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Abstract

Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging
(fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their
time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data
collected from 15 subjects who viewed a 15-min silent film (‘‘At land’’ by Maya Deren). We focused on the dorsal attention
network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most
prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network;
the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very
low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the
number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These
results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides
continuous stimulation embedded in an attention-directing narrative.
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Introduction

Data-driven analysis methods, such as independent component

analysis (ICA), are gaining increasing interest in providing

reliable analyses of functional magnetic resonance imaging

(fMRI) signals collected during naturalistic complex stimuli [1–

4]. ICA can separate fMRI data into additive components that

comprise spatially independent, functionally connected brain

networks. However, no exact rules exist for estimating the correct

number of independent components (ICs). Furthermore, previous

investigations have come to partly controversial conclusions

about the proper number of independent components, and

especially how this number is related to the functional feasibility

of the results [5–8].

When the dimensionality of the ICA is increased, the ICs

typically split into subcomponents. Too low dimensionality can

lead to loss of information [9] or to confusing mixtures of several

components [2,5,10–12]. Thus it has been suggested that one

should prefer high rather than low dimensionality [13]. However,

the excess of components may decrease the stability and reliability

of the IC estimates [5,7].

A previous study [14] used a large fMRI database to compare

the ICA results at dimensionalities of 20 and 70 components,

focusing on the splitting of resting-state networks. However, ours is

the first study on the relationship between the number of estimated

ICs and the functional organization of brain networks during

viewing a movie that closely resembles every-day life conditions

and–in addition to the continuous and complex visual stimulation–

provides attention-capturing narratives.

We used a 15-min long, skillfully directed silent film as a rich

and continuous visual stimulus to study how the dimensionality of

the ICA (10, 20, 40, or 58 components) affects the subdivision of

three major functional brain networks: the dorsal attention

network (DAN), the default-mode network (DMN), and the

sensorimotor network (SMN). We were especially interested in

the hierarchy of the networks and aimed to find out whether the

networks would split into functionally feasible subunits when the

model order is increased or whether the splitting is arbitrary at

high dimensionalities. We started from the component count 58

suggested by the MDL method and selected three lower counts to

observe the merging and splitting of these networks. Higher model

orders were not studied here since the MDL method tends to

already overestimate the number of components [15].

Results

Brain Networks at the Dimensionality of 10 ICs
Figure 1 illustrates all components of the lowest-dimension (10-

IC) decomposition. The components cover both the dorsal

attention network DAN and the default-mode network DMN

without any clear sign of the SMN. In this decomposition, the
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components covering the DAN and DMN also included other

brain areas that are not typically listed to these networks.

IC1 captures the DAN, including the frontal eye fields (FEFs)

and the intraparietal sulcus (IPS) bilaterally; the IPS activity

extends down to the supramarginal gyri and the V5/MT region.

Other prominent activities were seen in the fusiform gyri

bilaterally, including the posterior part of the inferior temporal

cortex, as well as in the middle frontal gyri bilaterally.

IC2 corresponds to the DMN, covering the medial prefrontal

cortex, the posterior cingulate (PCC; also extending to the

precuneus, preC), and the left inferior parietal cortex (IPC). It

also includes activity in the midline cerebellar vermis, in the

anterior insula and caudate bilaterally, as well as in left thalamus

(only some of these areas visible in Fig. 1).

IC3 covers the striate and extrastriate visual cortices. It also

contains elongate bilateral artifacts in the white matter, about

1.5 cm lateral to both lateral ventricles.

IC4 includes prominent, several centimeters long bilateral signal

source–an apparent artifact–in the white matter, similar to those in

IC3, as well as activity in the insular cortices.

IC5 covers the prefrontal cortex extensively, the IPC bilaterally

and the preC. It also includes the superior temporal sulcus (STS)/

upper part of the medial temporal gyrus along the whole length of

the STS, as well as the caudate in both hemispheres, and the right

anterolateral thalamus.

In IC6, the most prominent activity covers the inferior occipital

cortex, mainly the lingual gyri, and the medial occipital lobe

bilaterally. It also includes multiple locations in the STS, and left-

hemisphere-dominant posterior insula, as well as nodes in the

anterior cingulate, interior frontal gyri, amygdala/anterior hippo-

campus, and putamen in both hemispheres.

