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Abstract

Background: Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key
role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL
are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the
apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the
particles remain incompletely characterized at the physiological human body temperature (37uC).

Methodology/Principal Findings: To study native LDL particles, we applied cryo-electron microscopy to calculate 3D
reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6uC and 37uC resulted in
reconstructions at ,16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of
lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6uC than at 37uC, which reflected
increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of
the core and order in a lipid-binding domain of apoB-100 were observed at 6uC, but not at 37uC. At 37uC we were able to
highlight features in the LDL particles that are not clearly separable in 3D maps at 6uC. Segmentation of apoB-100 density,
fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual
domains of apoB-100 on the surface of native LDL particles.

Conclusions/Significance: Our study provides molecular background for further understanding of the link between
structure and function of native LDL particles at physiological body temperature.
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Introduction

Low-density lipoprotein (LDL) particles are specialized lipid

transport vehicles in the blood. They are formed in the circulation

during an endogenous metabolic cascade of apolipoprotein B-100

(apoB-100)-containing lipoproteins [1]. This cascade originates in

the hepatic secretion of very-low-density lipoprotein (VLDL)

particles, then proceeds as a sequential metabolic continuum in

the blood, where lipoprotein particle transformations are mediated

by the actions of various lipolytic enzymes and lipid transfer

proteins, and reaches its completion by generation of LDL

particles. By providing cholesterol to peripheral tissues, the LDL

particles are the key components in physiological cholesterol

metabolism [1,2]. Hepatic LDL receptors remove LDL particles

from the circulation, so tending to ensure that the concentration of

circulating LDL particles remains at a physiologically relevant

level [1]. However, elevated blood plasma concentrations of the

LDL particles, whether of genetic or environmental origin, will

attenuate the functioning of the LDL receptor pathway and

enhance the influx of LDL particles into the arterial wall where the

particles become trapped, modified, and thereby are converted to

initiators and major players in the vicious circle of inflammation
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and lipid accumulation characteristic of atherogenesis [3,4,5].

Thus, LDL particles function at the interface between physiolog-

ical and pathophysiological pathways of lipoprotein and lipid

metabolism [6,7].

All lipoprotein particles share a common structure as micellar

complexes with an amphipathic surface monolayer and a

hydrophobic lipid core [4,6,8,9,10]. Importantly, lipoprotein

particles are biologically functional only in their native state in

an aqueous environment. LDL particles consist of a single copy of

an apoB-100 molecule and ,3,000 individual lipid molecules,

some present on the surface and some in the core of the particle.

Of the LDL lipids, the most abundant and structurally most

important are the ,1,600 cholesteryl ester (CE) molecules present

in the core of each particle [4,8,9,10]. The oily lipid core is

surrounded by a monolayer of phospholipids composed mainly of

phosphatidylcholine and sphingomyelin, and of unesterified

cholesterol molecules. The apoB-100, again, wraps around the

surface of the LDL particle. It interacts with a fraction of the

surface lipids, partially penetrates the phospholipid monolayer,

and so may reach the outer core of the particle and interact with

the lipids of this deeper layer of LDL as well [4,9].

The LDL particles, like other lipoprotein particles, form a

rather heterogeneous group of particles in that, for example, they

vary in both diameter (,18–25 nm, mean 22 nm) and density

(,1.019–1.063 g/ml). The heterogeneity of circulating LDL

particles in the living body (at 37uC) reflects their dynamic state

in the catabolic cascade of the circulating apoB-100 containing

lipoproproteins, their structure and physical properties depending

on their lipid composition as well as on the conformation of the

apoB-100. ApoB-100 is a non-exchangeable apolipoprotein and

one of the largest monomeric proteins known, consisting of 4,536

amino acid residues (,550 kDa) [11]. In addition to interacting

with the LDL receptors and the negatively charged glycosamino-

glycans of the arterial wall, the apoB-100 molecule has a particular

role in maintaining the structural integrity of the LDL particles

and controlling the structural and compositional changes taking

place in them [7]. ApoB-100 is understood to consist of five

alternating a-helical and b-sheet domains, i.e., it is a pentapartite

NH- ba1-b1-a2-b2-a3-COOH polypeptide [4,9,10]. The first

1000 N-terminal residues of apoB-100 have 20.1% identity and

39.6% similarity to lamprey lipovitellin (residues 1-1074) for which

the atomic crystal structure is known [12]. Studies on model

systems have recently suggested that the b-strand regions anchor

the apoB-100 on the lipid surface whereas the a -helical domains

may desorb from and reabsorb onto the particle surface [13,14].

