform substrate, the impedance of the grounded

substrate is a (2N + 1) dimensional diagonal matrix Zgs.
The n-th diagonal term is the input impedance of grounded
substrate for the n-th scattering mode (note that we number
the matrix columns and rows from −N to +N instead of from
1 to 2N + 1):

Zgs(n, n) =
1

Zd,n tanh(jkdznd)
. (7)

Here, Zd,n is the wave impedance of the dielectric substrate
material, and kdzn =

√
ω2
0ϵ0ϵdµ0 − k2xn is the normal com-

ponent of the wavevector in the dielectric substrate for the
n-th mode. For TE polarized waves, Zd,n = (µ0ω0)/k

d
zn and

for TM polarized waves Zd,n = kdzn/(ω0ϵ0ϵd). Details for
derivation of (7) can be found in Sec. 4 of the Supplementary
Material of [16].

The total input impedance of the metal-backed metasurface
can be calculated as a parallel connection of the gradient
penetrable impedance (characterized by Zs) of the sheet and
the input impedance of the metal-backed substrate Zgs, i.e.,
Ztot = Zs||Zgs. After Ztot is determined, we can calculate
all the scattered modes for a given incidence in terms of a
reflection matrix. The reflection matrix is defined as

ΓTM = (Ztot + Z0)
−1 · (Z0 − Ztot) (8)

for TM-polarized incidence. Here, Z0 is the wave impedance
of free space, which is a diagonal matrix. The n-th element
of Z0 has the same format with Zd,n, only assuming ϵd = 1.
The reflection matrix for TE-polarized incidence is

ΓTE = (Ytot +Y0)
−1 · (Y0 −Ytot), (9)

where Ytot = Z−1
tot and Y0 = Z−1

0 are the admittance
matrices. The derivation details of Eqs. (8) and (9) are
presented in APPENDIX. The reflection matrix relates the
tangential components of the incident and reflected fields,
i.e., Er = ΓTE ·Ei for TE waves and Hr = ΓTM ·Hi for TM
waves. The incident and reflected tangential fields (Ei, Er,
Hi, and Hr) should be represented by 2N + 1-dimensional
vertical vectors. The vector contains the complex amplitudes
of the considered harmonics.

The above theory shows how to calculate all the scattered
harmonics for a given set of discrete impedance sheets and
illumination waves. However, the design of metasurfaces is an
inverse problem: for a given incidence and desired reflection
harmonics, how to find a proper set of discrete impedance
values? Since there is no analytical solution for this inverse
problem, we use mathematical optimization. Next, we intro-
duce the optimization principles. For a single TE-polarized
plane wave incidence, Ei can be written as

Ei = [0, · · · , 0, 1, 0, · · · , 0]T , (10)

where the incident mode (n = 0) is positioned in the middle
of the array. For a known illumination (a given Ei), our goal
is to find a proper set of discrete grid impedances of an array
that realizes the desired Er. Here, we focus on the perfect
anomalous reflection functionality with the incident power
fully reflected to the n = +1 scattering order. Therefore, the
desired reflected field vector can be written as,

Er = [0, · · · , 0, 0, Aobj, · · · , 0]T , (11)
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where Aobj =
√

cos θi
cos θr

is the amplitude of reflection that
ensures that all the incident power is directed to the anoma-
lous direction [6]. This goal is realized by optimizing the
discrete impedance values Z1, Z2, · · ·ZK (purely reactive),
or, equivalently to say, optimizing the reflection matrix ΓTE,
until the desired reflection mode amplitude is maximized
in the reflection vector Er. Here, we use the mathematical
optimization tool available in the MATLAB package to find
the optimal values of the impedance sheets. In each trial of the
optimization, MATLAB assumes an array of Z1, Z2, · · · , ZK

and calculates the reflected fields. Denoting the calculated
amplitude of the desired reflection mode in each trial as Acal,
the optimization goal is to find a proper set of Z1, Z2, · · · , ZK

that minimizes the cost function defined as

F (Z1, Z2, · · · , ZK) = |Acal −Aobj|. (12)

Employing the MultiStart and fmincon algorithms, MATLAB
can search for the minimum value of F in the multidimen-
sional parameter space. In the examples presented here, the
optimization time with the described method was in the order
of tens of minutes using a usual desktop computer (Intel-i5
based CPU with 32 Gb RAM).

