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Exploring Empirical Rank-Frequency Distributions
Longitudinally through a Simple Stochastic Process
Benjamin J. Finley*, Kalevi Kilkki

Department of Communications and Networking, Aalto University, Espoo, Finland

Abstract

The frequent appearance of empirical rank-frequency laws, such as Zipf’s law, in a wide range of domains reinforces the
importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a
simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus
especially on limiting the process’s complexity to increase accessibility for non-experts in mathematics. The process
provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an
often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-
world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal
variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process
variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and
practical applications.
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Introduction

Rank-frequency laws, such as Zipf’s law and more generally

power laws, have been observed in a multitude of domains ranging

from the intensity of wars to the populations of major cities

[1][2][3]. As more rank-frequency laws are observed empirically

and as rank-frequency distributions are adopted by increasingly

diverse fields such as economics and behavioral sciences the

importance of practical modeling of rank-frequency distributions

in general similarly grows.

Historically, empirical rank-frequency distributions became a

focus of research as the ubiquity of the power law in many of these

distributions became apparent. A famous example being Zipf’s

observations relating word frequency to word rank in natural

language texts [4]. However, often power law models do not

accurately fit the final tail ranks of empirical rank-frequency

distributions. Tail ranks are typically affected by, for example,

real-world finite size effects [5]. Many researchers fit models up to

a cutoff point or utilized combinations such as power law with an

exponential tail. Recently, however, novel methodologies have

been proposed. Ref. [6] for example, utilized a discrete version of

the generalized beta distribution to accurately fit a large array of

empirical rank-frequency distributions.

However, as far as we know these novel approaches have not

examined the longitudinal variation of empirical rank-frequency

distributions. Furthermore, many of these approaches understand-

ably focus on rank-frequency distributions with power law like

bodies (linear on a log-log scale). In contrast, we simulate several

empirical rank-frequency distributions by using a simple stochastic

cascade process (hereafter the fracturing (FT) process). The FT

process is a stochastic multiplicative process that produces a

concave rank-frequency distribution (on a log-log scale), due to an

underlying relationship with the gamma distribution. In addition,

the FT process cascades a fixed finite number of times and

contains a minimum size constraint thus replicating finite size

effects. Finally, we show that the FT process can roughly simulate

the longitudinal variation of empirical ranks through repeated

trials of the process. In other words, each FT process trial can

represent an observation of the dataset at a specific point in time.

Importantly, we emphasize the practical application of the FT

process rather than detailed mathematical derivations. Further-

more, we hope that the process’s simplicity will allow non-experts

to understand the process and help illustrate how even a simple

process can give rise to a variety of rank-frequency shapes.

Results

To start we give a brief overview of the FT process. Essentially

the process simulates the repeated fracturing of an interval (or

basically any one dimensional object). The process begins with a

single unit interval at time step 0, and at every time step t all

existing intervals are fractured into exactly two smaller intervals.

Figure 1 illustrates the process for two time steps. The fracturing

point for each fracture is determined by a transformed standard

uniform random variable. The transformation function contains a

fitting parameter which is utilized to fit the FT process to the

empirical distribution. After the final time step, all resultant

intervals below a specific minimum size are set to the minimum.

Finally, the intervals are sorted by length to create a rank-

frequency distribution. In other words, the length of an interval is

equivalent to the magnitude of a single rank. The FT process is

described in greater detail in the Methods section.
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The FT process is highly related to fracturing (also known as

fragmentation) processes studied extensively by physicists and

mathematicians [7][8][9]. Kolmogorov’s particle fracturing pro-

cess is an early and prominent example [10]. Kolmogorov showed

that under certain conditions the repeated fracturing of a particle

(or interval) implies a log-normal size-frequency distribution

through the central limit theorem. (Note the size-frequency and

rank-frequency distributions are related [11].) Though, in contrast

to Kolmogorov’s process, in the FT process all intervals are

repeatedly fractured and the size-frequency distribution is related

to the gamma distribution (see Analytical Form of FT Process

section) [12]. More recently, a related stochastic cascade process

that produces stretched exponential distributions was similarly

presented as a complimentary alternative to the power law

distribution [13]. A comprehensive theoretical overview of

random fragmentation processes can be found in [14]. In

summary, the FT process represents a classic fragmentation

process that has been modified and reapplied.

Process Fitting
We utilize the FT process to simulate six empirical datasets to

illustrate the types of datasets well represented by the process. The

empirical datasets focus mostly on consumer popularity and are as

follows:

A. French book sales volumes in 2003 [15]

B. US theatrical earnings in 2002 [16]

C. US last name frequency of census respondents in the 2000

census [17]

D. Artist play frequency of Audioscrobbler music plugin as of

May 2005 [18]

E. YouTube video request frequency originating from the

University of Massachusetts Amherst campus network during

several dispersed observation periods in fall 2007 to spring

2008 [19]

F. US magazine circulation revenue estimates in 2000 [20]

Figure 2 illustrates the rank-frequency distributions for these

datasets.