IC7 is quite patchy. The main node covers the top of the

superior midline parietal lobe. It also includes the whole STS and

middle and posterior STG extending to the posterior part to the

MT/V5 region; both latter activations are bilateral but right-

hemisphere dominant. It also covers the right thalamus, hippo-

campus, amygdala, and posterior insula.

In IC8, midline activation extends from the anterior to the

middle cingulate cortex. It also contains a widespread bilateral

activation in the superior temporal lobes, insulae, caudate, and

cerebellum.

IC9 is dominated by a wide bilateral activation in the posterior

cingulate cortex (extending to the top of the mesial posterior

parietal cortex) and the inferior parietal lobe (focus on the angular

Figure 1. 10-IC decomposition. Spatial maps for the 10 ICs of the 10-IC decomposition, each viewed in three orthogonal directions. The group-
level t-maps are thresholded at t $6.
doi:10.1371/journal.pone.0042000.g001
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gyrus), posterior to the IPS activity spot in the DMN component

IC2. Activation is also seen in anterior and posterior thalamus.

IC10 captures an apparent artifact, comprising wide-spread

patchy activations.

The following paragraphs and Figs. 2 and 3 explain the

subdivision of the dorsal attention network and default-mode

network in the 20-, 40-, and 58-IC decompositions. We will also

describe (Fig. 4) the sensorimotor network SMN that was not

visible in the 10-IC decomposition.

Dorsal Attention Network
Figure 2 shows the ICs comprising the attention network in the

20-, 40-, and 58-IC decompositions.

20-IC decomposition. In the 20-IC decomposition (top

panels of Fig. 2), the IC1 network of the 10-IC decomposition

(see Fig. 1) was covered by two components, att120–comprising the

conventional dorsal attention network and att220–comprising

mainly occipitotemporal visual cortices.

Component att120 (blue blobs in the top panels of Fig. 2) covers

bilaterally the IPS, extending down to the supramarginal gyri,

FEFs, and it also contains blobs in medial and posterior cingulate

cortices, as well as in the posterior thalamus bilaterally.

Component att220 (red blobs in the top panels of Fig. 2) covers

the most medial and posterior parts of the IPS in both hemispheres

and FEFs bilaterally, largely overlapping the FEF activations of

att120 but also extending anterior to them. Other nodes of this

component include the fusiform cortices bilaterally, the calcarine

sulcus, and the mid/superior occipital gyri.

40-IC decomposition. In the 40-IC decomposition (Fig. 2,

middle panels), four ICs were needed to cover the spatial maps of

att120 and att220, however in a more complex manner than by

a simple division of each of the two components into distinct

subcomponents. In contrast to the symmetric components in the

20-IC decomposition, att140 (blue blobs in the middle panels of

Fig. 2) was now clearly left-lateralized and att240 (pink blobs in the

middle panels of Fig. 2) right-lateralized. Notably, att240 included

brain areas from both att120 and att220.

Component att140 includes the left FEF, the left middle and

inferior temporal areas, and the IPS bilaterally. It also covers parts

of the cuneus and preC, the left thalamus, left hippocampus, and

parts of the left mesial occipital cortex and left lingual gyrus.

Component att240 includes the right FEF, the right IPS, and the

medioposterior part of the left IPS. It also comprises the mid/

superior occipital gyri covered by att220. Thus, this IC includes

brain areas from both att120 and att220.

Component att340 (red blobs in middle panels of Fig. 2) includes

the inferior parts of att120, that is bilaterally the lateral IPS and the

supramarginal gyri and parts of the MCC. It also covers the

posterior insulae of both hemispheres.

Component att440 (green blobs in middle panels of Fig. 2) covers

bilaterally the fusiform cortices, the lingual gyri, as well as

bilaterally the mesial occipital cortex (calcarine sulcus and middle

occipital gyri), extending bilaterally to the superior parts of the

cerebellum. This component also covers the left orbitofrontal

cortex, as well as the putamen, caudate, and amygdala bilaterally.

