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Abstract
Likelihood-free inference (LFI) has been successfully applied to state-spacemodels,where the likelihood of observations is not
available but synthetic observations generated by a black-box simulator can be used for inference instead. However, much of
the research up to now has been restricted to cases in which a model of state transition dynamics can be formulated in advance
and the simulation budget is unrestricted. These methods fail to address the problem of state inference when simulations
are computationally expensive and the Markovian state transition dynamics are undefined. The approach proposed in this
manuscript enables LFI of states with a limited number of simulations by estimating the transition dynamics and using
state predictions as proposals for simulations. In the experiments with non-stationary user models, the proposed method
demonstrates significant improvement in accuracy for both state inference and prediction, where a multi-output Gaussian
process is used for LFI of states and a Bayesian neural network as a surrogate model of transition dynamics.

Keywords Likelihood-free inference · Simulator-based inference · Bayesian optimisation · Multi-objective optimisation ·
State-space models · Non-linear dynamics

1 Introduction

Likelihood-free inference (LFI) methods (Sunnåker et al.
2013; Sisson et al. 2018; Cranmer et al. 2020) estimate the
parameters θ of a statistical model, given an observed mea-
surement x∗ and a black-box simulator gθ . These methods
use synthetic observations xθ ∼ gθ (x | θ) produced by
the simulator to assist the inference without requiring an
analytical formulation of the likelihood p(x | θ). LFI has
been successfully applied to identifying parameters of com-
plex real-world systems, such as financial markets (Peters
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et al. 2012; Barthelmé and Chopin 2014; Ong et al. 2018),
species populations (Beaumont et al. 2002b;Beaumont 2010;
Bertorelle et al. 2010) and cosmology models (Schafer and
Freeman 2012; Alsing et al. 2018; Jeffrey et al. 2021). A spe-
cial type of application of LFI is time-dependent systems,
which can be described using state-space models (SSMs)
(Kalman et al. 1960; Koller and Friedman 2009) where
observed measurements xt ∈ R

n are emitted given a series
of latent variables, the states θ t ∈ R

m , as illustrated in Fig. 1.
Compared to traditionalBayesian estimation, in a simulator-

based setting, our primary aim is to understand how latent
states evolve in relation to both the logic of the simulator
and real-world observed data. Typically, state-space infer-
ence methods (Kalman et al. 1960; Anderson and Moore
2012; Zerdali and Barut 2017) require an observation model
gθ in the form of the likelihood p(xt | θ t ) to find the poste-
rior distribution p(θ1:T | x1:T ). When the observation model
is unavailable, state-space learning methods (Frigola et al.
2014; Melchior et al. 2019) are commonly used to infer
gθ from the observed time-series data. However, when gθ

is inferred, the states become very difficult to interpret for
domain experts since the states are no longer informed by a
known model. An alternative solution to this problem is to
use a simulator in place of gθ . LFI methods are able to infer
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the states and avoid learning gθ by using a simulator as the
observation model. Simulators are widespread in SSM set-
tings (Ghassemi et al. 2017; Shafi et al. 2018; Georgiou and
Demiris 2017) since they enable the incorporation of addi-
tional prior knowledge about data-generating mechanisms
without the need for a tractable likelihood p(xt | θ t ). In this
paper, we focus on LFI for SSMs, which fall under the cate-
gory of approximate methods in the broader context of SSM
inference.

An essential aspect of SSMs that is often overlooked in the
LFI literature is the complexity of transition dynamics hθ t .
Current LFI methods for SSMs (Toni et al. 2009; Dean et al.
2014) proceedby assumingdynamics to be either too simplis-
tic (e.g., linear) or readily available for sampling. In contrast,
our approach stands out as especially valuable when the
transition dynamics are complex, non-linear, and not imme-
diately known, especially under a limited simulation budget
of the observation model. Such complexities in state transi-
tions, which deviate from simple linear or Gaussian norms,
are frequently observed in diverse domains like meteorol-
ogy (Errico et al. 2013; Zeng et al. 2020), cosmology (Lange
et al. 2019; He et al. 2019) or behavioural sciences (Gimenez
et al. 2007; Georgiou and Demiris 2017). In meteorology, for
example, intricate dynamics (Kalnay 2003) are driven by a
vast web of interconnected factors shaping weather patterns.
In the realm of behavioural sciences (Kahneman and Tver-
sky 2013; Fiske and Taylor 2013), human decision-making
stands as a testament to complexity. Choices are shaped not
only by an individual’s past experiences but also by their
current emotional states and cognitive biases. An instance of
this is how new information can sway subsequent decisions,
a phenomenon we delve deeper into in our later experiments.
Traditional LFI methods, when not tailored to address these
non-linear and non-Gaussian dynamics, frequently result
in less-than-optimal state estimates and predictions. While
there have been commendable advancements in LFI, such
as the creation of more efficient sampling-based methods
(Jasra et al. 2012), innovative statistic-matching generation
mechanisms (Martin et al. 2019), and theoretical conver-
gence confirmations (Dean et al. 2014; Martin et al. 2014;
Calvet and Czellar 2015), they still fall short in addressing
this core challenge.

In this paper,we introduce amethod capable of likelihood-
free state inference and state prediction in discrete-time
SSMs. Our method operates in a LFI setting, where a time-
series of observations xt and a simulator gθ capable of
replicating these observations are provided. The goal of the
method is to infer the states θ1:T = {θ1, ..., θT } that can pro-
duce the observed time-series x1:T = {x1, ..., xT }, using as
few simulations as possible to reduce their potentially high
computational cost. This setting is broader than is typically
assumed by traditional LFI methods since we do not assume
the transition dynamics hθ t to be known (neither in its closed-

Fig. 1 Graphical representation of an SSM. Latent states θ t (orange)
produce observations xt through the observation simulator gθ (blue)
and follow the Markovian transition dynamics hθ t (red)

form nor its function family) or available for sampling, and
also because the number of simulations can be limited to a
small number. Instead of assuming the transition dynamics,
we learn a non-parametric model and use it as their surrogate
(or replacement) in state approximation and prediction.