Furthermore, in order to establish the strengths of the FT

process in relation to other popular models, we also fit a classical

one parameter power law model and the previously mentioned

novel discrete generalized beta distribution (DGBD). The power

law and DGBD models were fit using multiple linear regression on

the log-log transform of the models, in an approach similar to [21].

Methodological concerns about this type of log-log linear

regression fitting have been expressed (Appendix A in [22]).

However, since we aim to only briefly illustrate the types of

datasets well represented by these models we set aside these

concerns. More detailed fitting procedures for the power law and

DGBD models are described in the Methods section.

Similarly, the log-log transform of the FT process was fit to the

datasets by manually maximizing the coefficient of determination

(R2). Specifically, we maximized R2 subject to manual variations

of the FT process fitting parameter. (Note that in this case the

maximization of R2 is equivalent to the typical minimization of the

sum of square residuals). The fitting was performed manually

because regression algorithms can become trapped in local

minimums created by stochastic variations. In the manual fitting,

the FT process results were averaged over 1000 trials to help

eliminate some of these stochastic variations.

All models were fit using regression weights inversely propor-

tional to their ranks. In other words, the weight of the first, second,

and third ranked elements were 1/1, 1/2, and 1/3 respectively

and so forth. This weighting scheme emphasizes highly ranked

elements similar to logarithmic weighting [21]. We utilize this

logarithmic fitting methodology because rank-frequency distribu-

tions are typically viewed on log-log scale and the emphasis of the

head ranks is often useful in practice. Figures 3, 4, and 5 show the

fittings of all datasets and Table 1 shows the R2 values for the

different fittings. These R2 values take into account the weightings

(the weighted R2 equation is detailed in the Methods section).

Clearly the FT process and DGBD fit the truncated tails of

several of distributions better than the classic power law model.

The finite size effects of these datasets severely disrupt any kind of

pure power law pattern.

The DGBD performs best on distributions with power law like

bodies, such as the YouTube video request dataset (Figure 5A) and

the US magazine circulation revenues dataset (Figure 5B). We

define a power law like body as a power law relationship that spans

several orders of magnitude. In fact, the power law model is a

special case of the DGBD in which the tail also follows a power

law (the analytic relationship between the models is shown in the

Methods section). In contrast, the FT process performs best on

distributions with concave bodies (on a log-log scale) such as the

French book sales dataset (Figure 3A) and the Audioscrobbler

artist plays dataset (Figure 4B). As discussed, the FT process is

related to the gamma distribution, which is concave on a log-log

scale.

Furthermore, the FT process inherently fits best rank-frequency

distributions with reciprocal head and tail slopes, such as the

French book dataset (Figure 3A) and US theatrical earnings

dataset (Figure 3B). This property is the result of the common

fracturing point distribution which is applied to every fracture

irrespective of the interval value or process step.

Figure 1. Visualization of FT process after two time steps. A visualization of the FT process after two time steps and thus four resultant
intervals.
doi:10.1371/journal.pone.0094920.g001
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PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94920



Figure 2. Rank-Frequency plots of empirical datasets. Rank-frequency plots of all empirical datasets utilized in the process fitting. These
datasets are (A) French book sales volumes in 2003 [15], (B) US theatrical earnings in 2002 [16], (C) US last name frequency of census respondents in
the 2000 census [17], (D) Artist play frequency of Audioscrobbler music plugin as of May 2005 [18], (E) YouTube video request frequency originating
from the UMASS Amherst campus network during several dispersed observation periods in fall 2007 to spring 2008 [19], (F) US magazine circulation
revenue estimates in 2000 [20].
doi:10.1371/journal.pone.0094920.g002

Figure 3. Comparison of fittings on (A) 2003 French book sales and (B) 2002 US theatrical earnings. A comparison of power law model,
discrete generalized beta distribution, and FT Process fittings on (A) 2003 French book sales and (B) 2002 US theatrical earnings.
doi:10.1371/journal.pone.0094920.g003

Rank-Frequency and a Simple Stochastic Process
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Longitudinal Variation
Next we simulate the longitudinal variation of several of the

empirical datasets using the FT process. Our longitudinal datasets

are expanded versions of three of the fitted datasets:

A. French book sales volumes from 2003–2007 [15]

B. US theatrical earnings from 2002–2012 [16]

C. US magazine circulation revenue estimates from 2000–2012

[20]

We compare the variation of each empirical dataset with the

variation of repeated trials of the fitted FT processes. The variation

was measured by the coefficient of variation (CV) at each rank

over the entire data period. The coefficient of variation is a

common normalized variation (or dispersion) measure defined as

the ratio of the standard deviation to the mean. In cases where the

number of ranks varied during different years, the CV was

calculated only up to maximum common rank of all observations.