58-IC decomposition. The lowest panels of Fig. 2 show the

58-component decomposition, where two ICs were needed to

cover the spatial map of att120 of the 20-IC composition: att158
(pink blobs in bottom panels of Fig. 2) the superior part (plus the

inferior frontal gyri bilaterally) and att258 (green blobs in bottom

panels of Fig. 2) the inferior part (plus the posterior insula

bilaterally). These both components were rather symmetrical.

Component att158 covers bilaterally the superior IPS and the

FEFs, and the right middle temporal areas. Component att258

covers the more lateral IPS down to middle temporal areas

bilaterally. It also includes the precentral gyri and IPC in both

hemispheres.

Component att220 of the 20-IC decomposition was split into

three ICs in the 58-IC composition: att358, att458, and att558.

Component att358 (blue blobs in bottom panels of Fig. 2) comprises

the left FEF, the left medial IPS, and, symmetrically but less

extensively, the right IPS. It also includes the left fusiform and

right amygdala, as well as the mid/superior occipital gyri

bilaterally, and the left FFG. Component att458 (yellow blobs in

bottom panels of Fig. 2) is lateralized to the right hemisphere,

comprising the right FEF, the right medial IPS, and the right mid/

superior occipital gyri. Component att558 (red blobs in bottom

panels of Fig. 2) covers bilaterally the fusiform cortex, the mesial

occipital cortex, and lingual gyri. It also includes the right FEF and

the MCC.

Default-mode Network
Figure 3 shows the spatial maps of the selected ICs for the DMN

in the decompositions of 20, 40, and 58 components.

20-IC decomposition. In the 20-IC decomposition, the

DMN of the 10-IC decomposition was covered by one component

dm120 very similar to that in the 10-IC but now including also the

IPC in the right hemisphere. Furthermore, the prefrontal midline

and inferior frontal activity appeared wider than in the 10-IC

decomposition.

Component dm120 (red blobs in top panels of Fig. 3) covers parts

of the posterior and middle cingulate cortices (PCC similarly and

MCC more prominently than in the 10-IC decomposition), the

preC, medial prefrontal cortex (MPFC), and bilaterally the IPC. It

also extends bilaterally over the inferior frontal cortex.

40-IC decomposition. In the 40-IC decomposition the

DMN component of the 20-IC decomposition is split into dm140
(red blobs in middle panels of Fig. 3) concentrated on the MPFC

and dm240 (blue blobs in middle panels of Fig. 3) covering the

posterior parts of the DMN.

Component dm140 encompasses the MPFC as well as parts of

the PCC and preC. It also includes a right-sided attention network

(right FEF, right IPS, as well as left medial IPS), and it covers

bilaterally the inferior frontal cortex as well as parts of the left

occipital lobe.

Component dm240 demonstrates most prominent activity in

bilateral IPC. It also includes the PCC and preC bilaterally and

the left frontal cortex, as well as parts of the MCC and cuneus.

58-IC decomposition. In the 58-IC decomposition, the

component dm120 (of the 20-IC decomposition) was split into 5

subcomponents: the prefrontal cortex was split into one superior

and one inferior component (dm158 and dm258; yellow and blue

blobs in bottom panels of Fig. 3), the bilateral IPC was covered by

dm358 (pink blobs in bottom panels of Fig. 3), and the PCC/preC

by dm458 (green blobs in bottom panels of Fig. 3). Moreover, the

inferior parts of dm120 were now covered by component dm558 (red

blobs in bottom panels of Fig. 3).

Figure 3 shows that dm358 includes the PCC, preC, MCC, and it

also extends to the calcarine sulcus and lingual gyri. Component

dm458 covers bilaterally the IPC as well as the MCC and parts of

the left prefrontal cortex. Component dm558 encompasses bi-

laterally the inferior frontal gyrus and the left IPC (extending more

inferior than component dm458).

Sensorimotor Network
Figure 4 shows the spatial maps of the selected ICs for the SMN

in the decompositions of 20, 40, and 58 components; SMN did not

appear in the 10-IC decomposition.

Functional Subdivision of Independent Components
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20-IC decomposition. Component sm120 (red blobs in top

panels of Fig. 4) corresponds to the SMN: it covers bilaterally the

primary motor cortex (MI), the supplementary motor area (SMA),

and the primary somatosensory cortices (SI) of both hemispheres.