This paper contains three main contributions. First, we
propose a solution to the previously unaddressed problem of
state prediction in SSMs with unknown transition dynamics
and a limited simulation budget. We use samples from LFI
approximations of state posteriors p(θ t | xt ) to accurately
model the state transition dynamics, with accuracy shown by
empirical comparisons with state-of-the-art SSM inference
techniques. Second, focusing on problems where LFI has to
be sample-efficient, i.e., the number of simulations needs to
be reduced as much as possible, we improve upon the current
LFI methods for the state inference task by leveraging time-
series information. This is done by using a multi-objective
surrogate for the consecutive states (e.g., for time-steps j and
j + 1) and sampling from a transition dynamics model to
determine where to next run simulations. Lastly, we demon-
strate that the proposedmethod is needed to tackle the crucial
case of usermodelling, where usermodels are non-stationary
because users’ beliefs, preferences, and abilities change over
time.

2 Background

Approximate Bayesian computation (ABC) (Beaumont et al.
2002a; Csilléry et al. 2010; Sunnåker et al. 2013) is arguably
the most popular family of LFI methods. In its simplest
variant, ABC with rejection sampling (Tavaré et al. 1997;
Pritchard et al. 1999), the simulator parameters are repeatedly
sampled from the prior p(θ) to generate synthetic observa-
tions xθ . These synthetic observations are then compared to
the observed measurement x∗ using the so-called discrep-
ancy measure δ(θ) = ρ(x∗, xθ ), where ρ(·, ·) is a distance
function, e.g. Euclidean. If synthetic observations xθ have
a discrepancy smaller than a user-defined threshold ε, then
they are considered to be produced by simulator parameters
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θ that could plausibly replicate the observed measurement
x∗. This common assumption in ABC approaches results in
the following approximations of the likelihood functionL(·)
and the posterior p(θ | x∗):

L(θ) ≈ E[κε(δ(θ))], p(θ | x∗) ∝ L(θ) · p(θ). (1)

Here κε(·) is a kernel with it maximum at zero and whose
bandwidth ε acts as an acceptance/rejection threshold. For
instance, in ABC with rejection sampling, κε(δ(θ)) =
ξ[0,ε)(δ(θ)), where ξ[0,ε)(δ(θ)) equals to one if δ(θ) ∈ [0, ε)
and zero otherwise. Unfortunately, ABC approaches need
many simulations of synthetic observations to accurately
approximate the posterior, making them unsuitable for infer-
ence with computationally intensive simulators.

2.1 Bayesian optimisation for LFI

Since many applications, including those considered in this
paper, aim to minimise the number of simulations, other
methodologies have emerged, such as Bayesian optimisation
for LFI (BOLFI) (Gutmann and Corander 2016). In BOLFI,
a Gaussian process (GP) surrogate is used for a discrep-
ancy measure δ(θ), where the minimum of the GP surrogate
mean function μ(θ) can be used as ε and a Gaussian CDF
F((ε − μ(θ))/

√
ν(θ) + σ 2) with mean 0 and variance 1 as

E[κε(·)] in Eq. (1). Here, ν(θ) + σ 2 is the posterior variance
of the GP surrogate.

A main advantage of modelling the discrepancy with a
GP is the ability to estimate uncertainty. The GP’s predic-
tive mean μ(θ (i)) and variance ν(θ (i)) are used to calculate
the utility (e.g., expected improvement, Brochu et al. 2010)
of sampling the objective function at the next candidate
point θ (i+1), where i denotes the number of a simulation.
Maximising this so-called acquisition function A(·) with
respect to θ helps determine where to run simulations next.
Because BOLFI actively chooses where to run simulations,
its posterior approximation requires much fewer synthetic
observations than other LFI methods that do not use active
learning. However, BOLFI was not specifically designed for
SSMs and hence does not make use of any temporal infor-
mation typical for SSMs to enhance inference quality.

2.2 Sequential neural estimation

An alternative approach to sample-efficient LFI is global
sequential neural estimation (SNE), which learns the sta-
tistical relationship between observations and simulator
parameters directly through a neural network surrogate. If
trained with a sufficiently large sample set, this surrogate
does not need retraining when the observation changes, mak-
ing SNE methods particularly suitable for a sequence of
related inference tasks, such as those required in time-series

prediction. Although there exist amortised versions of neu-
ral approximation methods, the specific sequential variants
highlighted here are not naturally amortised. In our dynamic
framework, these methods are employed to address separate
LFI problems across different time-steps, ensuring the use of
consistent priors throughout. The SNE neural network can
be used as a surrogate for the posterior, likelihood, or like-
lihood ratio, resulting in SNPE (Papamakarios and Murray
2016; Goncalves et al. 2018; Greenberg et al. 2019), SNLE
(Papamakarios et al. 2019), and SNRE (Durkan et al. 2020;
Hermans et al. 2020)methods respectively. These SNEmeth-
ods address a more difficult problem than we do: learning a
model across all possible tasks (i.e., observed datasets). The
price is that they require significantly more simulations than
Bayesian optimisation (BO) approaches, as seen in Sect. 4.3
of Aushev et al. (2020).

2.3 Likelihood approximation networks

Likelihood approximation networks (LANs), introduced by
Fengler et al. (2021), share similaritieswith SNEapproaches.
LANs approximate the likelihood for time-dependent gener-
ative models in dynamical systems within cognitive neuro-
science. Their key distinction is the assumption that the time
component is one of the inputs of the observation model,
allowing them to learn the observation model at an arbitrary
time-step. This assumption shifts the role of the dynamics
onto the observation model, which is often beneficial for dif-
fusion models (Reynolds and Rhodes 2009; Wieschen et al.
2020), but not for models of human behaviour (Schall 2019;
Futrell et al. 2020; Pothos and Chater 2002). In contrast, our
approach does not rely on the explicit dependency of the
observation model on time, enabling state predictions when
the transition dynamics are unknown at the cost of amortisa-
tion.