Figures 6,7, and 8 show that the empirical variation and FT

process variation follow a roughly similar pattern through most

ranks.

In both the empirical distributions and FT process, the very

high variation of the initial ranks is due to large outliers which, by

definition, should appear at the head of rank distributions. Often

these outliers are the combined result of several rare conditions or

factors. For example, the movie Avatar earned significantly more

than any other movie released between 2002 and 2012 due to a

combination of excellent release timing, weak competition, 3D

technology hype, higher 3D tickets prices, and a world famous

director [23].

Figure 4. Comparison of fittings on (A) 2000 US Census last name frequency and (B) 2005 Audioscrobbler plugin artist plays. A
comparison of power law model, discrete generalized beta distribution, and FT Process fittings on (A) 2000 US Census respondents last name
frequency and (B) 2005 Audioscrobbler plugin artist plays.
doi:10.1371/journal.pone.0094920.g004

Figure 5. Comparison of fittings on (A) UMASS Amherst YouTube frequency and (B) 2000 US magazine circulation revenues
estimates. A comparison of power law model, discrete generalized beta distribution, and FT Process fittings on (A) UMASS Amherst YouTube
frequency and (B) 2000 US magazine circulation revenue estimates.
doi:10.1371/journal.pone.0094920.g005

Rank-Frequency and a Simple Stochastic Process
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In contrast, in empirical distributions small outliers at the

bottom ranks are generally limited by the data collection

methodology or limits of the real-world process. Whereas, in the

FT process small outliers are limited by the underlying gamma

distribution skewness and the minimum interval size constraint.

Furthermore, the slow increase in variation throughout the middle

ranks is due to the differences in the mean and standard deviation

slopes. Figure 9 depicts the mean and standard deviation of the US

theatrical earnings dataset over all ranks.

In general, the variations of the empirical datasets are lower

than the average FT process variations. Table 2 compares the total

variations from the empirical datasets and the FT processes. The

lower variations are likely due to short and long range

dependencies. In other words, the longitudinal observations are

not truly independent. These dependencies are especially impor-

tant in interpreting the empirical variation and understanding the

underlying real-world mechanistic processes.

Broadly, we can categorize these empirical dependencies into

either direct or indirect dependencies. A direct dependency implies

that the same rank value spans several longitudinal observations. A

notable example is the first rank of the US magazine circulation

revenue dataset, which Figure 8 shows has very low variation over

time. In fact, the same magazine (People) held the first rank for

seven consecutive years (2005–2012) [20]. Furthermore, the

circulation revenue of magazines should inherently be more stable

due to their subscription based business model. Importantly, data

collection procedures can sometimes determine whether direct

dependencies are actually present. For example, the US theatrical

earnings dataset does not contain direct dependencies because the

gross earnings for each movie were always fully counted toward

the year of the initial release date. In contrast, an indirect

dependency implies that certain characteristics of the real-world

mechanistic process remain fundamentally the same. For example,

the distribution mechanisms and sales point strategies of large

French book publishers could remain constant for several years

thus contributing to longitudinally similar distributions.

In any case, the magnitude of the empirical variation will

generally be smaller than the FT process average variation and

this should be taken into account when utilizing the FT process.

Process Limitations
A significant limitation of the FT process is that the process can

only create rank-frequency distributions with reciprocal head and

Table 1. Adjusted1 (and non-adjusted) coefficients of determination (R2) with weighting for fittings of empirical datasets.

Dataset FT Process Power Law DGBD

French Book Sales (2003) .9922 (.9927) .9845 (.9855) .9933 (.9942)

US Theatrical Earnings (2002) .9572 (.9572) .7146 (.7152) .9541 (.9543)

Census Respondents Last Name Frequency .9849 (.9849) .9705 (.9705) .9795 (.9795)

Audioscrobbler Music Artist Play Frequency .9883 (.9883) .9379 (.9379) .9524 (.9524)

UMASS Amherst YouTube Video Request Frequency .9748 (.9748) .9823 (.9823) .9858 (.9858)

US Magazine Circulation Revenue Estimates (2000) .9212 (.9215) .9633 (.9634) .9965 (.9965)

1The adjusted coefficient of determination is utilized because the FT process, Power Law, and DGBD have different numbers of regressors and the adjusted coefficient of
determination utilizes a penalty for additional regressors that allows comparison.
doi:10.1371/journal.pone.0094920.t001

Figure 6. Empirical and simulated coefficients of variation for ranks of 2003–2007 French book sales. Plot of the coefficients of variation
of ranks for the 2003–2007 French book sales dataset. The blue lines are simulated coefficients for 100 FT process trials, while the red line is the
coefficients of the empirical data. Note that because the French book dataset consists of only 17 disparate ranks, the red points are empirical data
points and the red lines are extrapolations.
doi:10.1371/journal.pone.0094920.g006

Rank-Frequency and a Simple Stochastic Process
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tail slopes (ignoring the minimum size limit). This limitation is

inherent in the FT process itself due to the process’s common

fracturing point distribution. This limitation could be addressed by

utilizing different fracturing point distributions for different

fractures depending on the magnitude of the interval. However,

this addition would add significant complexity to the process, thus

potentially undermining the processes strengths of simplicity and

understandability. We leave this exploration for future work.