Hence it has been concluded that both a-helical and b-strand

regions contribute to the conformational flexibility of the particle

[14].

The inherent heterogeneity of LDL particle size and compo-

sition, together with the structural issues related to the architec-

tural flexibility of apoB-100, pose serious challenges to studies

aimed at elucidating structural details of the native particle. Small-

angle X-ray scattering has been used to model the LDL core to

low-resolution, positioning the radial extent of the lipids and apoB-

100 [15]. Several groups have published electron microscopy data

of raw or two-dimensionally averaged images of LDL particles at

temperatures of 4uC, 10uC, 24uC, 40uC and 42uC
[16,17,18,19,20]. Previously, three-dimensional (3D) reconstruc-

tions have only been reported for LDL particles at non-

physiological temperatures. Orlova et al. [21] first applied

electron-microscopy and image processing methods to build a

3D model of LDL at 4uC, with a resolution of 27 Å [17,21].

Subsequently, Poulos [22] studied LDL bound to five different

antibodies at 4uC to a resolution of 25 Å. Recently, Ren et al. [23]

published a 28-Å resolution reconstruction of LDL bound to the

LDL-receptor at 4uC. The 3D models at low temperature have

revealed a core consisting of inner lamellae-like layers of lower-

density, and an outer shell of higher-density with a knob-shaped

protrusion. A study using small angle neutron scattering of lipid-

free apoB-100 described the modular nature of the protein, with

ordered domains connected by flexible linkers [24]. However, a

high resolution 3D structure of the LDL particle in a native

condition and temperature would help to confirm previous

observations and link them to biological functions.

In the current study, we wanted to gain insight into the overall

structural characteristics of LDL particles and the folding of apoB-

100 under native conditions, i.e., when blood plasma-derived

particles are present as lipid-apoB-100-complexes in an aqueous

environment. We applied single particle reconstructions with cryo-

electron microscopy images of LDL particles vitrified both at 6uC
and 37uC. Due to robust filtering of noisy cryo-electron

micrographs [25] and the extensive amount of individual LDL

images collected, we achieved a remarkably good resolution of

,16 Å, which provided novel insights into the molecular structure

of native LDL particles with naturally folded apoB-100.

Materials and Methods

Ethics statement
Human plasma was obtained from healthy blood donors after

informed consent as by-products from the preparation of blood

products for clinical use. The study was approved by the Finnish

Red Cross Blood Service (Permission number 25/2010; Finnish

Red Cross Blood Service).

Isolation of LDL particles from human plasma
Human LDL particles (density between 1.019 and 1.050 g/ml,

average diameter 2362 nm; SD; median 23 nm; range 19 –

25 nm) were isolated from the plasma of healthy blood donors

(Finnish Red Cross Blood Service) by sequential ultracentrifuga-

tion in the presence of 3 mM EDTA. Briefly, solid KBr was added

to plasma to adjust its density to 1.019 g/ml. Very-low- and

intermediate-density lipoproteins were removed, and the density of

the bottom fractions was adjusted to 1.050 g/ml with solid KBr.

After ultracentrifugation for 72 h in a Type 50.2 Ti rotor

(Beckman Coulter) at 30 000 rpm (g-max = 109 000 g), LDL

was recovered from the top of the centrifuge tubes, re-centrifuged

(density 1.060 g/ml) for 24 h in the same rotor at 40 000 rpm (g-

max = 190 000 g), and dialyzed extensively against 1 mM EDTA,

150 mM NaCl, pH 7.4. The amount of LDL is expressed in terms

of protein concentration, determined using the Lowry assay with

bovine serum albumin as a standard [26].