It also covers the Sylvian fissure, thereby overlapping with the

secondary somatosensory (SII) and temporal-lobe auditory cortices

in both hemispheres. In addition, it covers bilaterally parts of the

mesial occipital cortex and medial cingulate cortex (MCC).

40-IC decomposition. In the 40-IC decomposition, sm120 of

the 20-IC decomposition was split into four subcomponents: sm140,

sm240, sm340, and sm440. Component sm140 (green blobs in middle

panels of Fig. 4) covers the SMA and premotor areas, down to the

inferior SI. It also covers parts of the MCC and bilaterally the

insula, putamen, and pallidum.

Component sm240 (pink blobs in middle panels of Fig. 4) is

focused on the sensory areas but also covers MI, SII, and posterior

SMA. It also encompasses superior parts of the cerebellum as well

as bilaterally the insula, thalamus, and caudate.

The inferior parts the sensorimotor cortex are covered by sm340
(red blobs in middle panels of Fig. 4). The parieto-opercular (SII)

cortex together with parts of the supratemporal auditory areas is

covered by sm440 which also covers parts of the insula bilaterally

(blue blobs in middle panels of Fig. 4).

58-IC decomposition. In the 58-IC decomposition, four

subcomponents–sm158, sm258, sm358, and sm458–cover the spatial

map of sm120. Component sm158 (green blobs in bottom panels of

Fig. 4) is similar to sm140, except that it does not reach the basal

ganglia but instead covers the left thalamus. Component sm258
(pink blobs in bottom panels of Fig. 4) corresponds to sm240, except

that it includes the preC but not the insula, thalamus, or caudate.

Component sm358 (red blobs in bottom panels of Fig. 4) is almost

identical to sm340 and component sm458 (blue blobs in bottom

panels of Fig. 4) corresponds to sm440.

Reliability of the Estimated ICs: ICASSO
Figure 5 illustrates the 2D curvilinear component-analysis

projections of the clustered ICASSO-based ICA estimates. The

black dots represent the estimated components at every run of

ICASSO. Small and tight clusters correspond to similar compo-

nent estimates at every run. The average intra-cluster similarity is

indicated by the background color. The ICs chosen to represent

the DAN, DMN, and SMN are circled in Fig. 5 with yellow, blue,

and green, respectively.

For the 10-IC decomposition, all components are stable and

only one component has an intra-cluster similarity less than 0.9. At

dimensionality of 20, most of the clusters are tight and well

separated; four clusters have an intra-cluster similarity less than

0.8. From the chosen components, only att120 has an intra-cluster

similarity lower than 0.8, whereas all other components have intra-

cluster similarity over 0.9. The cluster corresponding to att120 is

wide and overlaps with other clusters, meaning that the

component estimates vary considerably between different runs.

When the dimensionality is increased to 40, some of the clusters

start to overlap and the intra-cluster similarity is less than 0.8 for

nine clusters; these clusters include two ICs of the DAN (att240 and

att440) and one IC of the DMN (dm240).

At dimensionality of 58, many clusters are still tight and well

separated, but some of them in the center of the graph overlap

considerably, and several clusters have an intra-cluster similarity

lower than 0.8. Thus the ICA estimation starts to become less

stable at high dimensionalities. One component of the DAN

(att158) and one component of the DMN (dm158) are unstable with

intra-cluster similarity less than 0.8.

Discussion

We analyzed three major cortical networks, i.e. the dorsal

attention, default-mode, and sensorimotor networks, extracted

from fMRI data acquired from healthy young adults who were

freely viewing a silent film. The main aim was to examine how the

network division changes as a function of the number of

components (10, 20, 40, or 58) in the independent component

analysis. The highest dimension, 58 components, was proposed by

the minimum-description-length algorithm, which has the prop-

erty of statistical consistency and thus yields asymptotically correct

results [16,17]. We expected the subdivision of the components at

higher dimensionalities (40, 58) to tell about the functional

parcellation of the underlying circuitry.

As expected, the dorsal attention network, default-mode

network, and sensorimotor network were fragmented into smaller

sub-networks as the dimensionality of the IC-decomposition

increased. Unexpectedly, the new higher-dimension decomposi-

tion of 40 components included a component that merged brain

areas from more than one component of the lower dimension

decomposition, indicating that we were not only witnessing

subdivision of the same components. This finding likely reflects

the highly similar activation time courses of these areas

accompanied by the proximity of the areas.