The Empirical Processes in Reality
An important question is whether the FT process roughly

mirrors the real-world processes of the studied datasets or whether

the process merely happens to produce similar rank-frequency

distributions.

Historically, researchers have described many different process-

es that produce particular rank-frequency distributions. Ref. [2],

for example, details a wide range of processes that produce power

Figure 7. Empirical and simulated coefficients of variation for ranks of 2002–2012 US theatrical earnings. Plot of the coefficients of
variation of ranks for the 2002–2012 US theatrical earnings dataset. The blue lines are simulated coefficients for 100 FT process trials, while the red
line is the coefficients of the empirical data.
doi:10.1371/journal.pone.0094920.g007

Figure 8. Empirical and simulated coefficients of variation for ranks of 2000–2012 US magazine circulation revenue estimates. Plot
of the coefficients of variation of ranks for the 2000–2012 US magazine circulation revenue dataset. The blue lines are simulated coefficients for 100
FT process trials, while the red line is the coefficients of the empirical data.
doi:10.1371/journal.pone.0094920.g008

Rank-Frequency and a Simple Stochastic Process
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law rank-frequency distributions. A prominent example is the Yule

process which uses a form of preferential attachment and has been

utilized to explain the distributions of city sizes and article citation

counts [2]. In other words, the appearance of a power law rank-

frequency distribution, for example, generally does not imply a

particular type of underlying process or even any significant

mechanistic complexity in the underlying process [24]. Instead,

the specific data source and context must be thoroughly examined.

In the case of US theatrical earnings, each process cascade

could be interpreted as an individual (supply side) business decision

or event that determines the combination of resources (financial,

human, etc.) devoted to each movie. For example, the initial

cascade could represent the division of gross movie industry

resources into movie studio alliances. A similar argument can be

made for the French book sales data and music popularity data

and several other datasets.

Realistically though, many of these behavioral based databases

might be more accurately represented by a (demand side) detailed

preferential attachment process. Such processes have been used

utilized extensively to model human social networks [25][26].

However, the strength of the FT process is that the process can

model many rank-frequency distributions well enough while still

being simple and easy to understand. In other words, empirical

datasets don’t necessarily need underlying mechanistic fragmen-

tation processes for the FT process to be utilized.

Economic Simulation
The definition of the FT process ranks as a set of goods in a

single marketplace, as in the French book market, allows for

experiments in market dynamics. For example, we simulated the

merger of four identical French book markets, with each market

based on the 2003 French book dataset, into a single large market.

In practical terms, we compared the combined and resorted ranks

of four FT process simulations against a single larger FT process

simulation. Figure 10 depicts the average (over 50 trials) absolute

gains or losses for each rank in the merged market. Clearly, the

biggest winners of such a market integration are the very top

ranks. In fact, in this example, all books below the top 10% of

ranks sustain absolute sales volume losses (if we assume the total

market volume remains the same).

These results align with theories that postulate that market

integration will increase the so called ‘‘superstar’’ effect. From an

FT process viewpoint, this integration implies a larger overall

market and several additional fracturing steps. If the fracturing

process remains unchanged, increasing inequality is an inevitable

consequence.

Figure 9. Empirical and simulated average, std. dev., and coefficient of variance for ranks of 2002–2012 US theatrical earnings. Plot
of the Empirical and simulated average, std. dev., and coefficient of variance for ranks of the US theatrical earnings dataset. The solid lines are the
average of 100 FT process trails, while the dashed lines are of the empirical data.
doi:10.1371/journal.pone.0094920.g009

Table 2. Total empirical and FT process variation for longitudinal datasets.