It is important to mention that this approach is quite general.
It can be used for the design of Floquet metasurfaces with
arbitrary power distributions among all the possible Floquet
modes, e.g., beam splitters, only by modifying the objective
function in Eq. (12). In addition, the desired reflection phases
can also be set arbitrarily.

III. EXAMPLE OF DISCRETIZED IMPEDANCE
OPTIMIZATION

A. Design goals and optimization results

We target to find designs of anomalous reflecting metasur-
faces to realize the application scenario of Fig. 1 at three
potential operational frequencies for D-band communications:
f0 = [144.75; 157.75; 170.90] GHz (the corresponding op-
erational wavelengths λ0 = [2.0725; 1.9017; 1.7554] mm),
marked as Designs 1, 2, and 3 in Table I). The incident TE-
polarized plane wave comes from the normal direction θi = 0◦,
and the goal is to reflect it into the oblique direction θr = 50◦.
Thus, the metasurface period is D = λ0/ sin θr. We discretize
the impedance sheet into K = 8 elements, and assume a
quartz substrate with the permittivity ϵd = 4.2(1 − j0.005)
and thickness d = 209 µm. In the optimization of the sheet
reactances of the elements according to the cost function
Eq. (12), the allowed solutions of Zk were restricted to the
range [−2000j,+50j] Ohm. This constraint is introduced to
make the actual implementations of the array elements easier,
because large negative or positive reactances require some
extreme geometries of metal elements that may be difficult
or impossible to fabricate.

As a result of numerical optimization, we get a set of dif-
ferent solutions minimizing Eq. (12). From them we select the
most suitable one with reasonably decaying amplitudes of the
evanescent surface wave harmonics, because high amplitudes
of reactive fields near the array lead to smaller frequency
bandwidth and higher losses. Figure 3 shows an example

TABLE I
DESIGN PARAMETERS OF THE IMPLEMENTED ANOMALOUS REFLECTORS.

IN CASE OF THE ABSENCE OF AN ELEMENT IN THE SUB-CELL, THE
DOG-BONE ELEMENT PARAMETER IS MARKED AS ”X”.

1 2 3

f0, GHz 144.75 157.75 170.90
Z1, Ohm −319j −137j −1229j
Z2, Ohm −1686j −1010j 43j
Z3, Ohm −346j −876j −1074j
Z4, Ohm −138j 43j −926j
Z5, Ohm −991j −833j −1250j
Z6, Ohm −1721j −582j −2000j
Z7, Ohm 50j −775j −141j
Z8, Ohm −1140j −1053j −2000j
Cx1, µm 156 181.7 50
Cx2, µm 64 82 0
Cx3, µm 205 60 65
Cx4, µm 286.5 0 125
Cx5, µm 119.5 55 155
Cx6, µm 63.7 152 x
Cx7, µm 0 150 201.7
Cx8, µm 98 140 x
Cy1, µm 40 40 40
Cy2, µm 40 40 0
Cy3, µm 40 40 40
Cy4, µm 40 0 40
Cy5, µm 40 40 40
Cy6, µm 40 40 x
Cy7, µm 0 40 40
Cy8, µm 40 40 x
Lx1, µm 60 60 60
Lx2, µm 60 60 116.4
Lx3, µm 60 60 60
Lx4, µm 60 145 60
Lx5, µm 60 60 60
Lx6, µm 60 60 x
Lx7, µm 98 60 60
Lx8, µm 60 60 x
Ly1, µm 100 100 40
Ly2, µm 60 60 λ0/10
Ly3, µm 100 60 40
Ly4, µm 100 λ0/10 40
Ly5, µm 60 60 40
Ly6, µm 60 60 x
Ly7, µm λ0/10 60 80
Ly8, µm 60 60 x