Cryo-electron microscopy
Samples at a concentration of approximately 0.3 mg protein/ml

were vitrified on Quantifoil holeycarbon grids (Quantifoil Micro

Tools, GmbH) either at 6uC or 37uC, allowing pre-equilibration of

the sample at the desired temperature for at least 45 minutes prior

to plunging [27]. Cryo-electron microscopy was carried out at

200 kV and x 50 000 magnification on an FEI Tecnai F20 field

emission gun transmission electron microscope (Electron Micros-

copy Unit, Institute of Biotechnology, University of Helsinki,

Finland). Micrographs were scanned on a Zeiss Photoscan TD

scanner as described previously [28]. This resulted in digitized

images with a nominal sampling of 1.4 Å per pixel. Tilt series of

three micrographs were collected at a magnification of x 19 000

using zero, four and eight degree tilt angles, resulting in a sampling

rate of 3.35 Å per pixel in the scanned images.

Molecular Structure of LDL Particles by Cryo-EM
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Single particle reconstruction of LDL particles
Particles were picked from micrographs free from drift and

astigmatism semi-automatically with EMAN’s graphical program

Boxer [29] that picks particles by cross-correlating selected

template images over the whole micrograph. At 6uC 52

micrographs and at 37uC 23 micrographs were used with defocus

values in the range of approximately 1.5 mm to 4.7 mm. After

manual inspection, datasets of 71,521 (6uC) and 29,844 images

(37uC) resulted. Initially only phase-flipping was carried out to

correct for the contrast transfer function. To reduce the effect of

image noise and artifacts, an initial single particle reconstruction

was made on images denoised with an information theory

[Minimum Description Length (MDL)] based method which we

have introduced earlier [25]. Fifty initial class averages were

obtained using a reference-free classification of 3000 images by

multivariate statistical analysis using parameters, as suggested in

EMAN [29]. Angles were assigned using the cross common lines

method prior to reconstruction using weighted-back projection

[30,31]. The initial 3D models were low-pass filtered. The 2D

image dataset was increased to include all of the particles and

iterative refinement continued. After each iteration of the single-

particle-reconstruction process only 70–75% of the images with

the highest correlation values were chosen.

Refinement was done to remove images with high noise and

artifacts. First reference-free classification was done for the initial

sets of denoised LDL images. A radial profile of each of the LDL

image-class-averages was then compared to the radial profiles of

all the projections from the reconstructed 3D volume. The images

belonging to the class-averages which had unacceptable radial-

profile correlation (less than 0.2) with all the 3D-projections were

rejected from the data set. Datasets from the two different

temperatures were handled separately. Finally 67 678 and 26 083

images at 6uC and 37uC, respectively, were selected in EMAN. In

order to avoid any bias in 3D reconstruction due to the denoising,

the final reconstructions were made using non-denoised images

after being assigned to classes using their denoised equivalents.

To address the heterogeneity remaining in the final reconstruc-

tions, after radial-profile sorting of the particles, a bootstrap

method was used to calculate the 3D variance maps for both of the

reconstructions [32,33]. The selection of images for the bootstrap

reconstructions was performed after classification of images and

before the 3D reconstruction. For each dataset, 200 bootstrap 3D

volumes were created from which both a 3D average and a 3D

variance map were then calculated. At both temperatures 3D

variance maps due to noise and alignment were also estimated by

using the same number of images containing only background

[32,33]. A 3D variance map calculated from images of just the

vitrified water background was subtracted from the 3D variance

map calculated from the LDL 3D reconstruction. Thus, the

resulting 3D variance should represent mainly differences due to

conformation rather than background noise.

Fitting the 3D locations of antibodies
The program ADP_EM [34] was used to dock the back-bone

structure of the first 780 amino acids of lipovitellin (PDB code:

1LSH) to the 3D reconstructions [35,36,37]. The reconstructed

3D volume was bandpass filtered to include information between

15 and 80Å prior to fitting. Then the ADP_EM docking tool was

used to fit at a resolution of 17Å and a density threshold of 1.7

standard deviations above the mean intensity [34,38]. The P-value

was calculated using the Z-score of the first 40 fitting results, of

which the first 10 results are shown in Table S1. It can be clearly

seen that the P-values of the first two solutions are much more

significant than the other possible solutions. We tested additional

threshold and resolution cutoffs, but the top results remained very

similar to that reported here, even when a threshold of 0 sigma

was used. The fit was tested with both possible hands of the

reconstruction.