Previously, the dorsal attention, default-mode, and sensorimotor

networks have been characterized on the basis of resting-state

fMRI data [18–21], implying that the nodes of these networks are

functionally connected even in the absence of external stimuli.

However, some connections may strengthen and others weaken in

task conditions, as we expected to happen when our subjects

viewed a visually rich movie stimulus. Notably, free movie viewing

involves attentive monitoring of the visual scenes and socially

relevant events on the screen. Previous studies have shown that

a well-directed movie guides different viewers’ attention–as

reflected by eye-gaze patterns–much more similarly than does,

for example, a surveillance camera video from a vivid city square

[22]. The experimental film ‘At Land’ presented in the current

study depicts often surprising social and physical events that

maintain the subjects’ attention during the whole 15-min movie.

Thus, a close coupling between the dorsal attention network and

visual areas, including face- and body-sensitive fusiform areas, was

to be expected and such connection was observed in the low-

dimensional decompositions where the visual and attention

networks belonged to the same components.

In the following we discuss some functionally interesting

findings.

Splitting of the IC Networks
10-IC decomposition. Our 10-IC decomposition was of far

too low dimensionality according to all standards of IC- number

selection. Although DAN and DMN were clearly evident in

distinct components, these components also comprised brain areas

that are not typically considered to belong to these networks. Two

of the ten ICs were clear artifacts.

It is possible although quite unexpected that the DMN was split

into two components already at this dimensionality (ICs 2 and 9),

Figure 2. Dorsal attention network. Spatial maps for the ICs selected to represent the dorsal attention network (DAN) in the 20- (top), 40-
(middle), and 58-IC (bottom) decompositions, with 2, 4, and 5 color-coded components displayed, respectively. The maps are thresholded at t $6.
doi:10.1371/journal.pone.0042000.g002
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although the parietal nodes of IC 9 were located somewhat

posterior to the brain areas typically considered to belong to the

DMN [21]. DMN activity is known to decrease during task

performance [21], and watching the movie may have weakened

the connections between the DMN nodes, resulting in the splitting

already at this low dimensionality.

As the movie stimulus included significant amount of body

movements, such as grasping hands, we expected the SMN to

appear in all IC dimensionalities. However, the rather prominent

SMN at other dimensionalities was not yet visible at the 10-IC

decomposition. One possible explanation is that clear SMN signal

appeared only in some subjects and thus when only 10

components were extracted, the SMN did not survive the final

reduction step of ICA. Another possibility is that the variability in

inter-node connectivity was higher for the SMN than for the now

detected 10 components. Moreover, the signal may have varied

more across subjects for the SMN than for the other networks, or

the SMN may have been obscured by noise at this low

dimensionality.

These results imply that the most task-related brain networks

are revealed already at a very low dimensionality of ICA.

Dorsal attention network. The now already classical dorsal

attention network is related to voluntary orienting towards stimuli

[23]. When identified during resting state, the DAN comprises,

rather symmetrically, the lateral intraparietal cortices, FEFs, and

visual cortices, especially MT/V5 region. Our DAN also included,

at low (10 and 20) dimensionalities, the fusiform face region. We

interpret this close connection of a wider visual network and the

DAN to be due to the movie stimulus where social stimuli,

especially close-ups of faces, were strong attention capturers.

When the dimensionality was increased from 10 to 20

components, the superior parts of the DAN detached from the

inferior network and visual areas. The superior DAN component

seemed to behave more like a top-down attention network,

without coupling to the visual areas.

Some of the brain areas of the DAN covered by two distinct ICs

in the 20-IC decomposition merged into one IC in the 40-IC

decomposition, implying relatedness of the two ICs of the 20-IC

decomposition. Interesting hemispheric lateralization also

emerged, as one FEF–IPS subcomponent was lateralized to the

right hemisphere but also included the medial aspects of the left

IPS, whereas a corresponding left-hemisphere FEF–IPS compo-

nent only covered IPS in the left hemisphere.

