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The nature and nurture of network evolution

Bin Zhou 1, Petter Holme2,3, Zaiwu Gong 1, Choujun Zhan4, Yao Huang 5,
Xin Lu 6 & Xiangyi Meng 7,8

Although the origin of the fat-tail characteristic of the degree distribution in
complex networks has been extensively researched, the underlying cause of
the degree distribution characteristic across the complete range of degrees
remains obscure. Here, we propose an evolutionmodel that incorporates only
two factors: the node’s weight, reflecting its innate attractiveness (nature), and
the node’s degree, reflecting the external influences (nurture). The proposed
model provides a good fit for degree distributions and degree ratio distribu-
tions of numerous real-world networks and reproduces their evolution pro-
cesses. Our results indicate that the nurture factor plays a dominant role in the
evolution of social networks. In contrast, the nature factor plays a dominant
role in the evolution of non-social networks, suggesting that whether nodes
are people determines the dominant factor influencing the evolution of real-
world networks.

Pioneered by Helen Jennings in the 1930’s1, the degree distribution
is a key characteristic of empirical network studies. Previous studies
on the degree distribution of complex networks have primarily
focused on the tail of the distribution, in particular when it exhibits
a power law, which has led to the theory that “scale-free networks”
are ubiquitous in nature2–7. Numerous network evolution models
have been proposed to explain the mechanism that causes the fat-
tail of the degree distribution to follow a power law8–12, with the
preferential attachment mechanism in the Barabási–Albert (BA)
model being the most famous13. However, the debate about
whether complex networks truly have scale-free properties has
persisted12,14,15. Some scholars have proposed that we need to
understand the scale-free properties and evolutionary origins of
complex networks from a new perspective16–18. While the tail of the
degree distribution may be approximated as a power law for many
real-world networks19–25, the bulk (the small-degree end) tends to
bend off in various networks such as Facebook (friendships net-
work), Google (informational network), the patent network of USA
(technological network), etc17,26. In this work, we will propose a
model for network evolution with an emergent degree distribution

that fits observations throughout the degree range, including both
the tail and the bulk.

Our proposed network evolution model incorporates only two
parameters: an intrinsic node weight (a.k.a. “fitness”27 or “quality”28)
and the accumulated degree. These parameters effectively capture the
dual influences of inherent characteristics (referred to as the “nature”
factor) and environmental influences (referred to as the “nurture”
factor) on the evolution of each node. We begin by demonstrating the
core idea and formulation of our model. Following this, we proceed to
solve the model analytically, focusing on deriving the analytical solu-
tions for the distributions of degree k as well as the degree ratio η,
more commonly referred to as the degree–degreedistance17,29.Wefind
that the statistically optimal fit to these analytical solutions accurately
reproduces both thedegree distribution anddegree ratiodistributions
of 32 real-world networks. Additionally, we verify that our model can
produce the actual growth process in several networks. We find that
the nurture factor of nodes predominantly influences the evolution of
social networks, implying that the node degree has a greater impact on
node evolution than the node weight in social networks. Whereas the
nature factor of nodes plays a leading role in the evolution of non-
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social networks, suggesting that the impact of node weight on node
evolution is greater than that of node degree in non-social networks.
This observation implies that whether nodes are people plays a crucial
role in determining the dominant factor driving the evolution of real-
world networks. It also indicates that collective human behaviors,
within the context of social interactions, tend to favor the nurture
factor over the nature factor.

Not only does the model provide statistically optimal fittings to
theobserveddistributions, but it also reveals the evolutionaryorigin of
complex networks in terms of the interplay between both nature and
nurture factors. Compared with the classical complex network
models8,13,28,30, the model still includes the preferential attachment
mechanism, leading us to conclude that the scale-free property of
complex networks should be understood as a mechanism, such as the
preferential attachment mechanism, rather than a specific index, thus
potentially resolving the long-standing debate aboutwhether complex
networks have scale-free properties.

Results
Nature–nurture model
Our study posits that the evolution of complex networks is closely tied
to the interplay between two key factors: the node’s weight reflecting
its appeal within the network, which reflects the nature aspect of
development, and the node’s degree, which signifies its nurture factor.
This coupling of the nature and nurture factors of nodes plays a crucial
role in shaping the network’s evolution, as shown in Fig. 1.