ηsim,LL
eff , % 99.72 98.65 97.33

ηsim,Lossy
eff , % 90.78 91.81 90.76

of optimized mode amplitudes for the model of an infinite
periodic structure. It is shown that the incident power is fully
reflected to the anomalous direction (n = 1) with nearly zero
specular reflection and n = −1 order reflection. The values of
the discretized grid reactances are given in Table I as Z1−8

for the corresponding design frequencies.
Finally, we make full-wave simulations with Ansys HFSS

to validate the structure performance on the level of the
impedance sheet model, studying a super-cell with Zg con-
sisting of eight elements at the grounded dielectric layer.
The structure is simulated as an infinite array along x and y
with the periodic boundary conditions under TE illumination
realized with a Floquet port excitation. Knowledge of the mag-
nitudes of the Floquet harmonics for a given periodicity along
x found in simulations allows us to estimate the macroscopic
reflection coefficient of the infinite structure [21], [22] and
calculate the far-zone field reflected from a finite-size meta-
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surface, whereas the reflection angle is defined in accordance
with the model of diffraction on infinite periodic structures
(2). Typically, the best numerically optimized solutions can
realize the desired anomalous reflection with the efficiency at
the level of 99.99%, if material losses are neglected.

The non-local and local (phase gradient) design approaches
were compared for an example of reflection of normally
incident waves to 50◦ in our recent paper [23]. The structures’
performance was compared using full-wave simulations of the
corresponding penetrable impedance sheet models. The results
show that for such moderate angle of anomalous reflection
both structures demonstrate high anomalous reflection effi-
ciency, as expected from earlier works, e.g. [6], [7], [12]. On
the other hand, non-local designs demonstrate significantly
better performance for larger deviations from the specular
reflection law, see [24] and an example in Section V.

B. Implementation of elements in the super-cell

Our next goal is to find proper geometries of the metallic
sub-cells that would realize the desired grid impedances Zk.
The grid impedance of a metallic patch or strip positioned on a
grounded substrate can be determined using the circuit model
[25]. To do that, we use the locally periodic approximation and
simulate a single sub-cell using periodic boundary conditions
in both x and y directions along the metasurface plane and
find the reflection coefficient. The grid impedance of the meta-
atom can be determined from the reflection coefficients and
the substrate parameters. The incident angle in the simulation
is defined as θi. The input impedance of the structure can be
expressed in terms of the simulated reflection coefficient R as

Zin =
1 +R

1−R
η0, (13)

where η0 =
√
µ0/ϵ0 is the free-space impedance, µ0 and ϵ0

are the permeability and permittivity of free space, respectively
[25]–[27]. Zin is the input impedance of the parallel connec-
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Fig. 4. Geometry of the implemented metasurface: (a) – a sub-cell with
parameters varied in the impedance extraction; (b) – final super-cells imple-
mented for three targeted designs of perfect anomalous reflectors. (c) Poynting
vector distribution at the zx plane. The shaded circle regions show the regions
of non-local power exchange between free space and the metasurface volume.

tion of the grid impedance Zg and the grounded substrate
impedance Zgd. Next, we extract the grid impedance using

Zg =
ZinZgd

Zgd − Zin
, (14)

where Zgd = jηd tan kdd and kd = k0
√

ϵd − sin2 θi is the
propagation constant in the dielectric substrate with ηd =

η0/
√
ϵd − sin2 θi (for TE-polarized wave) and the free-space

wavenumber k0 = ω
√
ϵ0µ0 [26].