The handedness of the reconstructed volume of LDL at 37uC
was confirmed to be correct by collecting tilted images at 0, 4, and

8 degrees. Both the tilt series and the fitting results were consistent

with the handedness reported here. After finding the most

probable location of the first 780 amino acids of lipovitellin, a

3D cartoon model was made to represent the probable locations of

monoclonal antibodies using coordinates of latitude and longitude

that have been described earlier [39]. The alignment of the

cartoon model to the LDL 3D reconstruction needed three

anchoring points. For the first two locations, we chose antibodies

MB19 and MB24, which are located in the docked lipovitellin-like

structure. For the third point we used antibody location MB11,

and placed it close to the C-terminus of the docked PDB structure.

MB11 represents apoB-100 amino acids 995–1082, and we chose

its location with respect to the docked lipovitellin structure, as

suggested and modeled by Richardson and coworkers [40].

Results

The 3D reconstructions of the LDL particles in this study were

derived solely on the basis of the acquired data, i.e., without any

prior knowledge on the LDL structure or chemical composition of

the LDL preparations isolated by ultracentrifugation. Careful

gradient fractionation and selection in silico ensured that most of

the LDL particles in the sample were approximately of the same

size (Figure S1). We found that the correlation of the radial

profiles of different class averages, which were obtained by

comparing reference-free classification to model projections in the

same orientation, was a useful selection criterion to decrease size

heterogeneity. We used it to eliminate ,5% of the 6uC data and

,13% of the 37uC data with artifacts and projections from other

size LDLs belonging to minority groups. The correspondence

between typical raw data, denoised images, class averages and

projections of the final model are shown in Figure 1. We achieved

a resolution of ,16 Å for the final reconstructions of LDL at both

temperatures using a Fourier Shell Correlation cutoff of 0.5 [41]

(Figure S2). In general, our data and the particle models derived

agree well with those published previously at lower resolution at

4oC [21].

Structural details and shape of LDL particles
It became evident already from the micrographs, that the LDL

particles vitrified at 6uC were more organized than those vitrified

at 37uC (Figure 1), and that this applied particularly to the core of

the particles, as shown by the radial density profiles of the

reconstructions in Figure 2. The overall intensity of the core

region appears clearly higher at 6uC than at 37uC up to a radius of

approximately 75 Å. The inner core intensity peaks for LDL

particles at 6uC are distinctly visualized in the sequential cross-

sections through the models shown in Figure 3, and were

interpreted to present planar cholesteryl ester layers. Importantly,

these layers are approximately 30Å apart which strikingly agrees

with the organization of the cholesteryl ester molecules in a

smectic liquid crystal-like phase [41]; i.e., the cholesterol ring

structures of the CE molecules correspond to the denser areas and

the fatty acid tails correspond to the less dense intervening regions

(Figure 3). As indicated by the lower radial intensity in the inner

and outer core regions of the particle, there is significantly less

ordering inside the particle at 37uC than at 6uC (Figure 2). Thus,

at the physiological temperature of 37uC, the core CE molecules in

Molecular Structure of LDL Particles by Cryo-EM
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LDL particles appear to be in a liquid-like state. The radial

intensity curves show a similar hydrodynamic radius for the LDL

particles both at 6uC and at 37uC suggesting that, in contrast to

the physical reorganization of the lipids, the conformation of

apoB-100 on particle surface, experiences only minor temperature-

related changes within the studied temperature interval.

The reliability and consequent interpretation of the final

reconstructions could have been affected by heterogeneity in the

LDL particles, for instance in conformational differences in apoB-

100, as well as by errors arising from incorrect assignment of

angles to individual particles. Hence, the particles were selected by

physical separation prior to vitrification and by radial-profiling to

remove outliers, and finally 3D variance maps were calculated to

determine which features in the reconstructions were most

reliable. We applied a bootstrap method [33] using 200 bootstrap

3D volumes of LDL particles both at 6uC and 37uC. The maps are

shown together with the 3D average maps in Figure 4. At 6uC
there is less variance in the center of the particles than at 37uC,

reflecting the more ordered smectic phase of the CE molecules at

6uC in comparison to the liquid-like organization at the

physiological temperature. It is noticeable that the majority of

the most variable sites are associated with the lipid core at 37uC,

except H2 (Figure 4). The high variance regions H1, H3 and H4

in LDL at 37uC in the inner shells are probably due to the fluidity

of the lipids, but H2 could be due to the flexibility of lipid-

associating domains of apoB-100. Similar variability was seen at

6uC (Figures 4, region L2 versus Figures 4, region H2 at 37uC)

which could be due to protein conformational changes rather than

lipid. There is also a high variance region L1 in LDL at 6uC which

corresponds to the lipid-free knob in the 37uC LDL volume

(Figure 4).