Before nodes join the network, we consider that their innate
attractiveness are different in real world, similar to the Matthew
effect31. For example, on Facebook, a user’s social prestige, status, and
influence serve as their innate weight, with most users being ordinary
and only a few having high social prestige, status, and influence. The
more social prestige, status, and influence an individual has, the more
attractive they are32. In general, we assume that the distribution of
node weight ω in a complex network follows a power-law distribution
~ω−α, with α ≥0. This assumption also covers cases of a uniform dis-
tribution when α→0, or a short-tail (e.g., exponential) distribution
when α→∞ (see Supplementary Discussion). The larger the nature

weight ω of a node, the higher its probability Π(ω) of establishing new
links with other nodes.

On the other hand, the node’s degree k reflects its nurtured
attractiveness, which is akin to the snowball effect33 or recommenda-
tion systems28. Taking Twitter as an example, as a user’s number of
followers grows, their attractiveness to other users increases, further
boosting their follower count. The larger the nurture degree k of a
node, the higher its probability Π(k) of establishing new links with
other nodes.

Consequently, nodes with larger ω and k are more prone to
establishing new links. Thismotivates us to choose the probability of a
nodebeingpreferentially selected to formnew linkswithother nodeas
Π(ω, k) ~ωk + a positive constant. This formulation is in line with the
approach taken in the Bianconi–Barabási model30, where the prob-
ability is also a function of the product of ω and k.

Finally, we incorporate a cutoff parameter, ωmax, which restricts
the value of ω to fall within the range of 1 to ωmax. This critical para-
meter serves to regulate the model’s inclination towards either “nat-
ure” or “nurture.” A smaller ωmax results in less variability in the
distribution of the “nature” influence, suggesting that the model leans
towards “nurture.” Conversely, a larger ωmax allows for greater varia-
bility, indicating that the model favors “nature.”

Taken together, our model is built on the following rules:
1. Initially, there are N nodes but no link in the network. Each node

i = 1, 2,⋯ ,N is assigned a weight ωi. Similar to other models with
node weights generating the degree distribution8,30, the weight
for each node is randomly sampled from a truncated power-law
probability distribution, following the form ~ω−α, within a finite
domain of ω 2 ½1, ωmax�.

2. At each time step, two nodes are randomly and independently
chosen, and a link is established between them. The probability of
choosing a node depends on the nature weightω and the nurture
degree k of the node, given by

Πðω, kÞ= ω k +bð ÞPN
i= 1 ωi ki +b

� � , ð1Þ

where b is a positive constant.
3. After T time steps, a network of N nodes and T links is generated.

The degree distribution of the nature-nurture model can be
written as follows:

PðkÞ=
Z ωmax

1
dωicω

�α
i niðT , kÞ, ð2Þ

where ni(T, k) is the probability that node i (of weight ωi) has degree k
at time step T and c= 1� αð Þ= ω1�α

max � 1
� �

is the normalization coeffi-
cient. Further approximations allow us to derive an analytical form of
P(k) (see “Methods”).

To demonstrate that the model can accurately replicate multiple
topological features, not just degrees, in complex networks, we
examine a link-based characteristic: the degree ratio η, defined as the
ratio of the larger and smaller degree for each link (i, j), expressed as
η= maxðki=kj, kj=kiÞ. Note that this can also be reformulated as
ln η= ln ki � ln kj

��� ���, which serves as a semi-metric on the set of edges34.
Hence, η (or more precisely, lnη) is often referred to as the
degree–degree distance17. Notably, in many empirical networks, the
degree ratio distribution exhibits a clearer power-law behavior than
the degree distribution, signifying its usefulness in examining the
scale-free properties of networks. The degree ratio distribution is

Fig. 1 | Nature versus nurture in network evolution. Suppose there are twonodes
of different node weights and degrees in the network. The red node has a larger
weight but a smaller degree (with three incident links). The blue node has a smaller
weight but a larger degree (with six incident links). As new links are added to the
network, if the network evolution is nature-dominant, then new links prefer con-
necting to the red node; else, if the network evolution is nurture-dominant, then
new links prefer connecting to the blue node.
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given by

PðηÞ=
Z 1

1

2kiN
2

T
dki

Z ωmax

1
dωi

Z ωmax

1
dωj

cω�α
i cω�α

j nijðT , ki, ηki, ði, jÞÞ,
ð3Þ

where nij(T, ki, kj, (i, j)) denotes the joint probability that nodes i and j
have degrees ki and kj and they are also connected by a link (see
“Methods”).

The reliability of the analytical solutions of our model is demon-
strated through a comparison of the degree distributions and degree
ratio distributions obtained from simulations and Eqs. (2) and (3)),
respectively (Supplementary Fig. 1). The agreement between the
simulation and analysis results confirms the reliability of the analytical
solutions of the nature–nurture model.

