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Abstract
Self-supervised speech models, such as the wav2vec2, have be-
come extremely popular in the past few years. Their main ap-
peal is that after their pre-training on a large amount of audio,
they require only a small amount of supervised, finetuning data
to achieve outstanding results. Despite their immense success,
very little is understood about the pre-trained models and how
finetuning changes them. In this work, we take the first steps to-
wards a better understanding of wav2vec2 systems using model
interpretation tools such as visualization and latent embedding
clustering. Through our analysis, we gain new insights into the
abilities of the pre-trained networks and the effect that finetun-
ing has on them. We demonstrate that the clusters learned by
the pre-trained model are just as important a factor as the super-
vised training data distribution in determining the accuracy of
the finetuned system, which could aid us in selecting the most
suitable pre-trained model for the supervised data.
Index Terms: wav2vec2, ASR, contextual embeddings, inter-
pretation

1. Introduction
The latest version of the self-supervised deep learning models
called wav2vec2 [1] enjoys wide popularity in the field of Auto-
matic Speech Recognition (ASR). Their main advantage is the
self-supervised pre-training which produces a model that can be
easily fine-tuned with only a limited amount of supervised data.
Thanks to the numerous, publicly available pre-trained models
(which were often trained with more than one hundred thou-
sand hours of speech data [1]) and the various tools like Hug-
gingFace Transformers [2] that enable an easy way to fine-tune
them, there are already hundreds of fine-tuned models available
for various languages.

Furthermore, several works have empirically proved that
the so-called context embedding produced by the Transformer
component of the pre-trained wav2vec2 contains valuable in-
formation not just for speech recognition, but also for a wide
range of speech tasks [3], including emotion recognition [4, 5],
pronunciation evaluation [6] and other paralinguistic tasks. De-
spite its success and popularity, most research focuses on what
wav2vec2 can be used for, and very little effort is spent on un-
derstanding the context embeddings produced by them. We
should mention two recent works that aim to investigate self-
supervised models. In [7], the authors studied how wav2vec2
learns phonetics. Unfortunately, their primary method was prin-
cipal component analysis (PCA) [8], which is known to be a
sub-optimal tool for the visualization of neural embeddings as
it focuses on maintaining the global structure instead of pre-
serving the local structure of the data. Another study [9] probed
unsupervised speech models to see if they preserve phoneme,

language and speaker information using t-Stochastic Neighbor
Embedding (t-SNE) [10] and K-means clustering [11]. To em-
phasize the importance of understanding the models, Chen et.
al. [12] remarks that interpretation could aid architecture opti-
mization, although the authors purely focus on attention maps
to understand their models. In contrast, we investigate the con-
text embeddings produced by the Transformer component and
specifically focus on the changes that occur due to the fine-
tuning procedure. We employ multiple model interpretation
techniques to compare the embeddings of a pre-trained model
with the fine-tuned versions in order to better understand the
capabilities of the pre-trained model and the effects of the fine-
tuning procedure. Our main objective is to figure out what
knowledge the model already possessed before fine-tuning and
what new things did it discover from the supervised data.

Beyond common visual interpretation methods like PCA,
t-SNE [10] and UMAP [13], we also employ clustering tech-
niques like the standard K-means and its variant that uses the
cosine distance called spherical K-means [14] to validate what
concepts the wav2vec2 have discovered via self-supervision
and how these adapted to the supervised data. In our experi-
ments, we use a part of the colloquial Finnish speech corpus
called Lahjoita Puhetta (Donate Speech) [15], and the Finnish
wav2vec2 model fine-tuned using that data, which proved to be
an excellent solution for this dataset. We selected the multi an-
notator test set as our primary data, which contains annotations
from 4 different annotator groups. This allowed us to investigate
how the model behaves when the data becomes challenging, i.e.
when human annotators disagree. Additionally, we were inter-
ested in if we could see signs of model uncertainty or mistakes
in the context vectors.

2. Methods
Wav2vec2 is a self-supervised framework for extracting deep
acoustic representations from speech. The system architecture
involves a convolutional feature encoder, followed by a stack of
Transformer encoder blocks. During the pre-training phase, the
model weights are optimized by solving a contrastive task over
quantized masked latent audio representations. After learning
to extract general audio representations, the model is fine-tuned
for a specific downstream task such as speech recognition with
Connectionist Temporal Classification (CTC) loss or speech
classification with cross-entropy (CE) loss. The pre-training
phase involves training on substantial amount of raw data au-
dio, typically thousands of hours of speech, while a relatively
small amount of labeled data is required for fine-tuning.