2.4 Non-linear dynamics in non-LFI methods

The issue of handling non-linear transition dynamics, in
general, has been primarily addressed outside of the LFI
literature. This large and growing set of methods includes
extended Kalman filters (Anderson andMoore 2012; Zerdali
and Barut 2017), GP-SSMs (Frigola et al. 2014; Melchior
et al. 2019), sequential Monte Carlo (Doucet et al. 2001;
Smith 2013; Septier et al. 2013) and Bayes filtering (Smidl
and Quinn 2008; Karl et al. 2016). Although they are not
directly applicable to the LFI setting considered in this paper,
we summarise them in Table 1 alongside relevant LFI litera-
ture to highlight important connections.
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Table 1 Comparison of inference methods in SSMs with references to selected representative works

Reference Method LFI Amortized # Simulations Dynamics

Rubin (1984) ABC ✓ ✗ ≈10k ✗

Gutmann and Corander (2016) BOLFI ✓ ✗ ≈50 ✗

Papamakarios and Murray (2016) SNEs ✓ ✓ ≈1k ✗

Fengler et al. (2021) LANs ✓ ✓ ≈1k ✗

Jasra et al. (2012) ABC/Filt. ✓ ✗ ≈10k Linear

Izenman (1988) Kalman ✗ ✗ – Linear

Anderson and Moore (2012) Ext. Kalman ✗ ✗ – Non-linear

Doerr et al. (2018) PR-SSM ✗ ✗ – Non-linear

Ialongo et al. (2019) GP-SSM ✗ ✗ – Non-linear

This work LMC-BNN ✓ ✗ ≈50 Non-linear

LFI methods use simulators to infer states (or simulator parameters) and can be either amortised (do not need to be retrained when the observations
change) or non-amortised (valid only for the observed data). These methods also vary in the number of simulations required for inference and the
type of dynamics they assume.We report the single observation budget (per time-step) for non-amortised methods and the total budget for amortised
methods

3 Likelihood-free inference in state-space
models

In this section, we introduce a multi-objective approach to
LFI in SSMs, which improves the sample-efficiency of exist-
ing methods by using the model for discrepancy shared
across consecutive states while also learning the model of
the transition dynamics. The main elements of the solu-
tion are presented in Fig. 2. To estimate state points θ t ,
given xt , we employ a multi-objective surrogate δ̃θ for dis-
crepancies and then approximate the posterior over states
p(θ t | xt ) with Eq. (1). At the same time, we randomly
pair consecutive posterior samples (θ j , θ j+1) and train a
non-parametric surrogate for the state transition h̃θ t , whose
predictive posterior p(θ t+1 | xt ) proposes candidates for
future simulations.We summarise our approach inAlgorithm
1,where θ∗ denotes simulator parameter points shared across
all time-steps. For in-depth details, please refer to “Appendix
C (Section C.3.2)”.

3.1 Multi-objective state inference

As an extension to BOLFI, we employ a multi-objective
surrogate model for the discrepancies δt (θ∗) = ρ(xt , xθ )

at different t , considering multiple discrepancy objectives
simultaneously and leveraging information between con-
secutive states. More specifically, we pass discrepancies
of the consecutive states to the surrogate separately (e.g.,
δt−1(·), δt (·)), but through the use of shared parameters of
the multi-objective surrogate, they become associated. This
approach allows using a discrepancy model of the previous
state to infer the current state instead of simply discarding it.
Moreover, it allows for a much more flexible surrogate for

Fig. 2 An overview of our approach, in which the δ̃θ surrogate is used
for LFI of states and h̃θ t for the unknown transition dynamics. The δ̃θ

models the corresponding discrepancies δt ≡ δt (θ∗) of several observa-
tions (green) inside a moving window (here, with the size of two), from
which posteriors are extracted according to Eq. (1) in P . h̃θ t is trained
with paired samples D from posteriors of consecutive states (grey); its
predictive samples are used as proposals (orange) for simulations S

LFI of states than the traditional GP used in BOLFI. These
changes do not need any additional data to fit the surrogates
because all synthetic observations xθ for discrepancy objec-
tives can be shared across all states (therefore, we use θ∗
instead of θ t in the context of simulations). When we con-
sider a new observation xt+1, we simply need to recalculate
the discrepancy values for all synthetic observations. Once
we have a trained surrogate for discrepancy objectives, we
infer state posteriors p(θ t | xt ), similarly as in BOLFI. This
can be achieved, for example, through importance resam-
pling, where prior samples are weighted according to the
likelihood function L(θ) from Eq. (1).
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Algorithm 1 Multi-Objective LFI with Transition Model
Input: observations {x1, ..., xT }, observation simulator gθ , moving window size L , number of initial simulations B0, simulation budget Bsim,
number of posterior samples I for states and K for state predictions, prior over states p(θ∗);
Output: state posteriors P , transition model h̃θ t ;

Initialise an empty set for state posteriors P := ∅;
Initialise the transition model h̃θ t from Section 3.2;
Simulate B0 observations with parameters sampled from the prior p(θ∗);
Form the set S with the resulting data {(θ∗, xθ )}B0b=1;
Initialise the start and end indexes for the moving window: t0 := 0, t := L;
while t < T do

Calculate discrepancies for S inside the moving window w := t0:t ;
Form the training set T with the resulting data {(θ∗, δw(θ∗))}|S|

s=1;
Train the multi-objective model δ̃θ from Section 3.1 with T ;
Extract I posterior samples over states from δ̃θ with Equation (1);
Replace the old posterior estimates in P with the resulting samples {θw}Ii=1;
Randomly sample K consecutive (some j and j + 1) state samples from P;
Form the training set D with the resulting data {θ j , θ j+1}Kk=1;
Update parameters of h̃θ t with data from D through training;
Simulate Bsim parameters proposed by h̃θ t with Equation (2);

Augment S with the resulting new data {(θ∗, xθ )}Bsimb=1 ;
Move the moving window by adjusting its indexes: t0 := t0 + 1, t := t + 1;

end while

3.1.1 Moving window approach

There is an additional challenge in adapting multi-objective
surrogates in SSMs: the high computational cost associ-
ated with considering too many objectives. Time-series can
potentially have hundreds of time-points, and expanding the
number of considered objectives may be detrimental to the
performance of the surrogate. We avoid this problem by
limiting the number of objectives the surrogate can have.
Instead of considering all available time-steps as objectives,
we propose to consider only L recent objectives by gradu-
ally including new ones and discarding old ones that have
little impact on current states. The size of this moving win-
dow depends on how rapidly the transition dynamics change.
As the size of the window L grows, the model becomes
less sensitive to the noise from the dynamics, at the cost
of increased computations and decreased adaptability to the
most recent state transitions. Overall, the moving window
reduces the number of objectives L considered at a time,
making multi-objective modelling in the SSM setting fea-
sible. In “Appendix A”, we further investigate the influence
of the moving window size hyperparameter on state infer-
ence and prediction and show that having only two objectives
(L = 2) is the most beneficial choice in terms of the quality
of posterior approximations and low computational time.