We also present two supplementarymodels to serve as controls: a
nature-only model and a nurture-only model (see “Methods”). In the
former, we eliminate the effect of the degree k, so that Π(ω, k)→
Π(ω)∝ω, only depending on ω. The resulting degree and degree-ratio
distributions are as follows:

PðkÞ ’
Z ωmax

1
cω�α

i
1ffiffiffiffiffiffi
2π

p
σi

exp � k � μi

� �2
2σ2

i

" #
dωi, ð4Þ

which can be further approximated to a classical power-law distribu-
tion P(k)∝ k−α 17, and

PðηÞ ’
Z ωmax

1

Z ωmax

1

2cω�α
i cω�α

j dωidωj

T=N2

ημjσ
2
i +μiσ

2
j

η2σ2
i + σ

2
j

 !

μiμj=4Tffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2σ2

i + σ
2
j

q exp �
ημi � μj

� �2
2 η2σ2

i + σ
2
j

� �
2
64

3
75,

ð5Þ

where μi =2ωiT=N �ω and σi = 1� 2ωi=N �ω
� �

2ωiT=N �ω, and
�ω= ð2� αÞ�1 ω1�α

max � 1
� ��1ð1� αÞ ω2�α

max � 1
� �

is the average node weight
of the network.

In the nurture-onlymodel, we eliminate the effect of theweightω,
so that Π(ω, k)→Π(k)∝ k + b, only depending on k. In the b→0 limit,
the resulting degree and degree-ratio distributions are29:

PðkÞ ’ e�BkkA�1BA=ΓðAÞ, ð6Þ

which is a power-law distribution with an exponential cutoff, and

PðηÞ ’ 2B2A + 2ηAE�2A�1ð η+ 1ð ÞBÞ=ΓðA+ 1Þ2, ð7Þ

where A = b and B = 2−1bNT−1, respectively.

Validation
We have gathered thirty-two real-world networks that span across
social, informational, technological, biological and economic domains
from the Colorado Index of Complex Networks (ICON). These net-
works vary in size, ranging from tens of thousands to hundreds of
millions of nodes. Our data includes the most representative network
platforms such as Facebook, Twitter, Wikipedia, Amazon, YouTube,
Google, and Academia, among others. Descriptions for these networks
can be found in Supplementary Table 1.

Figure 2 (and Supplementary Fig. 2) shows the optimal fitting
results of the distributions of both degree k [Eq. (2)] and degree-ratio η
[Eq. (3)] for thirty-two real-world networks. The parameters N and T in
Eqs. (2) and (3) are fixed as the numbers of nodes and links of the fitted
data, respectively. The optimal values of the fitting parametersωmax, α,
and b are provided in Supplementary Table 2. We find that the nature-
nurture model simultaneously reproduces both the degree and the

degree ratio distributions of real-world networks fairly well. These
results suggest that the coupling of both nature and nurture factors of
nodes plays an essential role in the evolution of complex networks.

In particular, Fig. 3A shows the optimal values ofωmax for the real-
world networks, with blue and red circles representing eleven social
and 21 non-social networks, respectively. We observe that the social
and non-social networks are distributed in two distinct regions. In
social networks,ωmax tends to be smaller,while innon-social networks,
ωmax tends to be larger. This suggests that the nature factor of nodes
plays a dominant role in the evolution of social networks, while the
nurture factor of nodes plays a dominant role in the evolution of non-
social networks. To corroborate this observation, we calculated the
corrected Akaike Information Criterion (AICc)35—a statistical estimator
that deals with the risks of both overfitting and underfitting—for the
optimal fits of the distributions of k and η (Supplementary Table 3 and
Fig. 3). This was conducted for the nature-nurture model as well as the
control models, namely, the nature-only and nurture-only models. We
find that the nature–nurture model is the most favored by AICc for 31
(96.9%) of the 32 real-world networks. By comparing only the control
models [Fig. 3B, C], we find that the nurture-only model is favored by
AICc for 81.8% of the social networks, yet the nature-only model is
favored for 85.7% of the non-social networks. These results provide
evidence that while the nature and nurture factors tend to dominate in
the evolution of non-social and social networks, respectively, it is
essential to consider the contributions from both aspects for an
faithful representation of real-world network evolution.