Several studies have shown right hemisphere dominance for

spatial attention. For example, lesions in the right temporoparietal

junction or parietal lobe cause a more severe contralesional neglect

than do equivalent lesions in the left hemisphere [24–29].

Accordingly, fMRI studies have demonstrated stronger activation

in the right than left parietal lobe in attention shifting tasks

[30,31]. Thus the DAN subcomponents in the 40-decomposition

agree with the well-established role of the right hemisphere in

directing attention to both hemispaces whereas the left hemisphere

shifts attention predominantly in the contralateral hemispace [32].

In other words, the network seemed to fragment into functionally

feasible subunits.

It was also interesting to note that the partly overlapping

components of 20- and 58-IC decompositions covered slightly

different areas of the FEF. FEF is known to have subdivisions

preferentially representing the central and peripheral visual fields.

For example, Gitelman and coworkers [33], contrasting explora-

tion and central fixation, noted that the FEF region for visual

search is medial to that of oculomotor control and the area for

covert attention was in-between, with partial overlap. Compared

with these studies, our present ICA results are not based on

contrasts between different task conditions but rather directly

capture functionally connected networks during the whole movie

stimulus, thereby providing further support for the functional

parcellation of the IPS–FEF network.

Different parts of the lateral intraparietal sulcus (LIP) have

different roles in oculomotor control and attention, whereas the

anterior intraparietal sulcus (AIP) is connected to eye fixation and

to manipulation and grasping of objects [34]. It is possible that

a large part of the prominent IPS activation that we detected in the

present study was related to saccades during free viewing of the

movie. Posterior IPS, corresponding to our most medial IPS, has

also been claimed to have a role in object-centered social orienting

[35], and its activation in the present study could have received

contribution from processes related to anticipation of object-

oriented actions of the main character in the movie.

Default-mode network. At the dimensionality of 40 com-

ponents, the DMN was split into two subcomponents, the other

concentrated on the MPFC and the other on the more posterior

nodes of the DMN. Previous studies support the idea of these two

subsystems in the DMN [36]. The posterior subsystem has been

linked for example to episodic memory retrieval [37], whereas the

anterior subsystem is activated during self-referential thinking [38].

In the 58-IC decomposition, the MPFC was split into two DMN

components, one covering the ventral and the other the dorsal part

of the MPFC. According to previous imaging studies, the dorsal

MPFC is involved in affective and emotional processing, whereas

the ventral MPFC is activated during attention-demanding

cognitive processing (for reviews, see [39–41]). For example, self-

referential tasks were associated with activity increases in the

dorsal MPFC while the activity in the ventral MPFC decreased

[38].

Solely the preC/PCC formed one subcomponent of the DMN

in the 58-IC decomposition. This area seems to be a key node in

the DMN, connecting information from the subsystems of the

network [42]. Leech and collaborators [43] recently demonstrated

functional subdivision of the PCC to subregions that have

connections to several other cortical circuits beyond the DMN.

PCC was assumed to act as a hub integrating information from

several cortical networks. Importantly, only the ventral part of the

PCC showed functional connectivity with the other nodes of the

DMN, whereas other parts were connected with e.g. dorsal

attention network or sensorimotor areas. Our results are well in

line with these Leech et al. [43] findings, as some PCC regions

were included in the SNM- and DAN-related ICs.

Sensorimotor network. We selected a visual stimulus, which

displayed abundant sensorimotor features, such as crawling,

climbing, manipulation of small chess pieces, striking another

person’s hair, and collecting rocks, to deliberately activate the

viewer’s SMN network. As mentioned above, the SMN was not

visible at the dimensionality of 10 components, but it appeared

when the dimensionality was increased to 20 components.

At the rather low dimensionality of 20 ICs, the sensorimotor IC

included superior temporal lobes and thereby also auditory areas.