Secondary structure of native apoB-100
The resolution of the current models enabled us to automat-

ically dock the atomic model of the N-terminal 780 amino acids of

lipovitellin (23% sequence identity, 40% similarity to the N-

terminus of apoB-100) into the 37 uC reconstruction using

ADP_EM. The first 260 amino acids (b-barrel) fitted into the

protruding knob of the 37uC structure, as shown in Figure 5. Just

as predicted by other investigators [35,36] the highest correlation

fitting result placed the non-amphipathic a-helical domain (amino

acids 270–630) of lipovitellin towards the outside and far from the

lipid core of LDL. It also placed the amphipathic b-sheet (amino

acids 680–780) towards the inner lipid core. We then used an

EMAN 3D segmentation tool on the reconstructed 3D volume of

LDL particles at 37uC at an intensity threshold corresponding to

the protein mass of apoB-100 (550 kDa). A segment found by this

3D segmentation is supposed to have no connection or only a loose

connection with other segments. Four segments were found

automatically by 3D segmentation and their unfiltered versions are

shown in Figure 6 and Videos S1 and S2 using different colors

at the threshold at which the whole reconstructed 3D volume

represents a protein mass of 550 kDa. The boundaries between

the four segments also may correspond to the possible boundaries

between the apoB-100 supramolecular structures (NH- ba1-b1-a2-

b2-a3-COOH) [4,10,42], with the fitting of the lipovitellin

identifying the amino terminal a1 domain. The docked lipovitellin

Figure 1. Comparison of raw and averaged data for LDL particles at 66C and at 376C. The first rows show projections from the
reconstructed volume in different views, the second rows show the corresponding class averages. The third rows show one of the original images
from each class average and the bottom rows show the corresponding denoised image.
doi:10.1371/journal.pone.0018841.g001

Figure 2. Scaled radial intensity profiles of the reconstructed
volumes of LDL particles. The overall intensity of the interior of the
LDL particle reconstruction is higher at 6uC than at 37uC. This indicates a
pseudo-random structure of lipids in the LDL core at 37uC, while at 6uC
the organization is more rigid. The 2D averages are shown in the insets.
doi:10.1371/journal.pone.0018841.g002

Molecular Structure of LDL Particles by Cryo-EM
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Figure 3. Consecutive sections through the 3D reconstructions of LDL particles at 66C and at 376C. Each slice is as thick as a pixel whose
size is 1.4 Å. The slice number is shown in the bottom right corner of each image. The slice with number s128 is the central slice of the 3D volume,
while s78 marks the slice which is 50 pixels (70 Å) behind the central slice. Similarly s188 marks the slice which is 60 pixels (84 Å) in front of the central
slice. The transparent violet isosurfaces for the corresponding 3D maps are made at threshold of m+0.7s (showing mainly the lipid surface of the
particles) and the opaque brown high-density isosurfaces are made at threshold of m+3s (showing mainly rigid structures of apoB-100). These 3D
reconstructions were made in the final iterations of the single particle reconstructions using non-filtered 2D cryo-EM images after determining the
classes of their filtered versions.
doi:10.1371/journal.pone.0018841.g003

Figure 4. Main regions of variance within the LDL particle reconstructions. A boot-strap method was used to produce three dimensional
variance maps (red) superimposed on average maps (green) of the 6uC and 37uC particles. The average volume is shown at threshold of m+2s
intensity level. The regions of high variance for LDL at 6uC are labeled as L1, L2, and L3 and for LDL at 37uC as H1, H2, H3 and H4. For the rightmost
illustration at 6uC the threshold for the average map was lower (at m+s intensity level) and the volume was cut in the middle to visualize the inner
core structure.
doi:10.1371/journal.pone.0018841.g004

Molecular Structure of LDL Particles by Cryo-EM
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was used to infer the location of binding sites for three monoclonal

antibodies that have been described [39]. The positions of these

three antibodies were then used to fit a triangulation-model given

by Chatterton et al. [39] containing an additional 7 antibodies

onto the three-dimensional structure. The triangulation-model

with additional antibody binding sites that have been mapped to

the primary sequence of apoB-100 (Figure 6) gave a rough

estimation of the physical location for the components of the

pentapartite model of apoB-100 (NH- ba1-b1-a2-b2-a3-COOH)

[4,10]. Thus the triangulation model helped to identify the 4

different protein regions found by segmenting the 37uC structure.