Two networks, Academia (tracking citations between academic
papers) and Zhihu (a Chinese Q&A forum), are accompanied by time-
stamps, allowing us to explore how their degree and degree-ratio
distributions evolve over various time periods. Figure 4 shows the
fitting results for the initial, middle, and final stages during the evo-
lution of the two networks. Again, the parameters N and T in Eqs. (2)
and (3) are fixed as the numbers of nodes and links of the fitted data.
The other fitting parameters, ωmax, α, and b, at each stage are fixed to
the optimal values of the Academia and Zhihu networks (obtained
from Supplementary Table 2).

The evolution fitting results (Supplementary Table 4) demon-
strate that the nature-nurture model continues to simultaneously
reproduce the distributions of k and η throughout the evolution pro-
cess, from the initial to the final stage (Fig. 4). This confirms the
model’s ability to capture the evolutionary dynamics of complex net-
works. Moreover, the nature–nurture model continues to be the most
favored by AICc, compared to the control models (Supplementary
Table 5) during the evolution. Between the nature-only and nurture-
only models, the former is more favored by AICc for the non-social
network Academia, while the latter is more favored for the social
network Zhihu. The consistency of results across static and evolu-
tionary networks highlights the universal applicability of the nature-
nurture model.

The biggest difference between nodes in social networks and
those in non-social networks is that nodes in social networks represent
users, who are people with strong subjectivity and self-modification
abilities in the postnatal evolution, albeit limited by innate factors. On
the other hand, nodes in non-social networks represent non-people
entities with innate attributes and functions, generally lacking the
ability to self-modify in the postnatal evolution process. In human
society, we may believe that a person’s efforts should carry more
weight than their social background in determining social position.
Therefore, in the evolution of social networks, it makes sense that the
nurture factor plays a primary role. The result reveals a fresh aspect of
the “nature vs. nurture” discussion from the perspective of network
science: although both the nature and nurture factors impact indivi-
dual human behaviors, the nurture factor assumes a more prominent
role when determining collective behaviors within social networks,
rather than focusing solely on individuals. Other systems have less
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pronounced structural feedback, and are thus determined by the
innate attributes to a larger extent. As such, we propose that in the
evolution of non-social networks, the nature factor of nodes should
play a leading role. Therefore, whether nodes in complex networks are
people or not determines the dominant factor influencing the evolu-
tion of complex networks.

Discussion
Since the publication of Galton’s renowned paper in 186536, the
exploration of the relative effects of nature (genetics) and nurture
(environment) on individuals has remained a central focus in the fields
of biology and sociology, leading to a vast body of literature on this
subject37–43. However, there have been relatively few studies that
approach this discourse from the perspective of complex systems.Our
research provides a refreshing insight into the ongoing “nature vs.

nurture” discussion: while individual variations are significant (and
may not be predictable), collective behaviors demonstrate predict-
ability and canbe categorized as either pro-nature or pro-nurture. This
discovery underscores the potential of interdisciplinary studies that
apply complex networks to diverse disciplines.

In conclusion,wepropose amodel of network evolutionaiming to
shed light on the evolutionary origin of complex networks. The opti-
mal fitting results of the analytical solutions in the model reproduce
the degree distributions and degree ratio distributions of both static
and dynamic networks. These findings indicate that the coupling of
both nature and nurture factors of nodes plays a crucial role in the
evolution of complex networks, and our model can rather universally
account for the evolution of complex networks. However, the strength
of the nature andnurture components of the growthmight vary, which
furthermore gives a characterization of the network growth. In social

Fig. 2 | Nature-nurture model fitting of real-world networks. A–P The observed
degree distribution P(k) (blue) and degree-ratio distribution P(η) (red) in 32 real-
world networks (other 16 in Supplementary Fig. 2) are fitted based on Eqs. (2) and

(3) of the nature–nurture model. The parameters N and T match the number of
nodes and links in the empirical data. The other fitting parameters, ωmax, α, and b
are provided in Supplementary Table 2.
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Fig. 4 | Nature-nurture model fitting across network evolution. The observed
degree distribution P(k) (blue) and degree-ratio distribution P(η) (red) in
A–C Academia (a non-social network) and D–F Zhihu (a social network) are cap-
tured at different timestamped stages. Solid and dashed lines represent fits based
on Eqs. (2) and (3) of the nature–nurture model, with AICc provided

(Supplementary Table 5). The parametersN and Tmatch the number of nodes and
links in the empirical data at each evolutionary stage (Supplementary Table 4). The
other fitting parameters, ωmax, α, and b are set according to the optimal values
obtained in Supplementary Table 2.