Dataset Empirical Variation FT Process Variation2

French Book Sales1 3.07 4.5961.23

US Theatrical Earnings 128.17 197.28634.39

US Magazine Circulation Revenue Estimates 65.11 191.40629.25

1Includes only the variation of the 17 ranks with available empirical data; 2Average and Standard Deviation of 100 Trials.
doi:10.1371/journal.pone.0094920.t002

Rank-Frequency and a Simple Stochastic Process
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Figure 10. Average absolute gains or losses for each rank in the single merged market. Plot of the absolute gains or losses of a single
merged market compared to four smaller markets. Each small market being identical and based on the 2003 French book sales dataset.
doi:10.1371/journal.pone.0094920.g010

Figure 11. Rank-frequency distributions from FT process with varying fitting parameter a. Plot of several rank-frequency distributions
from FT process with varying fitting parameter a but a constant number of intervals. Each distribution is the average of 1000 FT process simulations.
doi:10.1371/journal.pone.0094920.g011

Rank-Frequency and a Simple Stochastic Process
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Often in practice, the full set of empirical ranks is not available

due to, for example, privacy concerns or business confidentiality

reasons. In cases where only the head ranks are available the

decision over which model or process to utilize becomes much

more difficult. In economic situations, the underlying supply and

demand side effects can give hints as to the tail behavior. For

instance, the French book sales and US theatrical earnings datasets

both have significantly truncated tails. This tail behavior is

potentially related to physical distribution bottlenecks and high

marginal inventory costs. (Online French book sales accounted for

only 4% of total French book sales in 2007 [15] and thus marginal

inventory costs for the dominant brick-and-mortar stores were still

very important.) In contrast, the Audioscrobbler and YouTube

datasets, both digital services with few distribution bottlenecks and

low marginal inventory costs, have non-truncated tails. The FT

process is typically a better fit for datasets with significantly curved

or truncated tails.

Discussion

Overall, the FT process provides a simple yet useful model for

many empirical rank-frequency relationships; especially for

datasets with concave rank-frequency distributions (on a log-log

scale) and reciprocal head and tail slopes. Furthermore, the FT

process can simulate the longitudinal variation of empirical

datasets since the process’s longitudinal variation roughly follows

the same shape as many empirical datasets variations.

In terms of further practical applications, rank-frequency

models are increasingly being applied in empirical economics

research [27][28][15]. The expansion can be partly explained by

the popularization of long tail business models, which often utilize

rank-frequency demand (or popularity) curves. In a long tail

business model, a business typically sells less of each individual

product but sells a much larger variety of products, thus the

description of the long tail as selling less of more, the online music

business is a salient example [29]. In these cases, knowledge of the

longitudinal variation of ranks in these demand curves is

particularly interesting and useful.

For instance, predicting the magnitude of the first few rank

elements is typically difficult due to high variation. As mentioned,

by definition, the outliers of the underlying size-frequency

distribution will be placed at the ends of the related rank-

frequency distribution. However, an accurate prediction of these

first ranks is useful in, for example, quantitative financial risk

analysis and supply/capacity management. Imagine a situation

with only two previous longitudinal observations, an obvious

method to predict future ranks is to average the previous two

observations.

The confidence placed in these predictions should be based on

the expected variation of these ranks. In the absence of variation

information from a similar business sector, a general variation

estimate based on the FT process could be utilized as a starting

point. We leave these additional examples and methods for future

work.

With regard to overall understandability, the FT process has

real-world analogues such as the repeated fracturing of rocks into

sediment that are easily observed and understood. Furthermore,

the fitting parameter can be understood as an analogue to the

physical distribution of force causing the fracturing. In other

words, the fracture will probably (though not certainly) occur

where there is the greatest application of force over area (pressure).

Finally, in terms of transparency, a formal and full mathemat-

ical treatment of the FT process is still needed.

Table 3. FT process, power law, and DGBD parameters for the fitted datasets.

FT Process Power Law DGBD

Dataset a ln Ai bi ln Ai bi ci

French Book Sales (2003) .50 13.68 2.5813 236.23 2.5728 24.500

US Theatrical Earnings (2002) .52 20.94 21.147 1.581 2.6256 23.024

Census Respondents Last Name Frequency .48 15.54 2.8246 6.067 2.7808 2.7816

Audioscrobbler Music Artist Play Frequency .58 16.70 21.026 26.185 2.9619 21.581

UMASS Amherst YouTube Video Request Frequency .25 6.473 2.5216 2.722 2.5046 2.3053

US Magazine Circulation Revenue Estimates (2000) .35 20.60 2.8662 15.50 2.7428 2.7648

doi:10.1371/journal.pone.0094920.t003

Table 4. Summary of all empirical datasets.

Dataset Rank Unit Value Unit Range Source

French Book Sales Book Sales Volume (books) 200322007 [15]

US Theatrical Earnings Movie Gross Earnings (USD) 200222012 [16]

Census Respondents Last Name Frequency Last Name Census Respondents 2000 [17]

Audioscrobbler Music Artist Play Frequency Artist Plays 20051 [18]

UMASS Amherst YouTube Video Request Frequency Video Requests 2007220082 [19]

US Magazine Circulation Revenue Estimates Magazine Circulation Revenue (USD) 200022012 [20]

1The Audioscrobbler dataset includes all information aggregated over a period of several years up to May 2005; 2The UMASS Amherst YouTube dataset consists of
aggregate YouTube video request frequencies over several observation periods from the fall of 2007 to spring 2008.
doi:10.1371/journal.pone.0094920.t004