3.2 Learning state transition dynamics

While we progressively improve LFI posterior approxi-
mations p(θ t | xt ) by acquiring new simulations, we use
empirical samples from the latest available approximations to
learn a stochastic model of transition dynamics. This model

should be able to learn from noisy samples of LFI poste-
rior approximations p(θ t | xt ), and be flexible enough to fit
arbitrary function families the dynamics may follow. In addi-
tion, it should be able to handle uncertainty associated with
samples outside the training distribution, as samples from
posterior approximations tend to be concentrated around
the main mode of the learning data. For these reasons,
the appropriate transition model should be Bayesian and
non-parametric (or semi-parametric). Such a model would
account for the uncertainty associated with posterior approx-
imations and be flexible enough to follow possibly non-linear
transition dynamics.

Wepropose to train thismodel in an autoregressive fashion
by forming a training set of K randomly paired sample points
from posteriors (e.g., p(θ t−1 | xt−1), p(θ t | xt )). More
specifically, we assume the Markov property in the transi-
tion dynamics and use pairs of states instead of their whole
trajectories. For each SSM time interval, we group consec-
utive state posterior samples in a training set, and expand
it when new state posteriors become available (as we move
forward in time). Thus, the transition model does not need to
be retrained when new observations present themselves and
can be actively used throughout state inference to determine
where to run simulations next. This can be done by sampling
the predictive posterior p(θT+1 | xT ) from the trained model
h̃θT :

p(θT+1 | xT ) ≈
∫

h̃θT (θT+1 | θT ) · p(θT | xT )dθT . (2)

The posterior described above should be recognized as
an approximate representation, informed by the data and
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model, rather than an exact reflection of the true posterior.
All later mentions of the posterior pertain to this approx-
imation. Within this framework, the state transition model
h̃θ t influences state posteriors indirectly, primarily serving
as a source of simulation candidates for the LFI surrogate.
Ultimately, accumulatingmore simulations improves the dis-
crepancy surrogate for the LFI of states and, by extension, the
quality of posterior samples, while higher-quality posterior
samples allow for more accurate learning of state transition
dynamics.

3.3 Computational complexity andmodel choices

In this section, we discuss the model choices and the result-
ing complexity analysis for the proposed multi-objective
approach to LFI, as illustrated in Algorithm 1.

3.3.1 Model choices for surrogates

To meet the requirements for the surrogates as stated in
Sects. 3.1 and 3.2,we have chosen a linearmodel of coregion-
alization (LMC) (Fanshawe and Diggle 2012) for discrep-
ancies and a Bayesian neural network (BNN) (Kononenko
1989; Esposito 2020) for state transition dynamics.

1. Linear model of coregionalization. LMC is one of the
simplest multi-objectivemodels. It expresses each of its L
outputs fl as a linear combination fl(θ∗) = ∑Q

q=1 al,quq ,
as shown in Fig. 3, where the uq ∼ GP(0, ν(θ∗)) are
latent GPs and the al,q are linear coefficients that need to
be solved.

2. Bayesian neural network. BNN can be represented as
an ensemble of neural networks, where each has its
own weights ω(h) drawn from a shared, learned prob-
ability distribution (Blundell et al. 2015) with ω(h) ∼
N (μ(h), log(1+χ(h))), whereμ(h) andχ(h) are the hyper-
parameters that need to be learned. Previously, neural
networks have been successfully applied in SSM settings
for either modelling the transition dynamics or the obser-
vation model (Rivals and Personnaz 1996; Bonatti and
Mohr 2021).

3.3.2 Complexity analysis

Given the aforementioned model choices, the resulting com-
putational complexity of Algorithm 1 is primarily influenced
by three main stages: training the multi-objective surro-
gate δ̃θ , extracting the posterior from discrepancy surrogates
(Eq. 1) and training the transition dynamics model h̃θ t . Both
LMC and BNN are trained by minimising the variational
evidence lower bound (see more details in “Appendix C”).

Fig. 3 Graphical representation of the LMC. The discrepancy outputs
δt ≡ δt (θ∗) are modelled as a linear combination of latent functions uq .
The model shares the same parameter values θ∗ between all objectives

1. Training the multi-objective surrogate. The cost of
training δ̃θ depends on the number of synthetic observa-
tions |S| (the cardinality of S), on the size of the moving
window L and on the user-specified number M of induc-
ing points (Alvarez and Lawrence 2011) for the LMC.
This results in a complexity O(|S|LM2), compared to
O(|S|M2) for traditional GPs used in BOLFI.

2. Posterior extraction. This stage consists of finding the
appropriate ε (e.g., by minimising the GP mean function)
and then applying Eq. (1). The complexity of this step is
bounded by the calculation of the variance of the surrogate
for each of the I samples from the posterior over states,
resulting in O(LM2 I ).

3. Training the transitiondynamicsmodel.Whenemploy-
ing variational inference (Zhang et al. 2018) to train the
transition dynamics model h̃θ t , the computational cost is
linear in the number W of BNN parameters, resulting in
O(WK ESp). Here, K represents the overall amount of
training data for h̃θ t , E is the number of epochs, and Sp
is the number of parameter samples from the posterior
distribution that is required to obtain the distribution of
outputs.

Depending on the choice of hyperparameters, the com-
putational complexity of Algorithm 1 is bounded by either
O(|S|LM2), O(LM2 I ) or O(WK ESp). Most of these
parameters are common in LFI (e.g., |S|, I ), and the rest
are specific to surrogate choices, which can be replaced
with fewer-parameter alternatives if needed. We provide
recommendations for choosing these hyperparameters in
“Appendix C”.
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3.4 Theoretical properties

In this section, we analyse the convergence properties and
limitations of our LFI method for state-space models. We
discuss how our method approximates states and transition
dynamics, and outline the restrictions imposed by our choice
of models on the class of systems that can be effectively
modelled using our method. While the approach discussed
in this section provides a robust framework for state inference
in SSMs, it is vital to note that the results are approximate
in nature, owing to inherent limitations such as the finite
moving window. This section primarily aims to lay out the
conditions under which our method can be seen as offering
a good approximation rather than an exact solution.