The simplest geometry of capacitive sub-cells is a rectan-
gular patch, but such elements exhibit very different responses
for oblique and normal incidences. This strong angular depen-
dence leads to some impedance mismatch when the elements
are implemented in the final super-cell, therefore requiring an
additional global optimization of the whole super-cell. For this
reason, we used the so-called dog-bone geometry for the sub-
cell metal pattern, illustrated in Fig. 4(a). This is one example
of self-resonant grids [28] that are known to offer high
angular stability of response from high-impedance surfaces,
e.g. [29]–[31]. Varying the element’s dimensions we obtain
corresponding parameters of the sub-cell to realize the required
impedance values. Results for the extracted reactance Zg for
different structural parameters for Design 1 are presented in
Fig. 5. It is worth noting a very high level of angular stability
comparing the results for the normal and oblique incidences.
The obtained values of the implemented elements’ parameters
are presented in Table I, and the top view of the implemented
super-cells is shown in Fig. 4(b). Some of the elements require
rather large negative values of reactance, and our analysis
shows that these elements can be substituted with simply open
sub-cells without any element presented. Some other elements
require a small positive reactance which is implemented as
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Fig. 5. Extracted impedance values and the angular stability analysis.

inductive strips with the width Lx, that is, the length is equal
to the overall y periodicity of the metasurface Ly = λ0/10.

The final structures are simulated as infinite periodic struc-
tures. The results of simulations in the absence and presence
of material losses are given in Table I as ηsim,LL

eff (with lossless
metal) and ηsim,Lossy

eff (with gold layers of 200 nm thickness),
respectively. The results show that the reflection efficiency
slightly (∼ 1 − 3 %) degrades after the implementation of
a realistic structure, in comparison with the performance of
the optimized sheet-impedance model. When metal losses are
taken into account, the efficiency degrades towards ∼ 90 %,
mainly due to excited non-propagating surface waves along
the metasurface. The efficiency can be improved if the metal
deposition thickness increases (reducing the Ohmic loss in
metal).

Figure 4(c) shows the simulated Poynting vector distribution
of Design 1 in the xoz plane. It is clear that in the regions
marked by shaded circles, there is non-local power exchange
between the metasurface volume and free space. The power
flows into the metasurface (virtual loss) and then it is re-
radiated into free space (virtual gain). For the other two
implemented designs we see a qualitatively similar picture
showing non-locality of power reflection. Note that although
the given examples shows non-local reflection and only global
power conservation, the developed design method is general
and can find both local and non-local solutions.

IV. EXPERIMENTAL VALIDATION

In order to fabricate the designed anomalous reflectors we
used a standard cleanroom photolithography manufacturing
process, with 4-inch quartz wafers for the substrate. In Ref.
[23] theoretical estimations of the link budget for non-line-
of-sight D-band communication scenarios are presented and
compared with other existing models. The choice of the waver
size was made based on these theoretical estimations. These
estimations show that this size is enough to ensure reliable
indoor communications. We used AZ514E photoresist, 5 nm
Ti and 200 nm Au for both the front side patterning and
the ground plane. This Au layer thickness was selected in

order to reasonably minimize the resistive losses, as they may
significantly affect the device performance.

For experimental validation, we follow a similar proce-
dure as presented in [27]. A quasi-optical set-up is used
for collimation of the incident illumination from the horn
antenna into a narrow spot on the metasurface sample under
study. This allows us to effectively measure the macroscopic
reflection coefficient as a parameter describing response from
the corresponding infinite structure, avoiding the effects of
scattering by the edges.

The experimental set-up is shown in Fig. 6(a). The used
vector network analyser (VNA) is Keysight PNA Network
Analyzer N5225A (10 MHz – 50 GHz) with WR 5.1 VDI
extension units operating at 140 – 220 GHz. A WR-5 rectan-
gular horn antenna Elmika RHA-015E with 22 dBi directivity
was used as the source antenna. The set-up contains three 90◦