Fig. 3 | Nature versus nurture in real-world networks. A Optimal fitting para-
meter ωmax of the nature-nurture model in various real-world networks. Social
networks (blue) generally exhibit lower ωmax values compared to non-social net-
works (red). B, C Preference for the nature-only (red) or nurture-only (blue) model

in fitting social and non-social networks, respectively, based on the corrected
Akaike information criterion for small sample sizes (AICc) provided in Supple-
mentary Table 3.
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networks, the nurture factor of nodes is dominant, implying that
individuals can improve their social value through their acquired
efforts instead of solely relying on their innate background. Con-
versely, in non-social networks, the nature factor of nodes plays a
leading role, where the innate attributes and functions of agents pro-
vided by the system determine their acquired state and development
in the system, suggesting that whether nodes are people determines
the dominant factor influencing the evolution of complex networks.

In our work, we have not explicitly addressed the issue of network
directionality. The primary goal of our study is to investigate the uni-
versal mechanisms that can be adaptable to the evolution of both
undirected and directed networks. For directed networks, we treat the
sum of node outdegrees and indegrees as the total degrees of a node,
followed by calculating the degree distribution without explicitly del-
ving into the directionality consideration. One way to modify our
model to impose directionality is to specify edge directions between
two nodes via some additional assumptions. For instance, in cases
where two nodes are selected at each time step, the direction of the
edge could be determined from the node with a lower weight or
degree to the node with a higher weight or degree. In the future, it
would be interesting to explore the effect of imposing network
directionality on the network evolution (cf. ref. 28).

In spirit, our work conforms to the tradition of emphasizing the
emergent scale-freeness of network evolution models. An interesting
future direction would be to link this model to the other tradition of
identifying scale-freenessby statistical tests14. One couldpotentially do
this with a more direct statistical inference of the growth mechanisms
(cf. ref. 44). Regardless, even in such a well-studied topic as general
growth models for fat-tailed networks, there are open questions with
unexplored solutions.

Methods
Degree and degree-ratio distributions of the
nature–nurture model
Let node i have weight ωi and denote ni(T, k) as the probability that
such a node has degree k at time step T. Following standard process3,
we derive the Markovian rate equation for node i,

niðT + 1, kÞ
=2Πðωi, k � 1ÞniðT , k � 1Þ+ 1� 2Πðωi, kÞ

� 	
niðT , kÞ,

ð8Þ

whereΠ(ω, k) is the preferential probability given in the main text [Eq.
(1)]. The initial condition of Eq. (8) is

nið0, kÞ= δðkÞ, ð9Þ

and the boundary condition is

niðT , kÞ=0, when k <0: ð10Þ

We are also interested in P ðki, kjÞjði, jÞ
� �

, the conditional prob-
ability of randomly choosing a link that connects two nodes i and j of
degrees ki and kj, respectively. To avoid potential overcounting, we
always call the first selected node as i and the second selected node as j
in our bidirectional selection process, so that (i, j) and (j, i) are counted
as different pairs by us. As a conditional probability, however,
P ðki, kjÞjði, jÞ
� �

corresponds to the frequency of counting instances
sampled from the pool of all links (~T), not nodes (≁N), and therefore
one cannot directly establish a Markovian rate equation that is similar
to Eq. (8). To circumvent this, for any pair of nodes i and jwith weights
ωi and ωj respectively, we introduce an auxiliary variable
nijðT , k, k0, ði, jÞÞ that denotes the joint probability of the spontaneous
happening of three events at time step T: (1) node i has degree k, (2)
node j has degree k0, and (3) i and j are connected.

Now, the Markovian rate equation for nijðT , k, k0, ði, jÞÞ is given by

nijðT + 1, k, k0, ði, jÞÞ
= Πðωi, k � 1Þ 1� Πðωj, k

0Þ
h i

nijðT , k � 1, k0, ði, jÞÞ
+ 1� Πðωi, kÞ
� 	

Πðωj, k
0 � 1ÞnijðT , k, k0 � 1, ði, jÞÞ

+ 1� Πðωi, kÞ
� 	

1� Πðωj, k
0Þ

h i
nijðT , k, k0, ði, jÞÞ

+Πðωi, k � 1ÞΠðωj, k
0 � 1ÞniðT , k � 1ÞnjðT , k0 � 1Þ:

ð11Þ

The first three terms of Eq. (11) account for the probability that, when
nodes i and j are already connected at time step T, whether they will
acquire (or not) a new link to satisfy the conditions on their degrees
being k and k0 at time step T + 1. The last term accounts for the prob-
ability that, when nodes i and j are not connected at time step T (which
approximately happens with probability niðT , k � 1ÞnjðT , k0 � 1Þ when
the network is sparse), whether i and jwill be connected andmatch all
three conditions at the next time step. The initial condition of Eq. (11) is

nijð0, k, k0, ði, jÞÞ=0, ð12Þ

and the boundary conditions are

nijðT , 0, k0, ði, jÞÞ=nijðT , k, 0, ði, jÞÞ=0: ð13Þ

If wecan solveni(T, k) [Eq. (8)] andnijðT , k, k0, ði, jÞÞ [Eq. (11)], which
are functions of ωi (and ωj), then both degree distribution and degree
ratio distribution can be calculated given the node weight distribution
ρ(ω), which we have assumed to be a continuous power-law distribu-
tion ρ(ω) = cω−α within the range 1≤ω≤ωmax, given the normalization
coefficient c= 1� αð Þ= ω1�α

max � 1
� �

. The DD is simply given by

PðkÞ= Rωmax
1 dωicω

�α
i niðT , kÞ: ð14Þ

To derive the degree ratio distribution, one has

P ðki, kjÞ, ði, jÞ
� �
=
Z ωmax

1
dωi

Z ωmax

1
dωjcω

�α
i cω�α

j nijðT , ki, kj, ði, jÞÞ,
ð15Þ

which is the joint probability of randomly choosing a pair of nodes i
and j that not only are connected but also have degrees ki and kj. Then,
the degree ratio distribution is given by17

PðηÞ =
Z 1

1
2kidkiP ðki,ηkiÞjði, jÞ

� �
=
Z 1

1

2kiN
2

T
dkiP ðki,ηkiÞ, ði, jÞ

� �
,

ð16Þ

where in the second step we have used Bayes’ rule, given that
P(i, j) = T/N2. Inserting Eq. (15) into Eq. (16) gives rise to P(η).

Unfortunately, Eqs. (8) and (11) are difficult to solve. This is since
the implicit time dependence of the preferential probability Π(ω, k) is
intractable. However, special solutions can be found under certain
limits:
1. In the nature-only limit, we can eliminate the nurture factor by

letting b→∞, while keeping the power-law exponent α of the
weight distribution being finite. This reduces Eq. (1) to

Πðω, kÞ ’ ω
N �ω

, when b ! 1, ð17Þ

which is independent of k. Hence, our introduced model reduces to a
pure bidirectional-selection fitness model with a power-law weight
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(fitness) distribution, for which both the solutions of P(k) and P(η) are
known17. The results are given in the main text [Eqs. (4) and (5)].
2. In the nurture-only limit, we can eliminate the nurture factor by

letting α→∞, which also implies ωmax ! 1. This reduces Eq. (1) to

Πðω, kÞ ’ k +b
2T +bN

, whenα ! 1, ð18Þ

given that ωi ’ �ω ’ 1 and ρ(ω)≃ δ(ω − 1). Hence, our introduced
model reduces to a preferential attachment model but without the
growth of N. For small b, analytical solutions of P(k) and P(η) can be
found [Eqs. (6) and (7)].
3. In the nature-nurture crossover, i.e., when both the bias b and the

power-law exponent α are finite, it is possible to derive an
approximate solution by the following ansatz,

XN
i = 1

ωiki ≈ χ �ωT : ð19Þ

This is to explicate the time dependence of Π(ω, k) [Eq. (1)], by
assuming that its denominator increases linearly with time T. Such a
linear approximation is exact in the nurture-only limit (where χ = 2),
but we observe that the linear approximation still holds even when
taking the nature factor into account, as long as the varianceofω is not
too great. Since higher ωi correlates with higher expectation of ki, we
expect the following inequality,

XN
i= 1

ωiki ≥
XN
i = 1

�ωki ≥ 2�ωT , ð20Þ

which implies χ ≥ 2. The more variability there is in the distribution of
ω, the larger χ is. To proceed, we employ numerical simulations to fix
the parameter χ. Specifically, given a set of model parameters ωmax, α,
and b, we run simulations of thenature-nurturemodel andfit

PN
i= 1 ωiki

as a function of T, deriving the corresponding χ. The parameter χ is
further put in Eq. (1) to solve for P(k) and P(η), which, in turn, are used
to fit the model parameters ωmax, α, and b. This leads to a set of self-
consistent equationswhich converge to anoptimal (or locally optimal)
fit. For small b, the final solutions of P(k) and P(η) are similar to the
nurture-only case, integrated over all possible ωi and ωj, given by