3.4.1 Convergence

In the convergence analysis, we examine the ability of our
method to learn a suitable approximation of states and transi-
tion dynamics when provided with sufficient data. The state
approximations for p(θ t | xt ) are obtained through the like-
lihood function in Eq. (1), which Proposition 1 of Gutmann
and Corander (2016) identifies as a non-parametric approxi-
mation of the true likelihood:

Proposition 1 Maximising the synthetic log-likelihood log
L(θ∗) in Eq. (1) corresponds to maximising a lower bound of
a non-parametric approximation of the log likelihood when
the kernel function κε(·) is convex.

log L(θ∗) ≥ log κε(E[δt (θ∗)])

For our LMCmodel, we can demonstrate that Proposition
1 holdswhen the kernel is aGaussianCDF, as specified below
and ε is the minimum of the GP surrogate mean function:

Corollary 1 Assuming the Gaussian CDF kernel F((ε −
μ(θ∗))/

√
ν(θ∗) + σ 2) from Sect.2 and ε = minθ∗ μ(θ∗),

Proposition 1 holds for the LMC model of discrepancy.

Proof The Gaussian CDF kernel F(·) is known to be con-
vex on the interval (−∞, 0]. By setting ε as the minimum
of the GP surrogate mean function, the argument of F(·)
is restricted to the range (−∞, 0] with the maximum at
0 (note that since μ(·) models discrepancy, it is always
non-negative). Consequently, the inequality expression in
Proposition 1 is preserved, while Jensen’s inequality ensures
a lower bound for both L(θ∗) and its logarithm when the
functions are convex. ��

As for the approximations of state transitions p(θ t+1 | θ t ),
their convergence follows from the universal approxima-
tion theorem of neural networks Hornik et al. (1989). This
theorem states that every continuous function can be approx-
imated by a neural network with a single hidden layer of

neurons whose transfer function is bounded. Our use of the
BNN model for transition dynamics compiles with this the-
orem. Under certain conditions, such as the availability of
sufficient parameters and data, the central limit theoremguar-
antees that the expectation of our approximation converges
to the target distribution.

3.4.2 Restrictions onmodelling classes

Our choice of models imposes additional limitations on the
class of systems that may be challenging to model using our
method. The first limitation concerns high predictive vari-
ance when learning systems with long-term dependencies.
While our method is robust across a variety of applications,
it encounters challenges when dealing with time series that
possess long memory. If the size of the moving window
is shorter than the memory inherent in the time series, our
method may fail to capture crucial long-term dependencies.
Although it can adeptly handle abrupt changes to a certain
extent, effectively addressing the complexities presented by
long-memory dynamics in time series is a topic for future
development. Given that the training of the BNN involves
a single trajectory consisting of a limited number of obser-
vations (50 in our experiments from Sect. 4), the flexibility
offered by BNNs might be insufficient to model systems
characterised by both non-linear dynamics and significant
long-term dependencies accurately. It is important to note,
however, that BNNs do not introduce additional theoretical
restrictions on the class of systems that can be modelled.

The second limitation concerns the type of observa-
tion distribution that our method models through the LMC.
Although LMCs offer greater flexibility than vanilla GPs,
they may have difficulty modelling asymmetric, skewed, or
multimodal noise in the observation model when the simu-
lation budget is constrained. This issue is prevalent among
various LFI methods, as they often rely on models, such
as GP-based surrogates, that make simplifying assumptions,
such as assuming Gaussian noise. These assumptions can
compromise the reliability of state posterior approximations
when they are violated.

The third limitation stems from using GPs in LFI,
which are subject to the curse of dimensionality, restrict-
ing the observation model’s dimensionality to fewer than
10. This constraint, however, is intrinsically connected to
our method’s sample-efficiency, a significant advantage, as
it requires only a few synthetic observations to approximate
the likelihood. If the simulation budget for the observation
model is not limited to the order of a hundred simulations, we
recommend using more complex surrogates, such as SNEs
or LANs from Table 1, alongside our approach to modelling
state transitions.
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4 Experiments

We assess the quality of our method for state inference and
prediction tasks in a series of SSM experiments, where a
simulator serves as the observation model gθ . In the exper-
iments, our method uses the surrogate choices of LMC and
BNN, as described in Sect. 3.3. We demonstrate that it can
accurately learn state transition dynamics and improve upon
existing LFI methods for the state inference task. More-
over, we investigate the sample-efficiency of the proposed
method and demonstrate its effectiveness in non-stationary
user modelling case studies.We compare our method against
traditional SSMmethods in cases with available closed-form
likelihoods and against LFI methods when only a simulator
is available and traditional methods cannot be applied.

4.1 Experimental setup

We simulated time series of observations based on single-
sampled trajectories from ground-truth transition dynamics
(available for evaluation purposes but unknown to the meth-
ods) of five SSMs, described in Sect. 4.2. Our goal was to
estimate the simulator parameters that likely produced these
observations, and learn the model of transition dynamics for
state prediction based on the sampled trajectory.

4.1.1 Comparison methods

For the state inference task, we compare the quality of state
estimates by our approach against other LFImethods: BOLFI
(Gutmann and Corander 2016), SNPE (Papamakarios and
Murray 2016), SNLE (Papamakarios et al. 2019), and SNRE
(Durkan et al. 2020). We use a fixed simulation budget for all
these methods, with 20 simulations to initialise the models
and then two additional simulations for each new time-step.
For the SNE approaches (SNPE, SNLE, and SNRE), we pro-
vided all simulations at once since that is their intendedmode
of operation. As for the prediction task, we sampled state
trajectories from the transition model and evaluated them
against trajectories from ground-truth dynamics. We per-
formed these experiments in SSMs with simulators that have
tractable likelihoods p(xt | θ t ), providing the closed-form of
the ground-truth likelihoods to the state-of-the-art SSM infer-
ence methods GP-SSM (Frigola et al. 2014; Ialongo et al.
2019) and PR-SSM (Doerr et al. 2018), while our method
was still doing LFI. For all methods in the prediction task,
we provided 50 observations and then sampled trajectories
that had the same length of 50 time-steps.