Rank-Frequency and a Simple Stochastic Process
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Methods

FT Process Description
The FT process starts with a single unit interval which is then

fractured into two intervals with size Xi and 1{Xi. Where Xi is

the transformation of an independent standard uniform random

variable by a piecewise linear function. This piecewise linear

function is defined as

Xi~

R � 1{a
a 0ƒRv a

2

� �
:5z(R{:5) � a

1{a
a
2
ƒRƒ 1{ a

2

� �� �
1{(1{R) � 1{a

a 1{ a
2

� �
vRƒ1

� �

8><
>:

9>=
>;

where a is the fitting parameter on (0,1) and R is the standard

uniform random variable. Each of these two intervals is then

similarly fractured into two smaller intervals to create four

intervals. This recursion continues until the final time step after

which there are 2t total intervals (where t is the total number of

steps with the initial interval being step 0). If the number of

empirical ranks is not a multiple of 2t then the final fracturing

occurs up to the number of empirical ranks. In other words the

number of process intervals is adjusted to match the number of

empirical ranks. These intervals are then normalized by the sum of

the empirical distribution and finally sorted by size to produce a

rank-frequency distribution.

The shape of the resultant rank-frequency distribution is

determined by the fitting parameter, a, of the transform. This

parameter is varied for each dataset to fit the rank-frequency

distribution to the empirical rank-frequency distribution. The

effect of a large a is relatively more fracturing near the middle of

intervals and thus less variation between the interval sizes; while

the effect of a small a is more fracturing near the extremes of

intervals and thus more variation in the interval sizes. Interest-

ingly, if a~:5 then the resulting distribution simplifies to the

original standard uniform probability distribution (since the

transformation function becomes unity). Figure 11 shows rank-

frequency distributions with varying fitting parameter, a, values
but a constant number of intervals. Table 3 shows the fitting

parameter values utilized for simulating the empirical data and we

have found that these are typical values.

The FT process also imposes a minimum size for the generated

intervals. This constraint helps simulate real-world limitations and

is specific to the empirical dataset being fit. For example, a

bookstore does not typically sell fractions of a single book. In

Figure 11, the purple curve with a~ :9 illustrates a minimum size

constraint (in this case a minimum size of 1).

In practical computational terms, the FT process naturally lends

itself to a recursive implementation. We provide a simple recursive

open source licensed implementation in Perl as a supporting

information file (Supporting Code S2).

Fitting Methodology
Discrete Generalized Beta Distribution (DGBD). The

discrete generalized beta distribution represents a useful compar-

ison and reference point. Ref. [30] details the original develop-

ment of the distribution and some applications. The beta

distributions fitting parameters were estimated through a multiple

linear regression method described in [21]. In essence, the method

estimated the parameters ci, bi, and Ai through linear regression

of the natural log transformation of the discrete generalized beta

Figure 12. LN-size of the Gamma Distribution and FT Process. Histogram and QQ-plot (inset) of the LN-size of the Gamma Distribution
(average of 10000 sorted distributions) and FT Process (average of 10000 sorted trials).
doi:10.1371/journal.pone.0094920.g012
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distribution. This transformation is

ln (v(r))~ ln (Ai){bi ln (r)zci ln (Rz1{r)

where v(r) is the value of rank r, R is the maximum rank, and Ai

is a normalization constant. As mentioned, regression weights were

also used to emphasize the head ranks. The weights were

reciprocals of the ranks, in other words for ranks 1, 2, 3, 4 the

weights were 1, 1/2, 1/3, 1/4 and so forth.

Power law model. The power law model represents a classic

one parameter model. The parameter fitting was performed

through a similar multiple linear regression method as the DGBD

fitting and the natural log transformation is

ln (v(r))~ln(Ai){bi ln (r)

where v(r) is the value of rank r, bi is a shape parameter, and Ai

is a normalization constant. The utilized weighting scheme was

also the same. As evident from the previous equations, the power

law model represents a special case of the DGBD model where

ci~0.
Weighted coefficient of determination (R2). The weighted

coefficient of determination (R2) is

R2~1{

P
i (Wi(yi{fi)

2)P
i (Wi(yi{yw)

2)

yw~

P
i (Wi � yi)P

i (Wi)

where Wi is the specified weight, yi is the empirical value, fi is
the predicted value, and yw is the weighted mean. This

formulation is only one of many possible definitions, [21] provides

an expanded explanation of many formulations.

Empirical Data
The utilized empirical datasets are described in detail including

the exact dataset source and dataset limitations. Table 4

summarizes the basics of each dataset.

The French book sales dataset consists of sales volume data of

16 distinct ranks for the years 2003 to 2007. The dataset was

released by [15], which obtained the original data from the French

subsidiary of market research company GfK. The dataset covers

only sales of physical books (from brick-and-mortar or online

stores); however, in 2007 digital book (often called eBook) sales in

France were negligible.