PðkÞ ’ R ωmax
1 dωicω

�α
i e�BikkA�1BA

i =ΓðAÞ, ð21Þ

and

PðηÞ ’
Z ωmax

1
dωi

Z ωmax

1
dωjcω

�α
i cω�α

j

2BA+ 1
i BA+ 1

j ηAE�2A�1ðBj +ηBiÞ=ΓðA+ 1Þ2,
ð22Þ

where A = b and Bi = bχ�1NT�1
� �2χ�1ωi �ω

�1

, respectively. The analytical
results agree with simulation results (Supplementary Fig. 1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data used in this study are available in the Colorado
Index of Complex Networks (ICON) database [https://icon.
colorado.edu].

Code availability
Custom code that supports the findings of this study is available at
https://github.com/bnzu/nnne.

References
1. Jennings, H. Structure of leadership: development and sphere of

influence. Sociometry 1, 99–147 (1937).
2. Price, D. J. S. A general theory of bibliometric and other cumulative

advantage processes. J. Am. Soc. Inf. Sci. 27, 292–306 (1976).
3. Newman, M. E. J. Networks: An Introduction (Oxford University

Press, 2010).
4. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phe-

nomena in complex networks. Rev. Mod. Phys. 80,
1275–1335 (2008).

5. Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex net-
works. Nature 433, 392–395 (2005).

6. Radicchi, F., Ramasco, J. J., Barrat, A. & Fortunato, S. Complex
networks renormalization: flows and fixed points. Phys. Rev. Lett.
101, 148701 (2008).

7. Zeng, A. et al. The science of science: from the perspective of
complex systems. Phys. Rep. 714, 1–73 (2017).

8. Aiello, W., Chung, F. & Lu, L. A random graph model for power law
graphs. Exp. Math. 10, 53–66 (2001).

9. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law.
Contemp. Phys. 46, 323–351 (2005).

10. Krapivsky, P. L., Rodgers, G. J. & Redner, S. Degree distributions of
growing networks. Phys. Rev. Lett. 86, 5401–5404 (2001).

11. Oikonomou, P. & Cluzel, P. Effects of topology on network evolu-
tion. Nat. Phys. 2, 532–536 (2006).

12. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D.
Scale-free networks well done. Phys. Rev. Research 1,
033034 (2019).

13. Barabási, A.-L. & Albert, R. Emergence of scaling in random net-
works. Science 286, 509–512 (1999).

14. Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Com-
mun. 10, 1017 (2019).

15. Artico, I., Smolyarenko, I., Vinciotti, V. &Wit, E. How rare are power-
law networks really? Proc. R. Soc. A 476, 20190742 (2020).

16. Holme, P. Rare and everywhere: perspectives on scale-free net-
works. Nat. Commun. 10, 1016 (2019).

17. Zhou, B., Meng, X. & Stanley, H. E. Power-law distribution of
degree–degree distance: a better representation of the scale-free
property of complex networks. Proc. Natl. Acad. Sci. USA 117,
14812–14818 (2020).

18. Serafino, M. et al. True scale-free networks hidden by finite size
effects. Proc. Natl. Acad. Sci. USA 118, e2013825118 (2021).

19. Gjoka, M., Kurant, M., Butts, C. T. & Markopoulou, A. Walking in
Facebook: a case study of unbiased sampling of OSNs. In 2010
Proc. IEEE Infocom 1–9 (IEEE, 2010).

20. Myers, S. A., Sharma, A., Gupta, P. & Lin, J. Information network or
social network? the structure of the Twitter follow graph. In Proc.
23rd International Conference on World Wide Web 493–498 (Asso-
ciation for Computing Machinery, 2014).

21. Chen, Q., Chang, H., Govindan, R. & Jamin, S. The origin of power
laws in Internet topologies revisited. In Proc. Twenty-first Annual
Joint Conference of the IEEE Computer and Communications
Societies, Vol. 2 608–617 (IEEE, 2002).

22. Dimitrov, D., Singer, P., Lemmerich, F. & Strohmaier,M.Whatmakes
a link successful on Wikipedia? In Proc. 26th International Con-
ference on World Wide Web 917–926 (2017).

23. Eden, T., Jain, S., Pinar, A., Ron, D. & Seshadhri, C. Provable and
practical approximations for the degree distribution using sublinear
graph samples. In Proc. 2018WorldWideWebConference 449–458
(Association for Computing Machinery, 2018).

24. Niu, J., Peng, J., Shu, L., Tong, C. & Liao, W. An empirical study of a
Chinese online social network–Renren.Computer46, 78–84 (2013).

