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Abstract
Developing objective methods for assessing the severity of
Parkinson’s disease (PD) is crucial for improving the diagno-
sis and treatment. This study proposes two sets of novel fea-
tures derived from the single frequency filtering (SFF) method:
(1) SFF cepstral coefficients (SFFCC) and (2) MFCCs from
the SFF (MFCC-SFF) for the severity classification of PD.
Prior studies have demonstrated that SFF offers greater spectro-
temporal resolution compared to the short-time Fourier trans-
form. The study uses the PC-GITA database, which includes
speech of PD patients and healthy controls produced in three
speaking tasks (vowels, sentences, text reading). Experiments
using the SVM classifier revealed that the proposed features
outperformed the conventional MFCCs in all three speaking
tasks. The proposed SFFCC and MFCC-SFF features gave a
relative improvement of 5.8% & 2.3% for the vowel task, 7.0%
& 1.8% for the sentence task, and 2.4% & 1.1% for the read text
task, in comparison to MFCC features.
Index Terms: Parkinson’s disease, severity classification,
biomarking, support vector machine.

1. Introduction
Parkinson’s disease (PD) is the second most common neurode-
generative disease after Alzheimer’s disease, and it is charac-
terized by the progressive degeneration of dopaminergic neu-
rons in the brain, resulting in motor and non-motor symptoms.
Speech impairment is a common non-motor symptom of PD,
and this impairment can significantly impact the patient’s qual-
ity of life. Presence of PD and its progression is typically eval-
uated by a neurologist or a movement disorder specialist who
assess the patient’s symptoms, and overall condition over time.
Regular clinical evaluations, imaging studies (such as magnetic
resonance imaging or positron emission tomography scans),
and other tests are utilized to monitor the progression of the
disease and track the effectiveness of treatment [1–3]. However,
these assessments are costly, laborious and prone to bias due to
the neurologist’s/specialist’s familiarity and experience with the
patients. Therefore, developing objective methods for detecting
and assessing the severity of PD is crucial for improving the
diagnosis, monitoring, and treatment of the disease. Speech-
based severity assessment methods can be more accessible and
cost-effective than traditional clinical evaluations, making them
useful tools for both healthcare professionals and patients [3,4].

Automatic detection and severity level classification of PD
from speech is facilitated by data-driven approaches based on
supervised learning. This involves constructing machine learn-
ing models that are trained using speech data collected from pa-
tients and labeled by neurologists. The detection of PD (i.e.,
healthy vs. parkinsonian) from speech has been investigated

in many studies [5–13]. More details about the various types
of features and approaches used in the literature can be found
in [14–18]. The present study focuses on speech-based severity
level classification of PD (i.e., healthy vs. mild vs. severe).

Compared to the detection task, much less research has
been conducted in the severity level classification of PD [19–
22]. In [19], the severity level (mild vs. moderate vs. se-
vere) was classified using spectral, prosody, and glottal features
from speech signals produced in various speaking tasks (syl-
lable repetition tasks, read sentences, and paragraphs, as well
as monologues) with the support vector machine (SVM) classi-
fier. In [20], the severity level of PD was studied by grouping
patients and healthy talkers into a 3-class classification prob-
lem (healthy vs. mild vs. affected) using perturbation, spec-
tral, cepstral, and complexity features with deep neural network
(DNN) and convolutional neural network (CNN) as classifiers.
In [21], automatic multi-class assessment was studied using a
multi-class SVM following a one vs. all strategy using prosody
features and the monologue speaking task. In [22], authors used
onset and offset transitions from various speech sounds in con-
tinuous speech with CNNs as classifiers.