parabolic mirrors M1, M2, and M3 with the corresponding
focal distances F1 = 2.54 cm, F2 = 15.24 cm, and F3 =
12.7 cm. Note that, the characterization of anomalous reflector
usually needs two-port measurement system, i.e., two horn
antennas are required in the normal and anomalous directions.
Here, we use quasi-optical measurement system and time-
gating method to simplify it as one-port system. The Gaussian
beam emitted from the source Horn antenna is collimated
by mirror M1 and converged by M2 towards the normal of
sample. The beam is then reflected to the anomalous direction
by the sample. Finally, the beam is reflected by flat mirror M4
and go back to the horn antenna along the same route. The
efficiency of anomalous reflection is determined by measuring
the reflection coefficient S11. Note that in this method, the
beam is reflected twice by the sample. Also, the spurious
reflections from all the mirrors can be corrected by normaliza-
tion. The normalization is made by measuring the reflection
coefficient when the sample is replaced by a flat mirror rotated
to θr/2 = 25◦. In order to estimate the retroreflection level for
the normal incidence we measured the intensity of the reflected
signal tuning the time-gating parameters for reflection from the
sample. Another anomalously reflected harmonic (n = −1)
was measured by upturning the sample. The last measurement
is approximate, due to the fact that the measured area could
not be exactly at the same position as the originally measured
for the desired anomalously reflected mode.

The experimental results are presented in Fig. 7. Here, the
shown data point gives the efficiency measured at the targeted
design frequency. These results are in good agreement with
the theoretically and numerically estimated values presented
in Table I. For all three design cases, one can estimate
the operational band of effective anomalous reflection. As
a practically acceptable level, we define a region where the
measured anomalous reflection efficiency is above 50%. Due
to the frequency limit of the used extender (140 GHz) we could
not observe the whole operational bands for Designs 1 and 2,
therefore the lower limit of the operational band in these cases
is in fact wider than defined on the experimentally validated
data. Design 1 provides more than half-power anomalous
reflection efficiency in the range 140 – 157.4 GHz; Design
2 grants it in the range 140 – 170 GHz; and Design 3 covers
the range 140.6 – 183.1 GHz.
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Fig. 7. Reflection efficiency measured with the quasi-optical method. The curve markers indicate the corresponding design frequency (X) and the measured
efficiency level (Y). Curve marked “−50◦” corresponds to the desired anomalously reflected mode n = −1; Curve “+50◦” is for the same mode measured
after flipping the sample; “0◦ (orient. 1)” curve shows the retroreflection level for the normal incidence corresponding to the orientation of the sample applied
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V. ANOMALOUS REFLECTOR FOR 70◦ TILT OF THE
REFLECTED BEAM

The presented design method is general and can be used,
for example, for designing anomalous reflectors with arbitrary
deflection angles without parastic reflections. In order to
demonstrate the universality of the design method we provide
in this section a comparative analysis of anomalous reflectors
designed for θi = 0◦ and θr = 70◦ using non-local and phase-
gradient methods. We validate the structure performance via
full-wave simulations of infinite structures using the model of
a penetrable impedance sheet at a lossy substrate backed by a
metal ground plane with a finite conductivity. As an example,
we consider the operational frequency of 144.75 GHz. In order
to realize reflection to 70

◦
at this frequency, the period of the

structure is modified accordingly, as dictated by Eq. (2).
For the phase-gradient approach, the discretized values

of the required sheet impedance for θi = 70◦ and θr =
0◦ (the reciprocal scenario of anomalous reflection into
n = −1 harmonic) read Zg = [−552.86,−447.49,−334.83,
−161.52, 340.73,−3706,−978.71,−690.76]j Ohm. Imple-
menting the dog-bone meta-atom elements similarly to the pro-
cedure discussed in Sec. IIIB and considering both dielectric

and metal losses we get from the EM simulation of an infinite
structure the anomalous reflection efficiency η = 0.7142.

Using the non-local design method presented here, we
find the required reactive sheet impedance values as Z =
[−132,−278,−187,−1215,−1099,−1008,−989, 50]j Ohm.
EM simulation of the infinite structure with implemented
dog-bone elements considering all the material losses shows
the efficiency of the anomalous reflector η = 0.8930. This
example demonstrates strong benefits of the non-local design
compared to the phase-gradient approach in case of significant
deviations from the usual reflection law.