25. Garcia, D., Mavrodiev, P. & Schweitzer, F. Social resilience in online
communities: the autopsy of Friendster. In Proc. First ACM

Article https://doi.org/10.1038/s41467-023-42856-5

Nature Communications |         (2023) 14:7031 7

https://icon.colorado.edu
https://icon.colorado.edu
https://github.com/bnzu/nnne


Conference on Online Social Networks 39–50 (Association for
Computing Machinery, 2013).

26. Clauset, A., Tucker, E. & Sainz, M. The Colorado Index of Complex
Networks. https://icon.colorado.edu (2016).

27. Caldarelli, G., Capocci, A., De Los Rios, P. &Muñoz, M. A. Scale-free
networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89,
258702 (2002).

28. Pagan, N., Mei, W., Li, C. & Dörfler, F. A meritocratic network for-
mation model for the rise of social media influencers. Nat. Com-
mun. 12, 6865 (2021).

29. Meng, X. & Zhou, B. Scale-free networks beyond power-law degree
distribution. Chaos Solitons Fractals 176, 114173 (2023).

30. Bianconi, G. & Barabási, A.-L. Bose-Einstein condensation in com-
plex networks. Phys. Rev. Lett. 86, 5632 (2001).

31. Merton, R. K. The Matthew effect in science: the reward and com-
munication systems of science are considered. Science 159,
56–63 (1968).

32. Lee, E. & Holme, P. Social contagion with degree-dependent
thresholds. Phys. Rev. E 96, 012315 (2017).

33. Krackhardt, D. & Porter, L. W. The snowball effect: turnover
embedded in communication networks. J. Appl. Psych. 71,
50 (1986).

34. Evans, T. S. & Chen, B. Linking the network centrality measures
closeness and degree. Commun. Phys. 5, 1–11 (2022).

35. Burnham, K. P., Anderson, D. R., Burnham, K. P. & Anderson, D. R.
Practical Use of the Information-Theoretic Approach
(Springer, 1998).

36. Galton, F. Hereditary talent and character. Macmillan’s Mag. 12,
318–327 (1865).

37. McCall, R. B. Nature-nurture and the two realms of development: a
proposed integration with respect to mental development. Child
Dev. 52, 1–12 (1981).

38. Plomin, R. Nature, nurture, and social development. Soc. Dev. 3,
37–53 (1994).

39. Ridley, M. & Pierpoint, G.Nature via Nurture: Genes, Experience, and
What Makes us Human, Vol. 19 (HarperCollins, 2003).

40. Robinson, G. E. Beyond nature and nurture. Science 304,
397–399 (2004).

41. Longino, H. E. Studying Human Behavior (University of Chicago
Press, 2013).

42. Eagly, A. H. & Wood, W. The nature–nurture debates: 25 years of
challenges in understanding the psychology of gender. Perspect.
Psychol. Sci. 8, 340–357 (2013).

43. Plomin, R., Shakeshaft, N. G., McMillan, A. & Trzaskowski, M. Nature,
nurture, and expertise. Intelligence 45, 46–59 (2014).

44. Overgoor, J., Benson, A. & Ugander, J. Choosing to grow a graph:
modeling network formation as discrete choice. In The World Wide
Web Conference 1409–1420 (Association for Computing Machin-
ery, 2019).

Acknowledgements
B.Z. was supported by the Startup Foundation for Introducing Talent of
NUIST and the Qinglan Project of Jiangsu Universities. P.H. was

supported by JSPS KAKENHI Grant Number JP 21H04595. Z.G. is sup-
ported by the National Natural Science Foundation of China with Grant
Number 72371137. X.L. was supported by the National Nature Science
Foundation of China with Grant Numbers 72025405, 72088101 and
72001211, and the Hunan Science and Technology Plan Project with
Grant Number 2020TP1013.

Author contributions
All authors contributed to the research. B.Z. and X.M. conceived the
research, performed the experiments, and analyzed the data. Z.G., C.Z.,
and Y.H. cleaned the data. B.Z. and X.M. wrote the first draft of the
manuscript. P.H. and X.L. reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42856-5.

Correspondence and requests for materials should be addressed to
Xiangyi Meng.

Peer review informationNature Communications thanks Jan Nagler and
Nicolo Pagan for their contribution to thepeer reviewof thiswork. Apeer
review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42856-5

Nature Communications |         (2023) 14:7031 8

https://icon.colorado.edu
https://doi.org/10.1038/s41467-023-42856-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