The results of [15, 19, 20, 23] suggest that spectral fea-
tures such as MFCCs perform better than conventional fea-
tures such as phonatory/glottal and prosodic features in detec-
tion and severity classification of PD. Motivated by this, the
current study investigates cepstral coefficients derived using a
recently proposed signal processing method, single frequency
filtering (SFF) [24, 25]. Two feature sets are derived: (1) sin-
gle frequency filtering cepstral coefficients (denoted as SFFCC)
and (2) MFCCs computed from the SFF spectrum (denoted as
MFCC-SFF). The SFF method was shown in [25–27] to pro-
vide higher spectral and temporal resolution for deriving speech
features compared to the short-time Fourier transform (STFT),
which is used in the computation of conventional MFCCs. Il-
lustrations of spectrograms obtained with SFF and STFT are
shown in Figs. 1 and 2, respectively, for healthy speech and for
PD speech of mild and severe levels. From the figures, it can be
clearly seen that the SFF spectrogram highlights spectral infor-
mation clearly (with sharper harmonics) compared to the STFT
spectrogram.

The major contributions of this study are:

• The effectiveness of the cepstral coefficients derived from the
SFF spectrum (SFFCC and MFCC-SFF) is studied for sever-
ity level classification of PD from speech.

• A systematic comparison is conducted in severity level clas-
sification of PD between three speaking tasks (production
of vowels, production of sentences as well as a text reading
task).

The paper is organized as follows. Section 2 describes the
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SFF method and feature extraction from SFF method. Section 3
describes the experimental protocol including the database,
baseline features and prior studies for comparison, classifier and
evaluation metrics. Results and discussion on classification ex-
periments are presented in Section 4. A summary of the paper
is given in Section 5.

2. Single Frequency Filtering (SFF)-based
Features

SFF is a time-frequency analysis technique, which provides an
amplitude envelope of the speech signal as a function of time for
a selected frequency [24, 25]. In this method, the speech signal
s[n] is first frequency-shifted (i.e., modulated) by multiplying it
with an exponential function:

ŝ[n, k] = s[n]e−j2πf̄kn/fs , (1)

where fs is the sampling frequency, f̄k = fs
2

− fk, and fk is
the kth desired frequency. Then the frequency-shifted signal
is filtered through a single-pole filter, whose root (z = −r) is
located on the negative real axis. The transfer function of the
filter is given by:

H(z) =
1

1 + rz−1
. (2)

The output of the filter can be expressed as:

y[n, k] = −ry[n− 1, k] + ŝ[n, k]. (3)

The magnitude or amplitude envelope v[n, k] and the phase
ψ[n, k] of the signal y[k, n] at kth frequency can be written
as:

v[n, k] =
√
y2r [n, k] + y2i [n, k], (4)

and

ψ[n, k] = tan−1(
yi[n, k]

yr[n, k]
). (5)

Here yr[n, k] and yi[n, k] are the real and imaginary parts
of y[n, k], respectively. The amplitude envelope of the signal
can be computed for several frequencies at intervals of ∆f by
defining fk as follows:

fk = k∆f, k = 1, 2, . . . ,K, (6)

where K = (fs/2)
∆f

. The SFF magnitude spectrum can be ob-
tained for each instant of time from v[n, k].

(a) Healthy Speech SFF Spectrogram
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(b) PD Mild SFF Spectrogram
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Figure 1: Illustration of SFF spectrograms for (a) healthy
speech, and for PD speech of (b) mild and (c) severe severity
level.

(a) Healthy Speech STFT Spectrogram
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(b) PD Mild STFT Spectrogram
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Figure 2: Illustration of STFT spectrograms for (a) healthy
speech, and for PD speech of (b) mild and (c) severe severity
level.

2.1. Extraction of the SFFCC features

SFFCCs are extracted by computing the cepstrum (C[n, k]).
Cepstrum is derived from the SFF spectrum (v[n, k]) as follows:

C[n, k] = IFFT(log(v[n, k])), (7)

where IFFT is the inverse Fourier transform. From cepstrum
C[n, k], the first 13 cepstral coefficients (including 0th) are
considered and they are referred to as SFFCC. Apart from the
static coefficients, the delta (∆) and double-delta (∆∆) coef-
ficients are also computed, which results in a 39-dimensional
feature vector. A schematic block diagram describing the steps
involved in the extraction of SFFCC is shown in Fig. 3.

   SFF 
Spectrum

Cepstrum

    C[n,k]

v[n,k]s[n]   Log(.)   IFFTlog(v[n,k])

Figure 3: Block diagram of the extraction of single frequency
filtering cepstral coefficients (SFFCC).