The SII and parts of the auditory cortex occurred in same IC also

when the dimensionality of ICA was increased. As the film

stimulus was silent (apart from noise of the fMRI scanner itself),

Figure 3. Default-mode network. Spatial maps for the ICs selected to represent the DMN in the 20- (top), 40- (middle), and 58-IC (bottom)
decompositions, with 1, 2, and 5 color-coded components displayed, respectively. The maps are thresholded at t $6.
doi:10.1371/journal.pone.0042000.g003
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this finding might not reflect auditory-cortex activation but just be

a methodological artifact due to the unknown spatial extent of any

fMRI activation; the extent is always defined by statistical

thresholding. The secondary somatosensory cortex in the parietal

operculum and the supratemporal auditory cortex are close to

each other on the opposite walls of the Sylvian fissure. Albeit, we

cannot rule out a real auditory-cortex activation because of

multisensory integration, caused by visually perceived sources of

sounds, such as the ocean waves crashing to the shore, seagull

sounds, or dinner-table conversation that may activate the

auditory cortex during viewing of the silent movie [44].

The SMN was split into functionally feasible subnetworks

when the dimensionality of ICA was increased to 40 components

but it did not split further when the dimensionality was increased

to 58 components. Similarly as here, Abou-Elseoud and co-

workers [5] noticed that some components did not split any

further when the dimensionality of ICA was increased. They

suggested that the stable components might represent less

connected nodes, while the branching ones are kind of connector

hubs with lots of connections to other nodes. Consequently, the

stable components, with fewer connections, are functionally more

independent.

Reliability of the IC Estimation in ICASSO Analysis
ICASSO indicated decreased repeatability of the ICs when the

number of component estimates was increased; with 58 ICs,

a large portion of the clusters of the single-run-estimates over-

lapped considerably and the ICA estimation was less stable at

a high dimensionality. Significant reduction in ICA repeatability

with increasing model order has been reported earlier [5,7].

The most stable components included e.g. the early visual areas

and the insula whereas the selected ICs representing the three

networks were less stable. One apparent explanation is that

activity in the higher-order complex networks varies more across

subjects than does processing in e.g. sensory projection cortices.

Relating the findings to film features. A movie is a rich

and complex stimulus that captures the viewers’ attention in

a totally different manner than simple (and static) stimuli do. Thus

it would be interesting to relate the networks and their subnet-

works to film features to see whether the hierarchy of the networks

could be explained by differential brain processing. Our pre-

liminary results from an on-going study show that the mean rating

(obtained from 14 subjects separate from the current study group)

of the amount of tactile experience during the movie viewing

correlates well with one sensorimotor IC of the 40-IC de-

composition as well as with the ICs of the dorsal attention

network at all dimensionalities. Collecting such ratings of different

movie features–for example of the amount of faces, social

interaction, biological motion, or the valence and arousal [45–

47]–would help to unravel the effect of movies on various brain

networks.

Conclusions
We applied group ICA to fMRI data that had been acquired

during free viewing of a silent short film. As expected, when the

component number increased from 10 to 20, 40, and 58, the IC’s

provided more detailed information of the functionally specific

subnetworks of the three major networks (DAN, DMN, and

SMN). Although DAN and DMN were clearly evident already at

the lowest dimensionality, they also comprised brain areas that are

not typically considered to belong to them.

The major networks were fragmented into functionally feasible

components when the number of estimated ICs was increased. It

thereby seems tenable that running the ICA from the same fMRI

data with different numbers of the estimated ICs can unravel

parcellation of the total brain activity into functionally meaningful

subnetworks.

Our results also contribute to the now growing evidence that

fMRI activity collected during movie viewing can, despite of its

complexity, be analyzed in a reliable manner and that the results

are consistent. Application of naturalistic stimuli during functional

brain imaging opens up new possibilities for future studies of the

brain basis of several cognitive functions.

Materials and Methods

Subjects
Twenty-two healthy adults participated after written informed

consent. The study had a prior approval by the Ethics Committee

of Helsinki and Uusimaa Hospital District. The data of 7 subjects

were rejected because of technical problems, drowsiness, or

excessive head movements, and thus the following analyses are

based on data of 15 subjects (9 females, 6 males; mean age 24

years, range 19–49).

Stimuli
During the fMRI scanning, the subjects were viewing a silent

black-and-white film (‘‘At Land’’ by Maya Deren, 1944). In the

film a determined-looking female character is searching for

something in different environments. In addition to social

interaction situations, the film features a range of sensorimotor

activities, such as climbing, crawling, jumping, falling, as well as

manipulation of small objects. The film was delivered using the

Presentation software (version 0.81, http://www.

neurobehavioralsystems.com) and projected (projector Vista X3

REV Q, Christie Digital Systems, Canada, Inc.) to a semi-

transparent back-projection screen that the subjects viewed via

a mirror (visual angle 36̊ horizontal, 29̊ vertical).