VI. CONCLUSIONS

As one of the first steps towards realization of efficient
control of wave reflections in D-band communication scenar-
ios, we have presented a method for the design and imple-
mentation of metasurfaces with advanced functionalities based
on optimizations of discretized sheet impedance profiles. As
an example, we have experimentally confirmed functionality
of a designed and manufactured D-band anomalous reflector.
The developed fast numerical optimization approach allows
us to directly find useful solutions without the need of further
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discretization or detailed numerical tuning of the geometry
of the array sub-cells. The considered example of practical
implementation was targeted for a 50◦ anomalous reflector
operating in D-band, which is one of the first realizations
of anomalous reflectors in this frequency range. It is worth
noting that the proposed method is general and not limited to
the considered scenario of anomalous reflection. The method
can be directly applied to the design of various beam-shaping
surfaces, splitters with phase control of all beams, and other
metasurface devices, just by modifying the optimization ob-
jective function (see our recent research in [32]).

Furthermore, the developed discrete-impedance metasurface
design method can be potentially used also in the design of
reconfigurable reflectors. This can be explained as follows.
By integrating reconfigurable elements into each meta-atom
(subcell), it is possible to control the sheet impedance of each
subcell independently. In practice, the subcell size remains
fixed. However, the size of the supercell (the metasurface
period) can be modified discretely by increasing or decreasing
the number of small subcells forming one supercell. Recon-
figurability can be provided by integrating tunable elements,
e.g., varactors or mems capacitors, in metallic structures
[33]. Assuming that one supercell contains N subcells of
the size dsub, the anomalous reflection angle can be found
from relation sin θr = λ/D = λ/(Ndsub) if θi = 0 (see
Eq. (2)). Thus, by increasing or decreasing the number of
subcells whose impedances are set to form one period, the
anomalous reflection angle can be discretely tuned. If dsub
is enough small, the neighbouring discrete angles of θr are
closely spaced, emulating a continuous sweeping of reflected
beams. It is important to note that such functionality cannot
be realized by periodicmetagratings with sparse elements.
Although it was recently demonstrated that non-periodic meta-
gratings can achieve dynamic scanning by globally optimizing
all meta-atoms [34], our approach only needs an optimization
of meta-atoms in one supercell, which significantly improves
the optimization efficiency. Thus, we consider this method
suitable for the development of not only static reflection-
control surfaces but also for future reconfigurable intelligent
surfaces.

APPENDIX

Here, we show derivations of Eqs. (8) and (9). The total
tangential electric and magnetic fields are the sum of tangential
incident and reflected fields on the metasurface plane (z = 0),

Etot = Ei +Er, (15)

and
Htot = Hi +Hr. (16)

Assuming a TE-polarized wave incident on the metasurface,
the tangential magnetic field is related with electric field by
the free-space wave admittance matrix:

ẑ ×Hi = Y0 ·Ei, ẑ ×Hr = −Y0 ·Er. (17)

Note that the tangential magnetic field flips its sign after reflec-
tion, orienting along −x direction, as shown in Fig. 8(a). The
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Fig. 8. Definitions of the coordinate system and field orientations for TE-
and TM-polarized waves.

total tangential fields are related by the impedance boundary
condition:

Ytot ·Etot = ẑ ×Htot. (18)

Substituting Eqs. (15), (16), and (17) into (18), we can obtain
the relation between the incident and reflected electric fields:

Er = (Ytot +Y0)
−1 · (Y0 −Ytot) ·Ei = ΓTE ·Ei. (19)

For the TM polarization, we define the reflection matrix in
terms of tangential magnetic fields Hr = ΓTM · Hi. In this
case, it is more convenient to relate the tangential electric and
magnetic fields via the wave impedance as

Ei = Z0 · (ẑ ×Hi), Er = −Z0 · (ẑ ×Hr). (20)

Substituting Eqs. (15), (16), and (20) into (18), we obtain

Hr = (Ztot + Z0)
−1 · (Z0 − Ztot) ·Hi = ΓTM ·Hi. (21)
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