In this work, we explore the wav2vec2 Large (300M param-
eters) system pre-trained on 100.000 hours of European Par-
liament plenary session recordings, namely VoxPopuli dataset
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[16]. This subset covers in total 23 languages and includes
4.400 hours of Finnish. The fine-tuned version of this model
is trained on 100 hours of colloquial Finnish from the Lahjoita
puhetta (Donate Speech) corpus [15]. During fine-tuning the
weights of the CNN part are kept frozen, and only the Trans-
former part is updated.

2.1. Visual investigation and clustering

We utilized both visualization approaches based on PCA, t-
SNE [10, 17] and UMAP [13], and clustering techniques to in-
vestigate our models. The main goal of visual interpretation
is to reduce the dimension of the latent context representations
into a low-dimensional space so that humans can inspect them.
PCA is a standard tool for this; unfortunately, it merely focuses
on maintaining global information, thus the crucial local struc-
tures could be lost. On the other hand, both t-SNE and UMAP
employ optimization steps to maintain the local structures mak-
ing them better suited for this task, and they are routinely used
for visualizing hidden neural representation [18]. We should
note that simply relying on visual inspections could be mis-
leading, as a considerable amount of information could be lost
during the transformation. Our primary aim in this paper is to
establish a procedure for comparing pre-trained and finetuned
models and raise awareness that we simply cannot blindly trust
visual interpretations without vigorously validating them first.
To ensure that our findings based on the generated images are
well-founded, we employ k-Means clustering before and after
the dimension reduction step of the visualization algorithms.
By comparing the clusters of the original data and its visual
form we can estimate the amount of information we lost due to
the transformation. Note, that the original K-means algorithm
uses Euclidean distances, which might not be well-suited for
our high dimensional data, so we decided to test the Spherical
K-Means variant [14], which uses cosine distance, a more com-
monly used metric in dealing with neural embeddings.

3. Validating our approaches
Since our investigations are largely dependent on visualization
and clustering tools, we must rigorously validate them to en-
sure that we do not lose too much information during the trans-
formation. The issue is that there is no single metric that can
reliably measure how faithful these transformations are. Here
we choose a pipeline approach, where we first apply clustering
to the context representations of the fine-tuned model and com-
pare the clusters with the predicted labels. The context embed-
dings were extracted from the last, 24th layer in the Transformer
part. Our choice fell on this layer as the commonly used ASR
training algorithm connects the CTC head directly to this layer,
thus it generates the final embeddings before classification. Our
motivation is that the clusters of a good method should be very
similar to the pseudo labels of the fine-tuned model, which is the
foundation of the Deep Clustering algorithm [19]. To this end,
we performed K-means clustering and set the desired number
of clusters to be the number of CTC outputs plus one, hoping
that the blank parts could be split into two clusters: one for the
silence and one for the confusing parts between characters (pre-
liminary experiments showed that this approach is better than
having only one cluster for the blank label). We used multi-
ple metrics, including Adjusted Mutual Information (AMI) [20],
Homogeneity (Hom.) and Completeness (Comp.) [21] to show
the effectiveness of the clustering.

Table 1 summarizes the results of this analysis. We can see

Table 1: Evaluation of the K-means clusters of the pre-trained
and fine-tuned context embeddings.

Metric AMI Hom. Comp.
Clusters of pre-trained emb. 0.15 0.25 0.10
Clusters of fine-tuned emb. 0.70 0.94 0.56

Spherical clust. of fine-tuned emb. 0.69 0.93 0.55

Table 2: Comparison of clusters found using the context embed-
dings and the visualized coordinates produced for them.

Method AMI Hom. Comp.
PCA (pre-trained) 0.45 0.44 0.45

t-SNE (pre-trained) 0.45 0.46 0.44
UMAP (pre-trained) 0.49 0.50 0.49

PCA (fine-tuned) 0.63 0.68 0.58
t-SNE (fine-tuned) 0.62 0.76 0.52
UMAP (fine-tuned) 0.69 0.83 0.59

that the generated clusters had a high homogeneity and rela-
tively good AMI for the fine-tuned vectors. The relatively lower
completeness score is mainly caused by the fact that the clus-
terings failed to split the blank part into only two subclusters.
Overall, we could say that K-means clustering, although it lost
some information, still provided relatively good clusters. The
low scores obtained with the pre-trained data demonstrate that
during fine-tuning the embeddings changed considerably, fur-
thermore, the large cluster of the blank label was not formed
before supervised training. Interestingly using cosine distances
during the clustering (spherical clusters) did not yield better re-
sults for the fine-tuned embeddings. This suggests that the Eu-
clidean distance is equally good for discovering latent clusters.