The high intensity regions corresponding to the protein

structure in the 3D volumes of LDLs at 6uC and 37uC were

computationally checked and confirmed to be rotationally aligned

with each other at low resolution. Thus, we could predict the

region of the LDL-receptor binding site at both temperatures. To

further corroborate this prediction we also aligned our 3D volume

of LDL at 6uC (resolution ,16 Å) with the very recently published

3D volume (resolution 28 Å) of a complex of LDL with the LDL-

receptor (LDL-LDLr) at 4uC [23]. The result by an automatic

alignment tool (Align3D in EMAN, [29]) is shown in Figure 7. It

can be seen that most of the regions of the LDL reconstruction at

6uC overlap with the corresponding regions in the LDL-LDLr

complex at 4uC. The region that shows partial-overlap is the

heterogeneous region L2 found to have high 3D variance in our

bootstrap analysis (see Figure 4). After automatic alignment we

found that the LDL-receptor in the LDL-LDLr complex is located

in exactly the same place predicted by fitting the monoclonal

antibody triangulation map to our LDL volume. As shown in

Figure 8, the LDL-receptor lies in the region between the

locations of antibodies 4G3, MB47, Bsol16 and Bsol7.

Discussion

Understanding the molecular structure of LDL particles is

challenging due to both methodological issues and the fundamen-

tal structural complexity, which is inherent to these particles. Here,

we applied cryo-electron microscopy with three dimensional

image reconstruction to study the LDL particles at 6uC and

37uC. Because no staining is involved and because particularly low

electron doses are used in the image collections (to avoid radiation

damage), cryo-EM images are very noisy. Yet, it is important to

note that, at present, cryo-EM seems to the best method for the

generation of molecular level information on native LDL-particles

and apoB-100. This is because no diffracting crystals are available

of either LDL particles or apoB-100 for X-ray crystallography [9].

The remarkably good resolution of ,16 Å achieved in this work

with cryo-EM reconstructions using an extensive number of

individual LDL particle images and a sophisticated denoising

method [25], also points toward the potential of cryo-EM in

structural studies of large lipid-protein aggregates, like the various

lipoprotein particles. This achieved methodological advancement,

however, cannot fully solve the fundamental difficulties caused by

the inherent molecular complexity and heterogeneity of the non-

covalently associated lipid molecules and apoB-100 present in

individual LDL particles. Also the heterogeneous distribution of

LDL particles with respect to physical isolation methods, such as

density in ultracentrifugation, may increase the potential for bias

in the structural analysis. Yet, novel important insights into

structure/function and physiology of LDL particles has been

gained when applying cryo-EM image processing and 3D

reconstruction on LDL particles of the widest density (size)

distribution (between 1.006 and 1.063 g/ml) (23). In the present

study, we attempted to reduce size heterogeneity by collecting

LDL particles within the densities ranging from1.019 to 1.050 g/

ml. In future studies, gel filtration separations should be used

which would allow still better selection of relatively size-

homogenous particles prior to structural analysis.

At low temperature, the overall structure of the LDL particles

appears to be semi-discoidal with a protrusion, as has been

indicated before in a low resolution cryo-EM study [21], a notion

which has also been supported by X-ray crystallography data [43].

The physical explanation for the shape likely relates to the strong

non-polar interactions between the CE molecules in the smectic

liquid crystal-like phase at the low temperature, which contrasts

with the liquid-like organization of CE (and also the minor lipid)

molecules in the LDL core at the physiological temperature. At

both temperatures, extensive lower-density regions also appear at

Figure 5. Results of the fitting of the backbone of lipovitellin PDB structure (PDB code: 1LSH) with the LDL reconstruction at 376C.
The isosurface shown here is from a 3D volume which has been low pass filtered to 17 Å after thresholding at 1.7s above the mean intensity. The
PDB structure of the backbone has been shown with different colors representing their rank assigned by the docking tool ADP_EM. The magenta
color is for rank 1 and cyan for rank 2. Both of the two best results are docked similarly although there is slight rotational difference between the best
and second-best docked results. The boxed lipovitellin region is shown enlarged on the left.
doi:10.1371/journal.pone.0018841.g005
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the surface of the particles (Figure 3). These patches on the LDL

surface do not seem to have any rigid protein structure (Figures 3,
4, 5). It has been suggested that there are such protein-free surface

nanodomains consisting mainly of phospholipids with intervening

cholesterol and cholesteryl ester molecules [4,8]. Therefore, at the

physiological temperature, the core CEs being in a liquid-like

state, the lipid-lipid interactions with an intrinsically self-

organizing energy optimum provide a good rationale for the

overall spherical shape of the LDL particles.