2.2. Extraction of the MFCC-SFF features

A schematic block diagram describing the steps involved in the
extraction of MFCCs from the SFF spectrum is shown in Fig. 4.
The MFCC extraction consists of mel filter−bank analysis on
the SFF spectrum followed by logarithm and discrete cosine
transform (DCT) operations. This is expressed as follows:

MFCCSFF [n, k] = DCT (log(Mel(SSFF [n, k]
2))), (8)

where MFCCSFF [n, k] denotes the mel-cepstrum. The re-
sulting cepstral coefficients are referred as MFCC−SFF, and
they represent compactly the spectral characteristics of speech.
From the mel-cepstrum, the first 13 cepstral coefficients (in-
cluding the 0th) are considered. Apart from the static coeffi-
cients, the ∆ and ∆∆ coefficients are also computed, which
results in a 39-dimensional feature vector.

SFF
Spectrum

Log(.)
s[n] MFCCSFF[n,k]v[n,k]

Mel filter 
bank DCT(.)2

Figure 4: Block diagram of the extraction of MFCCs from the
SFF spectrum (MFCC-SFF) [28].
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3. Experimental Protocol
This section describes the speech database used in the experi-
ments, the reference features that were selected for comparison
and the classifier.

3.1. Database

This study uses publicly available PC-GITA, a repository of
Spanish parkinsonian speech [29]. The database is balanced
with respect to gender and age, and it consists of speech record-
ings from 50 PD patients (25 female and 25 male) and 50
healthy control speakers (HCs) (25 female and 25 male). For
the male PD patients, the age range is between 33 and 77 years
(mean 62.3 years), for the female PD patients, the age range is
between 44 and 75 years (mean 60.2 years). For the male HCs,
the age range is between 31 and 86 years (mean 61.3 years), and
for the female HCs, the age range is between 43 and 76 years
(mean 60.8 years). The database consists of different speaking
tasks including productions of vowels, sentences, diadochoki-
netic words, as well as text reading and a monologue task. In
this study, we considered the vowel task, the sentence task and
the read text task. The vowel task includes three repetitions of
five Spanish vowels. The sentence task includes productions
of six different sentences. The read text task consists of a di-
alog between a doctor and a speaker, and this task is phoneti-
cally balanced (36 words). All the patients were diagonsed by
neurologists, and their disease severity was labeled according
to the modified H & Y scale and the MDS-UPDRS-III. The
MDS-UPDRS-III scale is based on the motor examination and
it consists of 33 items, where each of the item ranges from
0 (normal) to 4 (severe). The database was partitioned into
three severity classes (healthy, mild, and severe) according to
the MDS-UPDRS-III scores. Figure 5 shows the distribution
of the MDS-UPDRS-III and the number of speakers per each
class. This study uses the balanced number of speakers for each
class. Further details of the database can be found in [29, 30].
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Figure 5: Distribution of the MDS-UPDRS III (left) and the
number of speakers available in the database for each severity
class (right).

3.2. Baseline features and reference classifiers of a prior
study

The most popular speech features, namely MFCCs [15, 19, 31,
32], are used as the baseline features. The first 13 MFCCs (in-
cluding 0th) are extracted using a Hamming window size of 30
ms and a shift of 10 ms. Apart from the above static coefficients,
the ∆ and ∆∆ coefficients are also computed resulting in a 39-
dimensional feature vector. In addition to the baseline MFCCs,
we compared the results of the current study also with the re-
sults reported in [20], where a protocol similar to this study was
utilized using only the vowel task. In [20], perturbation, spec-

tral, cepstral and complexity features were used together with a
DNN, and the modulation spectrum was used with a CNN and
multi-modal architectures.

3.3. Parameters used for the SFF-based features

For the SFF spectrum estimation, r = 0.99 and ∆f = 31.25
Hz (resulting in 512 amplitude envelopes) are used. SFFCC and
MFCC-SFF are extracted with an interval of 10 ms rather than
considering every time instant. The number of mel-filters used
is 80, and the first 39 cepstral coefficients are extracted for both
of the features. Frame-wise features (for baseline and proposed)
are merged into a 1-dimensional feature vector by taking the
mean.