Next, we turned our attention to the visualization meth-
ods. To determine how much information we lose by employing
them, we compared the K-means clusters we got on the context
embeddings with those that we found by applying K-means to
the produced 2D coordinates. Our expectation was that the two
clusterings should be quite similar, with minimal distortion. Ta-
ble 2 contains the comparison results. We choose to evaluate the
visualization approaches on both the pre-trained and fine-tuned
data to have a complete picture. We can see that UMAP proved
to be the most trustworthy method. The clusters formed on the
2D coordinates generated by UMAP have the highest similarity
to the ones found in the raw data, according to all three met-
rics. This observation is in line with our previous work, where
we compared UMAP and t-SNE during the interpretation of an
acoustic model [18]. T-SNE proved to be a close second, per-
forming just slightly worse than UMAP. PCA achieved similar
results as t-SNE, but it homogeneity was the lowest, especially
in the case of the fine-tuned data. That being said, we should
also note that a considerable amount of information is lost dur-
ing the transformation of context vectors into a low-dimensional
space. This means that we should not trust the visualizations
completely, and whatever is discovered through them should be
validated via some other method like probing [22] or clustering.
Interestingly, the fine-tuned embeddings proved to be easier to
visualize, maintaining considerably more information than in
the case of the pre-trained ones, possibly due to the clustering
effects of the supervised training procedure.
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Figure 1: Visualization of the embedded vectors extracted from the output of the CNN, the pre-trained Transformer and the fine-tuned
model using the UMAP algorithm. We split the blanks into two sub-groups (silence and non-silent blank) using forced alignment. In
case of the CNN and pre-trained visualizations we remove the blank and silence datapoints to enable easier inspection.

4. Comparing the pre-trained and
fine-tuned models

After the validation of our tools, we now turn our attention
towards comparing the pre-trained embeddings with the fine-
tuned ones. Based on Table 1, we can expect that there are
major changes caused by the fine-tuning process, which is con-
firmed by the visualizations in Figure 1. Perhaps the first obser-
vation that we made is the strong prevalence of the blank cate-
gory, which is caused by the CTC algorithm. We can see that all
three methods discovered the large cluster of blanks, and t-SNE
and UMAP even separated it into two sub-clusters1. Our initial
hypothesis that the model separated the real silent parts from
the non-silent blank parts, proved to be partially true, as one of
the two clusters usually contained considerably more silences
than the other. However, both clusters contained data labeled as
silence by the force alignment of the transcripts, meaning that
probably there are other factors behind this separation, such as
environmental noise.

Next, we observed that the fine-tuned model was able to
separate the character groups quite well, while the pre-trained
context embeddings only categorized some of them and natu-
rally had no knowledge about the blank label. Please note that
the pre-trained model is a multilingual one, which only pro-
cessed a small amount (< 5% of the speech corpus) of Finnish
data during the training process and consequently struggled
with the Finnish characters like ’Ä’, ’Ö’, and ’Y’ ([y :]).

4.1. Knowledge encoded during pre-training

To further investigate the knowledge already present in the pre-
trained model, we took a closer look at its clusters. First, we
compared the CNN, pre-trained and fine-tuned clusters pair-
wise. We noticed that the highest similarity and mutual in-
formation was between the convolutional feature encoder em-
beddings and the pre-trained Transformer outputs, see Table 3.
At the same time, the fine-tuned data seems to differ from the
others considerably, still they have more in common with the
pre-trained embeddings than with the CNN ones.

1See additional pictures and our codes at https://github.
com/aalto-speech/Wav2vec2Interpretation

Table 3: Comparison between the CNN, pre-trained and fine-
tuned clusters.

Emb. Pre Fine
AMI Hom. Comp. AMI Hom. Comp.

CNN 0.43 0.44 0.43 0.12 0.15 0.10
Pre – – – 0.23 0.22 0.23

Next, we investigated the pre-trained clusters to see what
kind of information they contained about the graphemes. In
this step, we evaluated each cluster individually and assigned a
character label to them based on their granularity by selecting
the most represented one. Based on this assignment, we discov-
ered several groups of graphemes which were often appearing
in the same cluster. Additionally, we saw that some charac-
ters could be ”recognized” with relatively good accuracy, while
others are merged with the blank cluster. The unknown char-
acters are mainly non-Finnish characters, which are used very
rarely, mainly in foreign words. Interestingly, the multilingual
model already had a good idea about some Finnish characters
like ’Ä’ and ’Ö’, but it excelled at recognizing the more com-
mon characters like ’S’ and ’U’, sometimes with close to 50%
accuracy. This observation means that we do not necessarily
need a supervised fine-tuning step, as the pre-trained model al-
ready obtained some information about the characters, and even
with our simplistic approach we can achieve an overall 16.6%
character recognition rate (83.4% CER). This explains why a
more sophisticated clustering with Generative Adversarial Net-
works can be used to train ASR models completely unsuper-
vised [23, 24].