The US theatrical earnings dataset consists of gross domestic

box office earnings data for US movies for the years from 2002 to

2012. The dataset was released by Box Office Mojo [16], a

subsidiary of Amazon, which systematically tracks box office

earnings data. Box Office Mojo provides domestic box office

earning data is several different formats and we use the total

domestic grosses viewed by release date. Importantly, in this

format the gross earnings for each movie were fully counted

toward the initial release year [31]. Furthermore, the dataset

covers only theatrical earnings (in other words earnings from

movie theatre ticket sales) and thus excludes earnings from

subsequent home movie rentals or sales.

The census respondents last name frequency dataset consists of

the frequency of almost all last names of census respondents of the

2000 US census. The dataset was released by the US census

bureau [17]. For confidentiality reasons, the census bureau did not

include last name information for those names with frequency of

less than 100.

The Audioscrobbler artist play frequency dataset consists of the

frequency of plays for artists through the Audioscrobbler music

recommendation plugin over several years up to May 2005. The

dataset was released by Audioscrobbler in May 2005 [18]. At that

time the plugin had over 150,000 users. Unfortunately, Audio-

scrobbler was acquired by LastFM in 2005 and no additional

datasets have been released.

The UMASS Amherst YouTube dataset consists of the

aggregate frequency of client requests for YouTube videos

originating from the University of Massachusetts Amherst campus

network during several dispersed observation periods during fall

2007 and spring 2008. The dataset was released by researchers

into the public UMASS Trace repository [19]. Ref. [32]

performed the initial collection and analysis of the dataset.

The US magazine circulation revenue estimates dataset consists

of circulation revenue estimates for most US magazines over the

years from 2000 to 2012. The dataset was released by The

Association of Magazine Media, a nonprofit industry association

[20].

Analytical Form of FT Process
Finally, we attempt to derive an analytical form for the FT

process rank function. However, we find that a simple analytical

approximation is unlikely to exist due to the complexity added by

the piecewise transformation function. Though we are able to

derive an analytical approximation for a special case of the FT

process.

Background
In order to derive the rank function we need to derive the

probability distribution function (hereafter PDF) of interval sizes

from a single FT process trial (since the rank function is a simple

transform of the corresponding cumulative distribution function

(hereafter CDF)). Unfortunately, the resultant interval sizes from a

single FT process trial are by definition interdependent. This

interdependence results in a non-standard distribution (often with

altered variance, see Theorem 2 in [9] for an example from a

related fragmentation process) that can be difficult to express due

to the necessity to utilize recurrence relations. However, we can

approximate the required PDF by the interval size PDF of a single

interval over many independent FT process trials. In essence, this

approximation assumes interval independence. Naturally, the

accuracy of this approximation depends on the number of

cascades (and thus number of intervals) as we discuss later.

PDF of a Single Interval over Independent FT Process
Trials
Thus we first attempt to derive this interval size PDF

approximation for an FT process with k cascades (or steps).

Recall that during each cascade we fracture each interval by

multiplying the interval by Xi and 1{Xi, where Xi is the

transformation of a standard uniform random variable by the

piecewise linear function

Rank-Frequency and a Simple Stochastic Process

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e94920



Xi~

R � 1{a
a 0ƒRv a

2

� �
:5z(R{:5) � a

1{a
a
2
ƒRƒ 1{ a

2

� �� �
1{(1{R) � 1{a

a 1{ a
2

� �
vRƒ1

� �

8><
>:

9>=
>;

where a is a fitting parameter and R is the standard uniform

random variable. Thus our first step is deriving the probability

distribution function of this transformed random variable Xi. We

can utilize the general univariate change of variable method in a

piecewise approach (due to non-differentiable corners between the

subfunctions of the transformation) [33]. The generalized change

of variable method formulation is

g(y)~f u{1(y)
� �

D
du{1(y)

dy
D

where f is the PDF of the original (in our case standard uniform)

random variable, u{1 is the inverse of the transformation function,

and Ddu
{1(y)
dy

D is the absolute value of the Jacobian of the inverse of

the transformation function. The PDF of Xi is thusly

PDFXi
~

{ a
a{1

0ƒyv 1{a
2

� �
1
a{1 0:5{ 0:5a

1{az
0:5a2

1{a ƒyƒ
0:5 {1za2ð Þ

{1za

� �

{ a
a{1

1za
2

vyƒ1
� �

8>>><
>>>:

9>>>=
>>>;

Where y is utilized due to the inverse transformation function.

Next we derive the probability distribution function of the product

of two independent random variables each defined by PDFXi
, in

other words the PDF of X 2
i (thus describing an interval after two

cascades).