We also compared two variants of our method that differ
only in theway the next simulations are sampled: LMC-BLR,
where samples were taken from Bayesian linear regression
(BLR) models that linearized the transition dynamics along
50 observed time-steps; and LMC-qEHVI, where a popular

acquisition function for multitask BO, q-expected hypervol-
ume improvement (qEHVI) (Daulton et al. 2020), was used
to provide samples. The role of these variants was to evaluate
how the choice of future simulations impacts the quality of
state inference and prediction.

All models were assessed in terms of the root mean
squared error (RMSE) between the state estimates and their
ground-truths. The experiments were repeated 30 times with
different random seeds. Additional details on the implemen-
tation of the methods can be found in “Appendix C”; all code
for replicating the experiments is included in the Supplement.

4.2 The state-spacemodels

In this section, we present two case studies with non-
stationary user models and three SSMs with tractable
likelihoods. In user modelling experiments, we simulated
behavioural data from humans who completed a certain task
in two different experiments, described in Sects. 4.2.1 and
4.2.2. It is worth noting that unlike typical experiments,
where the underlying dynamics can be assumed to be station-
ary, user preferences and behaviour can change over time,
making them harder to model with traditional approaches.
For the first task, the user evaluated dataset embeddings for a
classification problem, and the evaluation score was used as
behavioural data. During the second task, the user searched
for a target on a display, and the search time was measured.
Our task in the experiments was to track the changing param-
eters of user models and learn their dynamics.

In addition to non-stationary user models, we also experi-
mented with three models with tractable likelihoods, com-
mon in SSM literature: linear Gaussian (LG), non-linear
non-Gaussian (NN), and stochastic volatility (SV) models.
In the LG model, the state transition dynamics and obser-
vation model are both linear, with high observational white
noise. The NN model is a popular non-linear SSM Kitagawa
(1996), where each observation has two unique solutions.
Lastly, we used the SV model Barndorff-Nielsen and Shep-
hard (2002),which is used for predicting the volatility of asset
prices in stock markets (Taylor 1994; Shephard 1996). For
in-depth insights into these models and a detailed report on
the auto-correlation function (Parzen 1963; Brockwell and
Davis 2009) across all five SSMs, shedding light on the intri-
cacies of their transition dynamics, please refer to “Appendix
B”.

4.2.1 UMAP parameterisation

In this study, we utilise the first non-stationary user model to
observe and analyse how an individual’s preferences evolve
over time while interacting with data. Consider a scenario
where an individual is engaged in data categorizationwithout
prior familiarity with the data. Initially, their primary focus
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might be on exploring and understanding the data. However,
as they become acquaintedwith the data, their attention shifts
towards enhancing the accuracy of their categorizations. By
employing uniform manifold approximation and projection
(UMAP) (McInnes et al. 2018a), we adapt the data presen-
tation to align with the user’s shifting needs. The ultimate
objective is to accurately predict and apply the most suitable
UMAP settings for the user at different times.
User modelling
Drawing insights from cognitive science (Slovic et al. 2002;
Lichtenstein and Slovic 2006), it is evident that individuals
can possess preferences over various data presentations, even
if they are unable to articulate their specific desires explicitly.

We quantify these preferences through an evaluation
function, which assigns scores to different presentations
of handwritten digit data (Alpaydin and Kaynak 1998)The
assigned scores are influenced by two primary metrics: the
density-based cluster validity (DBCV) score (U(·)) (Moulavi
et al. 2014) and the c-support vector classification (SVC)
accuracy (P(·)) (Boser et al. 1992; Cortes and Vapnik 1995).
A weight parameter, wt , adjusts the balance between these
metrics, thereby allowing emphasis on either data exploration
(U) or classification accuracy (P):

δt (θ∗,t ) = (1 − wt ) · U(θ∗,t ) + wt · P(θ∗,t ), (3)

wt = 1

1 + e−0.1·(t−25)
. (4)

Both U(·) and P(·) are dependent on the time-variant
UMAP settings, denoted as θ∗,t .
State-space modelling framework

• Observation model: The observation model is consti-
tuted by the combination of the UMAP algorithm and
the evaluation function (as defined in Eq. (3)). While the
UMAP algorithm provides a low-dimensional data rep-
resentation (or embedding), the parameters of which are
dictated by the latent states, the evaluation function serves
as a subjective lens through which data presentations
are assessed. Subsequently, the scores of the evalua-
tion function serve as observations. To cater to evolving
human preferences, adjustments to the UMAP settings
are needed.

• Transition dynamics: In our framework, transition
dynamics are unknown; we lack precise knowledge
regarding thenecessary adjustments to theUMAPparam-
eters since the evaluation function is beyond our direct
control.

• Latent states: The latent states within our model are
represented by the time-dependent UMAP parameters:
θ∗,t = {θd,t , θdist,t , θn,t }. These include the dimension
of the reduced space (θd ), the point density-dictating
parameter (θdist ), and the neighbourhood size parame-

ter for local metric approximation (θn). The priors for
these parameters are:

θd,t ∼ Unif(1, 64) ∈ Z,

θdist,t ∼ Unif(0, 0.99) ∈ R,

θn,t ∼ Unif(2, 200) ∈ Z.

It is crucial to note that the ideal UMAP settings (referred
to as ground truth states) remain elusive for our task. To
address this, we generated 1,500,000 embeddings using
parameter settings sampled from the prior, calculated their
correspondingU andP values, and retained only a very small
number of parameter settings (0.06%) exhibiting the best
preference score values at each time step. Subsequently, we
applied a Gaussian kernel density estimator to these param-
eter settings, allowing us to derive estimates of the ground
truth for evaluating the performance of the methods. More
implementation details can be found in “Appendix C”.