Lastly, we investigated whether the fine-tuned model ex-
celled and struggled with the same characters as the pre-trained
system. For this experiment, we chose the best transcriber (an-
notator T2 in [15]) and calculated the error rate of each charac-
ter. In Table 4, we list the character groups per accuracy inter-
val and in Table 5 the CER groups of the fine-tuned model can
be observed. We can observe large overlaps between the two
groupings suggesting that the pre-trained models performance
on characters is somewhat indicative of how well the fine-tuned
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Table 4: Discovered knowledge about characters present in the
pre-trained model according to the K-means clustering.

Category Characters
Merged with blank C, Q, W, X, Z, Å

Often confused character pairs [E, J], [F, T], [M, N]
Characters accuracy <20% A, C, D, H, J, L, O, T, Y

Characters accuracy 20 – 30% E, I, M, N, Ö, R, Ä
Characters accuracy 30+% B, G, K, P, S, U, V

Table 5: Character groups based on their fine-tuned recognition
accuracy (boundaries are the 33rd and 66th percentile).

Interval Characters
44 – 94% B, C, D, G, H, N, Ä, Ö
94 – 96% E, I, J, L, M, O, Y
96 – 98% A, K, P, R, S, T, U, V

model will recognize them. At the same time, a correlation of
0.35 between the pre-trained and finetuned model’s character
level accuracy suggest that in many cases the fine-tuning pro-
cess can compensate for the weaknesses of the pre-training. We
should note that the correlation between the character frequen-
cies in the training data and the final CER is very similar (0.38),
and combining the pre-trained model’s accuracy with the fre-
quency statistics yielded a correlation of 0.52, meaning that the
initial pre-trained models capabilities is almost as informative
about the final performance as the composition of the training
data.

Figure 2: Visualization of the five error categories based on how
many annotators agreed about the error.

After the comparison, we also took a closer look at the er-
rors of the fine-tuned model. The fact that we had transcripts
from four different annotators gave us a unique opportunity to
investigate their distribution. In Figure 2, we can see the fine-
tuned embeddings visualized and colored based on the number
of annotators whose transcript marked a predicted character as a
mistake. Our observation based on the visualizations is that the
most serious mistake (4/4) generally happens closer to the edge
of the character clusters than to the centroid. One exception is
the deletion mistakes caused by the blank label, where most of
the mistakes are close to the centre of the cluster, signalling that
the model is quite confident in predicting the blank instead of
the human-annotated characters.

Naturally, we were interested in testing and confirming this
visual observation. In this case, we opted to use a probing
approach and trained a simple classifier using the context em-
beddings to see if our theory based on the visualization holds

Figure 3: Confusion matrix of the mistake classifier.

in the original higher dimensional space. We should note that
our approach was inspired by recent confidence estimation ap-
proaches, which employ a separate neural model as a mis-
take/correct classifier to estimate the confidence of end-to-end
ASR models. In our case, we used only the embeddings, which
could be considered an analogue to the output of the encoder
in other works. In figure 3, we can see the confusion matrix of
the classifier that was trained to separate correct samples from
the different error categories. We can see that our original ob-
servation was most likely just an artefact of the visualization
technique, as the classifier struggles to distinguish between cor-
rect and incorrect samples. Interestingly, disregarding the large
percentage of mistakes recognized as correct output, we can
see very little confusion between the different levels of anno-
tator agreements and the most severe mistake category (4/4) is
recognizable with the highest accuracy. Based on these find-
ings, we can conclude that the context embeddings of fine-tuned
wav2vec2 models, albeit contain some information about the
confidence of the model, but it is not enough to build an accu-
rate confidence estimator.

5. Conclusions
In this work, we investigated the capabilities of the pre-trained
wav2vec2 models and compared them to the fine-tuned model.
Our analysis showed that even pre-trained models have some
information about various graphemes, and their initial ability to
recognize the characters is just as important a factor in deter-
mining the final accuracy of the fine-tuned model as the compo-
sition of training data, and this could be used to select the most
suited pre-trained model for a given task. We also saw that the
embedded vectors carry some information about the confidence
of the model, but further investigation is needed in order to
determine what other information is needed to estimate model
confidence properly. Our work is a case study focused on a sin-
gle fine-tuned model, but we consider it a crucial future task to
repeat the experiments on other languages using other models.
These experiments would enable us to draw more general con-
clusions about the effects of fine-tuning and would get us one
step closer to adequately understanding these neural models.
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