Deriving the PDF of the product of random variables is often

laborious because the resulting distribution is typically piecewise

defined. Thus we utilize the symbolic statistical package Math-

Statica (built on top of the mathematical platform Mathematica)

[34]. The MathStatica package symbolically utilizes Rohatgi’s

famous expression for the product of two continuous independent

random variables

fZ(z)~

ð?
{?

fX (x) � fY (z=x) �
1

DxD
dx

where fX is the PDF of one random variable, fY is the PDF of

the other random variable [34][35]. The resulting PDF of X 2
i is an

11 subfunction piecewise defined function. We detail the function

in Supporting Text S1 due to space limitations. We then attempt

to derive the PDF of Xi
3 (thus representing an interval after three

cascades), again using MathStatica, however, we find that the

calculation is already computationally intractable on a standard

desktop computer. The intractability is likely due to the increasing

complexity and large number of subfunctions and subdomains.

Thus a simple analytical form for the approximation PDF of

interval size with k cascades is unlikely to exist or to be of practical

use, and we are not able to derive an analytical form

approximation of the FT process rank function. However, we

can further examine the special case of the FT process where

a~:5. In this case the linear transformation reduces to unity and

the original standard uniform random variable is recovered. The

product of k independent standard uniform random variables is a

well-studied problem with a closed form [36]

PDF
xk
i
,a~:5

~
1

(k{1)!
� {ln xð Þð Þk{1

Interestingly, this form shows that, in this special case, the

natural logarithm of the size of an interval (ln (x), hereafter the

LN-size) follows a Gamma distribution.

Approximation Accuracy
We can also still examine the accuracy of this special case,

a~:5, PDF approximation.

Notice that if all the resultant intervals from a single process trial

were independent then each interval LN-size would simply be a

random variate from independent and identical gamma distribu-

tions and thus also follow the above gamma distribution (with a

sample size of 2k rather than the number of FT process trials).

However, as mentioned, the interval sizes from a single process

trial are by definition interdependent and the LN-size distribution

from a single process trial deviates from the above gamma

distribution. Illustratively, Figure 12 shows the average of 10000

FT process trials (each trial result was sorted before summing)

compared with the average of 10000 gamma distributions (again

each distribution was sorted before summing). The sorting before

the summing of each trial or distribution basically means the

empirical CDFs (empirical distribution functions) are averaged.

The average of empirical i.i.d. CDFs almost surely converges

pointwise to the true CDF by the strong law of large numbers [37].

The corresponding PDFs are shown in Figure 12. As expected, the

distribution of a single process trial shows less dispersion than the

gamma distribution due to the interdependencies between the

resultant intervals. Numerically, we have found that the relative

difference between the std. dev. of the single process trial and the

gamma distribution depends on the number of steps k. And as

expected, the difference is larger for smaller values of k.

Rank Function Approximation
Finally, we can also utilize this special case, a~:5, PDF

approximation to create an approximation of the process rank

function for a~:5. First we integrate the PDF with respect to a

third variable t over the limits from 0 to x obtain the CDF as

CDF
xk
i
,a~:5

~

ðx
0

1

(k{1)!
� { ln tð Þð Þ

k{1

dt~
C { log xð Þ,kð Þ

C(k)

Where C x,að Þ is the upper incomplete gamma function

(hereafter UIGF) defined as

C(x,a):
ð?
x

ta{1e{tdt
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And C zð Þ is the complete gamma function defined as

C(z):
ð?
0

tz{1e{tdt

Notice that the UIGF could also be replaced by the lower

incomplete gamma function through the use of, for example, a

normalized gamma function identity (8.2.5 in [38]). The lower

incomplete gamma function is more commonly seen in formula-

tions of gamma CDFs. Next, according to [21], the rank function

can be derived from the CDF by solving

nz1{r

nz1
~CDF (x)

for x as a function of r. Where r is the rank and n is the total

number of ranks (in our case n~2k). Thus we must solve

2kz1{r

2kz1
~

C { log xð Þ,kð Þ
C(k)

for x as a function of r. First notice that the right hand side of

the equation is a form known as the normalized UIGF (since the

UIGF is essentially normalized by the complete gamma function).

Many common mathematical packages such as MATLAB and

Mathematica have functions that inverse this normalized UIGF

[39] [40]. However, unfortunately no simple analytic form exists

for this inverse function and these mathematical packages only

find numerical approximations. MATLAB’s approximation func-

tion, for example, uses Newton’s method [40]. In any case, we

inverse the normalized UIGF on the second parameter (notice

importantly that this parameter is the integration limit parameter

of the UIGF and not the integrand parameter of the UIGF) to give

Cn{1 2kz1{r
� �

2kz1ð Þ ,k

� �
~{ log xð Þ

Finally trivial operations then give the final approximation rank

function form of

RF
xk
i
,a~:5

rð Þ~x~e
{Cn{1 2kz1{rð Þ

2kz1ð Þ ,k

� �
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