4.2.2 Eye movement control for gaze-based selection

In our next study, we seek to delve deeper into the mechanics
of human eye movement during target-search tasks on a two-
dimensional (2D) screen, as previously explored by (Zhang
et al. 2010; Schuetz et al. 2019). The study observes individu-
als as they engage in repeated tasks, noticing an improvement
in their task performance as they develop beliefs about the
target location. However, fatigue sets in over time, leading
to increased latency between eye movements. This latency
masks the true individual characteristics of the human gaze,
like ocular motor noise and peripheral vision’s spatial noise,
making it challenging to identify consistent gaze features as
fatigue develops. Our goal is to create a robust model that
accurately depicts eye movement latency, helping identify
consistent gaze features amidst signs of fatigue.
User modelling
The user model serves as a surrogate for human behaviour
within a simulated environment, aiming to locate a target on
a 2D screen. This environment comprises:

• Reinforcement learningagent:Acting as a surrogate for
the human subject, the agent learns to locate and focus
on a target on a 2D display. The agent’s training uses
ground truth values for ocular motor noise (θom,t ), spa-
tial noise of peripheral vision (θs,t ), and varied values for
eye movement latency (θl,t ). Given that both actions and
observations experience noise from θom,t and θs,t , the
agent needs multiple attempts to locate the target accu-
rately:

xt =
∑

e

(2.7 · Â(e)(θom, θs) + θl,t ). (5)
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where Â(e) represents the eye movement amplitude func-
tion, e is the eye movement index, and xt represents
the total time recorded for the agent to locate the target.
The training process, spanning 10,000 episodes, utilises
a multilayer perceptron policy derived from the proxi-
mal policy optimisation (PPO) algorithm (Schulmanet al.
2017).

• Virtual environment: Within this simulated space, the
agent acts, observes, and updates its beliefs, with all
elements (including the target’s location) represented
by coordinates c1, c2 in the range of −1 to 1. As the
agent assimilates noisy target observations, it adjusts its
gaze and updates its belief system through a predefined
mechanism. Once the agent’s gaze aligns with the tar-
get location, the task is deemed complete. This virtual
environment was created by Chen et al. (2021) using the
Open AI gym framework (Brockman et al. 2016).

State-space modelling framework

• Observation model: The simulation that drives the
eye movement task functions as the observation model,
detailed in Eq. (5). However, due to the inherent com-
plexity and opaque characteristics of the reinforcement
learning components used within, it remains ambiguous
how the parameters of the reinforcement learning pol-
icy (or the latent states) influence the time it takes for
the agent to locate the target xt . These timings xt subse-
quently form the observations for the SSM.

• Transition dynamics: Our experiments assume a spe-
cific form for eye movement latency’s transition dynam-
ics, which remains unknown to the methods:

θl,t = 12 · log(t + 1) + 37. (6)

It is crucial to note that while latency changes, the way it
influences the user model’s policy remains elusive, mak-
ing the inference of other latent states non-trivial.

• Latent states: The properties of human gaze behaviour
serve as the latent states in our SSM, denoted by θ∗,t =
{θom,t , θs,t , θl,t }. These parameters, which also shape the
reinforcement learning policy, have the following prior
distributions:

θom,t ∼ Unif(0, 0.2) ∈ R,

θs,t ∼ Unif(0, 0.2) ∈ R,

θl,t ∼ Unif(30, 60) ∈ R.

For generating observed data, the observation model
utilised ground truth values of 0.01 for θom,t and 0.09 for θs,t
across all t . The θl,t value, however, was changing according
to the aforementioned transition dynamics. Detailed infor-

mation about the implementation is available in “Appendix
C”.

4.3 Results and analysis

The results for the inference and prediction tasks are pre-
sented in Tables 2 and 3, respectively. The lower the RMSE,
the better the quality of estimation. In the inference task,
the proposed LMC-based methods clearly outperformed the
BOLFI and SNE approaches. This indicates that consider-
ing multiple objectives at the same time was beneficial for
state inference and that themodel actually leverages informa-
tion from consecutive states without hindering performance.
Additionally, it can be seen that all LMC-based variants per-
formed differently, which can only be attributed to how the
next simulations were chosen since the surrogate was exactly
the same in all three methods. As the results show, having
BNN as a model for state transition was beneficial for exper-
iments with non-stationary user models, while having BLR
was more preferable for simpler models. This suggests that
BLR is expressive enough to replicate simple transitions but
struggles with more complex ones, for which BNN is more
suitable.

4.3.1 Learning transition dynamics

The comparisons with GP-SSMs and PR-SSMs for learning
transition dynamics show that our method learns accurate
dynamics, or, at least, relative to the SSM method baselines.
The SSM methods showed worse results than the BLR and
BNN approaches. This can be explained by the lack of obser-
vations for learning state transitions by the SSM methods,
which also explains the high variance in the sampled trajec-
tories from thesemethods. As for comparisons between BLR
and BNN, BLR performs better only in LG and SV models,
while BNN performs better in more complex case studies.
Moreover, it should be noted that trajectory sampling from
BLR is possible only by retaining all local linearizations of
the dynamics,which is a farmore limiting approach than hav-
ing one single model. Therefore, BNN is a more preferable
transition dynamics model.

4.3.2 Empirical time costs

The empirical time costs for running the LFI methods are
shown in Table 4. It can be seen that the SNPE method was
the fastest for the computationally cheap simulators (of SSMs
with tractable likelihoods), while the LMC-qEHVI required
the least amount of time for the non-stationary user models.
This is expected since the SNEs learn the model only once
and then simply use it for all observations, which is suitable
for the computationally cheap simulations with simple LFI
solutions. However, for non-stationary user models, where
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Table 2 Comparison of LFI
methods (rows) in different
SSMs (columns) for the state
inference task

Methods LG NN SV UMAP Gaze

LMC-BNN 1.77 ± 0.12 6.92 ± 0.51 16.14 ± 3.27 58.24 ± 3.62 58.7 ± 5.4

LMC-BLR 1.3 ± 0.1 6.86 ± 0.54 13.15 ± 3.25 59.19 ± 3.31 60.6 ± 5.8

LMC-qEHVI 1.5 ± 0.1 7.03 ± 0.55 24.4 ± 2.5 64.96 ± 3.72 56.9 ± 4.5

BOLFI 1.55 ± 0.15 7 ± 0.6 27.35 ± 3.45 84.31 ± 3.54 73.45 ± 5.75

SNPE 7.15 ± 0.65 18.2 ± 0.93 77.4 ± 3.1 74.13 ± 3.21 68.1 ± 7.8

SNLE 6 ± 0.5 10.35 ± 0.64 54.25 ± 2.45 71.45 ± 3.44 77.25 ± 4.05

SNRE 10.4 ± 1.7 17.93 ± 1.34 57.15 ± 2.35 75.85 ± 1.26 80.75 ± 1.35

The performance was measured with 95% confidence interval (CI) of the RMSE between estimated and
ground truth state points for 50 time-steps. The best results in each column are highlighted in bold