3.4. Classifier and evaluation metrics

Severity classification experiments were carried out using the
SVM classifier (linear kernel in the one-vs-one architecture,
with c and gamma parameters in the range of 10−4 to 104),
which is known to be an effective classifier when the amount
of training data is limited. The experiments were conducted
with leave-one-speaker-out (LOSO) cross-validation, where
one speaker’s data was considered as a test set and the remain-
ing speakers’ data was used for training the classifier. In each
fold, the evaluation metrics were saved, and the procedure was
repeated for all the speakers, and finally the evaluation metrics
were averaged.

The metrics chosen are the balanced classification accuracy
(also known as unweighted average recall (UAR)), class-wise
precision, class-wise recall, and class-wise F1 score. We also
used confusion matrices for assessing the performance of the
classification systems.

4. Results and Discussion
This section reports the results of the experiments for the
three speaking tasks (vowels, sentences and read text) by
first describing the classification accuracies obtained and then
describing the confusion matrices. Table 1 shows the results
in terms of the mean and standard deviation of accuracy along
with class-wise precision, recall and F1-score. From the results
in the table, it can be observed that the performance of both of
the proposed features (SFFCC and MFCC-SFF) is clearly better
than the baseline MFCCs features for all the three speaking
tasks. From the speaking tasks, the performance of the read text
task is better that of the sentence and vowel tasks. Between the
sentence and vowel tasks, the former task gave better results.
Taken together, the order of preference for the speaking tasks is:

Read Text > Sentences > V owels.

This trend was expected as the read text task included richer
articulation information (due to phonetically balanced sounds)
which is helpful for severity classification. From the met-
rics based on precision, recall and F1 score, it is evident that
the MFCC features are more biased towards the healthy class
(specifically in the vowel and read text tasks) compared to the
proposed features. Overall, the proposed SFFCC and MFCC-
SFF features gave an absolute improvement of 2.8% and 1.1%
(relative improvement of 5.8% and 2.3%) for the vowel task,
3.8% and 1.0% (relative improvement of 7.0% and 1.8%) for
the sentence task, and 1.5% and 0.7% (relative improvement
of 2.4% and 1.1%) for the read text task, in comparison to the
baseline MFCC features. Between the two proposed features,
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Table 1: Results of Parkinson’s disease severity classification for the reference MFCC features, the proposed SFFCC features and the
MFCC-SFF features in three speaking tasks (vowels, sentences and read text). Precision, recall and F1 score are given for individual
classes (0 for healthy, 1 for mild, and 2 for severe).

Vowel task
Feature Accuracy Precision-0 Recall-0 F1 score-0 Precision-1 Recall-1 F1 score-1 Precision-2 Recall-2 F1 score-2
MFCC 48.7 ± 7 0.53 0.57 0.55 0.40 0.38 0.39 0.45 0.45 0.45
SFFCC 51.5 ± 4 0.50 0.56 0.52 0.43 0.40 0.42 0.49 0.46 0.47
MFCC-SFF 49.8 ± 5 0.49 0.54 0.52 0.42 0.42 0.42 0.45 0.42 0.44

Sentence task
MFCC 54.5 ± 8 0.53 0.61 0.57 0.52 0.45 0.48 0.63 0.62 0.62
SFFCC 58.3 ± 7.8 0.60 0.63 0.62 0.53 0.51 0.52 0.62 0.61 0.62
MFCC-SFF 55.5 ± 8 0.58 0.60 0.59 0.54 0.53 0.54 0.62 0.61 0.61

Read text task
MFCC 61.5 ± 10 0.59 0.79 0.68 0.45 0.42 0.43 0.50 0.38 0.43
SFFCC 63.0 ± 12 0.55 0.75 0.63 0.44 0.33 0.38 0.62 0.54 0.58
MFCC-SFF 62.2 ± 13 0.58 0.62 0.60 0.46 0.46 0.46 0.50 0.46 0.48
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Figure 6: Confusion matrices for the MFCC (left), SFFCC (middle) and MFCC-SFF (right) features in the read text task. Rows
correspond to the actual Parkinson’s disease severity classes and columns correspond to the predicted classes.