Data Acquisition
The fMRI images were acquired with a Sigma VH/I 3.0 T

MRI scanner (General Electric, Milwaukee, WI, USA). Functional

images were obtained using a gradient echo-planar-imaging

sequence with following parameters: TR 2.015 s, TE 32 ms, FA

75u, 34 oblique axial slices, slice thickness 4 mm, matrix 64664,

voxel size 3.463.464 mm3, field of view (FOV) 22 cm. Altogether

485 volumes were collected per subject, including 4 dummy scans

that were removed from further analysis. Structural images were

scanned with 3-D T1 spoiled gradient imaging, matrix 2566256,

TR 10 ms, TE 3 s, flip angle 15u, preparation time 300 ms, FOV

25.6 cm, slice thickness 1 mm, number of excitations 1.

Pre-processing
The fMRI data were preprocessed using SPM8 software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), including re-

alignment, co-registration, normalization into MNI space, and

smoothing with a 6-mm (full-width-at-half-maximum) Gaussian

filter. Before normalization, the images were skull-stripped using

the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/).

Figure 4. Sensorimotor network. Spatial maps for the ICs selected to represent the SMN in the 20- (top), 40- (middle), and 58-IC (bottom)
decompositions, with 1, 4, and 4 color-coded components displayed, respectively. The maps are thresholded at t $6.
doi:10.1371/journal.pone.0042000.g004
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Figure 5. 2D curvilinear component analysis projections of the clustered IC estimates. The 2D curvilinear component analysis projections
of the clustered IC estimates for the 10-, 20-, 40-, and 58-IC decompositions. The black dots are the single-run-estimates of the ICs of each run of
ICASSO. Each cluster refers to one IC. The pair-wise similarities sij inside each cluster are marked with red lines. Note that the pairwise similarities are
not plotted if the average intra-cluster similarity is over 0.9. The best estimate (centrotype) of each cluster is circled with light blue. Cluster
compactness (average intra-cluster similarity) is color-coded in 3 steps (0–0.8 gray, 0.8–0.9 pink, and 0.9–1 red). The ICs selected to represent the SMN,
DAN, and DMN are marked with green, yellow, and blue outlines, respectively.
doi:10.1371/journal.pone.0042000.g005
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Independent-component Analysis
The IC analysis was performed with the GIFT software (version

v2.0e, http://icatb.sourceforge.net/groupica.htm) for group-ICA

[48]. The minimum-description-length-based estimation, imple-

mented in GIFT, suggested 58 ICs. We thus decided to estimate

10, 20, 40, and 58 ICs with Fast ICA algorithm. We used the

back-reconstruction method GICA3 that has been shown to

provide robust and accurate results [49]; see also Appendix S1 for

our arguments of choosing GICA3. ICASSO [50] analysis was

performed to examine the reliability of the IC estimates.

For further analysis, we employed the across-subjects t-maps

computed by GIFT, thresholded at t $6. All ICs of the 10-IC

decomposition were included in the final analysis. From the 20-IC

decomposition, 2 ICs were selected by visual inspection to

represent and cover the dorsal attention network DAN, 1 IC to

cover the default-mode network DMN, and 1 IC to cover the

sensorimotor network SMN. From the 40-IC and 58-IC decom-

positions, ICs were selected by visual inspection so that they

together resembled the spatial maps of the selected ICs from the

20-IC decomposition; this procedure resulted in 2–5 ICs per

network. To facilitate the selection, we spatially correlated the

maps from the 40- and 58-IC decompositions with the respective

20-component maps.
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46. Lahnakoski JM, Salmi J, Jääskeläinen IP, Lampinen J, Glerean E, et al. (2012)
Stimulus-related independent component and voxel-wise analysis of human

brain activity during free viewing of a feature film. PLoS One 7: e35215.

47. Nummenmaa L, Glerean E, Viinikainen M, Jääskeläinen IP, Hari R, et al.
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