Table 3 Comparison of
transition dynamics models
(rows) in different SSMs
(columns)

Methods LG NN SV UMAP Gaze

LMC-BNN 210 ± 4 148 ± 2 117 ± 21 1394 ± 27 1365 ± 3

LMC-BLR 64 ± 7 154 ± 4 100 ± 37 1409 ± 49 1372 ± 3

BNN base 103 ± 22 51 ± 14 24 ± 6 – –

GP-SSM 284 ± 71 2204 ± 1111 3206 ± 1175 – –

PR-SSM 253 ± 68 610 ± 510 1378 ± 740 – –

The performance was measured with 95% CI of the RMSE between sampled and ground truth trajectories
of length 50. The best results in each column are highlighted in bold. The BNN base row evaluates the BNN
transition model that was trained using samples from the true posterior, and it is used as a baseline for the
transition dynamics performance

Table 4 Time comparison of
LFI methods (rows) in different
SSMs (columns) for training 50
time-steps

Methods LG NN SV UMAP Gaze

LMC-BNN 87.6 ± 2.6 79.2 ± 1 81 ± 2.9 171.2 ± 5 408 ± 8

LMC-BLR 82.1 ± 5.5 48.2 ± 0.8 93.5 ± 4 149.4 ± 4.5 442.5 ± 8.8

LMC-qEHVI 25.5 ± 1.5 23.9 ± 0.5 24.7 ± 0.7 116 ± 4.6 347.2 ± 7.3

BOLFI 1.1 ± 0 1 ± 0 1.7 ± 0.1 129.3 ± 11.7 369.5 ± 16.5

SNPE 0.1 ± 0 0.1 ± 0 0.4 ± 0 168.6 ± 4.4 710.9 ± 415

SNLE 119.4 ± 2.9 137.3 ± 5.8 355.3 ± 23.1 582.7 ± 23.8 1003.4 ± 92.4

SNRE 34± 1.5 35.4 ± 0.3 110.2 ± 6.1 309.6 ± 8.6 446.4 ± 14

The running time is shown in minutes along with 95% CI. The best results in each column are highlighted in
bold

Fig. 4 The performance of LFI methods for state inference tasks with
various simulation budgets in two non-stationary user modelling exper-
iments. The box plots were computed from 30 repetitions with different

random seeds. The horizontal line on box plots shows the median; the
bar shows the upper and lower quartiles; and the whiskers indicate the
rest of the quartiles. The diamond points indicate outliers
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there are no closed-form likelihoods available, learning a sin-
gle model actually requires much more time. To summarise,
the LMC variants are clearly preferable for the computation-
ally heavy simulators, which dominate the cost of training a
transition dynamics model and a multi-objective surrogate.

4.3.3 Simulation budget impact

Finally, Fig. 4 shows how the performance of the LFI models
changes with different simulation budgets: 2, 5, and 10 sim-
ulations per time-step. As expected, in general, all methods
improved their performance with increased budgets. How-
ever, there is little difference in how these methods compare
with respect to each other. This indicates that the results are
not sensitive to the precise simulation budget.

4.3.4 Key findings of experiments

In all experiments, we attribute the success of the proposed
LMC-BNNmethod to a more flexible multi-output surrogate
and a more efficient way of choosing simulation candidates.
TheLMCallowsmulti-fidelitymodelling (e.g., decomposing
a stochastic process into processes with different length-
scales), which allows leveraging information from multiple
consecutive time-steps, unlike standard GPs. At the same
time, samples from the transition model provide better can-
didates for simulations than the alternatives. The flexible
surrogate along with adaptive acquisition make our method
particularly suitable for online settings, where only a handful
of samples are possible per time-step.

While the experiments underline the strengths of our
LMC-BNNmethod, it is equally important to be candid about
its drawbacks. As highlighted earlier in this section, for more
basicmodels, opting forBLRproves to be amore streamlined
and beneficial approach than BNN. Moreover, as detailed
in Sect. 4.3.2, in certain contexts, when the simulations are
computationally cheap, SNPE methods outpace our method
in terms of performance speed. For a comprehensive dive
into the specific constraints and limitations of our modelling
technique, please consult Sect. 3.4.2.

5 Discussion

We proposed an approach for state inference and prediction
in the challenging SSM setting, where the transition dynam-
ics are unknown and observations can only be simulated.
Importantly, our model of transition dynamics was obtained
with few simulations, making it suitable for cases with com-
putationally expensive simulators. This is important because
typically sample-efficient LFI approaches discard any tem-
poral information from observed time-series and cannot do
state prediction, which is necessary for choosing the next

simulation when the simulation budget is limited. We pro-
posed a solution for both of these challenges: we use a
multi-objective surrogate model for the discrepancy mea-
sure between observed and synthetic data, which connects
the consecutive states through shared parameters, and we
train an additional surrogate for state transitions with sam-
ples fromLFI state posteriors. Additionally, our method does
not restrict the family of admissible solutions for the state
transitions to being linear or Gaussian, unlike existing LFI
methods for SSMs (Jasra et al. 2012; Martin et al. 2014),
making it more widely applicable.

Although our method uses a more flexible surrogate for
the LFI of states, we demonstrated that it requires neither
additional data nor significantly more training time than
traditionally used GP surrogates. We reached the sample-
efficiency goal by sharing synthetic observations across all
discrepancy objectives, allowing the method to use the same
simulations indefinitely. As for the decreased training time,
weproposed amovingwindowapproach that allowed the sur-
rogate to focus only on a few recent SSM time-steps at a time.
In conclusion, having a more flexible surrogate improved
state inference and provided better samples from state pos-
teriors for learning the unknown dynamics.

The main limitation of our approach is that the proposed
transition dynamics model does not account for long-term
state dependencies. Our state transition surrogate considers
only the most recent state as an input, assuming the Markov
property, and therefore cannot forecast far into the future.
The resulting predictions have a very low variance and a
tendency to converge to similar values, which is expected
when training on a single trajectory. Despite this limitation,
our method remains effective in cases where the observation
model serves as the primary source of information, while the
transition dynamics model still plays a complementary role
in state inference.
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