Table 2: Classification accuracy in the vowel task based on the
features proposed in the current study and based on classifiers
studied in a previous study.

Class-wise accuracies
Accuracy Healthy Mild Severe
Current study

SFFCC (SVM) 51.5 ± 4 55.9 40.4 45.6
MFCC-SFF (SVM) 49.8 ± 5 54.2 40.9 42.5

Previous study [20]
DNN 50.0 ± 9 30.9 43.6 70.0
CNN 41.0 ± 5 68.0 21.8 33.3
Multi-modal 52.0 ± 7 63.9 40.0 46.7

SFFCC performed better than MFCC-SFF.
Figure 6 shows the confusion matrices for the MFCC (left),

SFFCC (middle) and MFCC-SFF (right) features in the read
text task. This figure shows clearly that all the features are bi-
ased towards healthy class. Among the features, the proposed
features are, however, less biased towards health class compared
to the MFCC features. This is also in conformity with the per-
formances reported in Table 1.

Table 2 reports the performance of the proposed SFFCC
and MFCC-SFF features for the vowel task by showing the re-
sults of the previous reference study [20]. It can be seen that the
performance of the proposed features is better than in the ref-

erence study (except for the multi-modal system). In addition,
we would like to note that the standard deviations in accuracy
are lower for the proposed features in comparison to the prior
study. The results of the experiments indicate that the proposed
features effectively capture speech articulation variations which
reflect changes in the disease severity.

5. Summary
In this study, we proposed two sets of features derived from the
SFF spectrum (SFFCC and MFCC-SFF) for the severity clas-
sification of PD from speech. The classification experiments
were carried out with three speaking tasks (sustained vowels,
sentences and read text) of the well-known PC-GITA database.
The experiments with the SVM classifier revealed that the pro-
posed SFFCC and MFCC-SFF features outperformed the con-
ventional MFCCs features in all three speaking tasks. Among
the speaking tasks, the classification performance was high-
est for the text reading task and lowest for the vowel produc-
tion task. This trend is due to the larger diversity of articula-
tion information in speech signals produced in the text reading
task (due to phonetically balanced sounds), which is helpful for
severity classification.

6. Acknowledgements
This study was funded by the Academy of Finland (project no.
330139).

2396



7. References
[1] S. Shinde, S. Prasad, Y. Saboo, R. Kaushick, J. Saini, P. K. Pal,

and M. Ingalhalikar, “Predictive markers for Parkinson’s disease
using deep neural nets on neuromelanin sensitive MRI,” NeuroIm-
age: Clinical, vol. 22, p. 101748, 2019.

[2] L. V. Kalia and A. E. Lang, “Parkinson’s disease.” Current neu-
rology and neuroscience reports., Aug 2015.

[3] J. Rusz, Detecting speech disorders in early Parkinson’s disease
by acoustic analysis. Habilitation thesis, Czech Technical Uni-
versity in Prague, 2018.

[4] S. Arora, L. Baghai-Ravary, and A. Tsanas, “Developing a large
scale population screening tool for the assessment of Parkinson’s
disease using telephone-quality voice,” The Journal of the Acous-
tical Society of America, vol. 145, no. 5, pp. 2871–2884, 2019.

[5] M. Cernak et al., “Characterisation of voice quality of Parkinson’s
disease using differential phonological posterior features,” Com-
puter Speech Language, vol. 46, pp. 196 – 208, 2017.

[6] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, “Non-
linear speech analysis algorithms mapped to a standard metric
achieve clinically useful quantification of average Parkinson’s dis-
ease symptom severity,” Journal of the Royal Society Interface,
vol. 8, no. 59, pp. 842–855, 2011.

[7] J. R. Orozco-Arroyave, E. A. Belalcazar-Bolanos, J. D. Arias-
Londoño, J. F. Vargas-Bonilla, S. Skodda, J. Rusz, K. Daqrouq,
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