The lipid nanodomains at the surface of the LDL particles most

likely have a significant role in both physiological and pathophys-

iological processes inherent to LDL metabolism (4). For example,

in the circulation cholesteryl ester transfer protein (CETP) is

known to attach to these domains [44]. The lipid nanodomains are

also important in enzymatic and oxidative modifications of the

particles, leading to lipid-lipid interactions between lipoprotein

particles. The subsequent fates of such interacting particles, such

as particle aggregation and fusion, are the initial processes leading

to lipid accumulation in the arterial intima during early

atherogenesis [3,4,5].

Comparison of the two structures and of their variance allowed

us to define two regions within the particle which are most affected

by temperature change. In line with previous studies, we see an

increase in order at 6uC in the center of the particle [17,21]. This

clearly relates to the phase change of the core lipids. However, the

perimeter of the particle also clearly differs. The majority of the

Figure 6. ApoB-100 domains and antibody locations in reconstruction of LDL at 376C. An LDL particle at 37uC (white mesh isosurface at
the threshold of m+2s) with different segments (colored), docked lipovitellin (N-terminal amino acids 1–680 shown in yellow), and fitted antibodies’
locations. These segments were found automatically by 3D segmentation and their unfiltered versions are shown in different colors at threshold at
which the whole reconstructed 3D volume represents a protein mass of 550 kDa. The pentapartite model of apoB-100 is shown in the bottom
together with the epitope locations of the antibodies (MB19, 71; MB24, 405–539; MB11, 995–1082; 2D8, 1438–1480; B4, 1854–1878; B3, 2239–2331;
4G3, 2980– 3084; MB47, 3429–3453 and 3507–3523; MB43, 4027–4081; Bsol16, 4154–4189; Bsol7, 4517–4536). Different colors are used for different
supra-molecular structures of apoB-100 in all subfigures. The rectangular segment shown with cyan color, between antibody locations MB11, 2D8
and B4, most likely represent the b1 region (approximately from residue 827 to 2000). The segment, shown in magenta, surrounded by antibody
locations B3, B4 and 4G3, likely refers to the a2 region (approximately from residue 2075 to 2570). The largest segment surrounded by Bsol7, MB19,
Bsol16 and 4G3, shown in red color, appears to be consisting of the b2- (approximately from residue 2571 to 4050) as well as the a3-region
(approximately from residue 4050 to 4500). The segmentation tool could not separate the b2- and a3-regions, possibly due to their overlapping
locations. However, the docked antibodies clearly point to the possible location of the a3-domain shown shaded and encircled with a dashed line.
doi:10.1371/journal.pone.0018841.g006
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well-defined surface at 37uC (visible at a higher threshold in

Figure 3) probably corresponds to the apoB-100, holding the

lipids. However, there is a significant area of the surface that forms

a less-well defined density. It is most probably a continuation of the

surface phospholipids, devoid of protein. At 6uC, this lipid density

is also better defined, which may follow from the stiffening or

phase change that occurs for phospholipids at lower temperatures.

The apoB-100 protein itself is not known to undergo extensive

conformational changes with a shift in temperature, and, hence, it

is likely that the differences relate to the lipid rather than the

protein.

Segmentation of the well-defined density in the 37uC LDL

particle reconstruction along with fitting of a lipovitellin atomic

model and comparison to both older antibody mapping studies

and the recent structure at 4uC of LDL particles in complex with

the LDL receptor all contribute to our current understanding of

Figure 7. Similarity between 66C LDL reconstruction and previously published low-resolution structure of LDL-LDLr complex at
46C. The result of automatic alignment (Align3d in EMAN) of our 6uC LDL reconstruction in yellow with that of LDL in complex with the LDL-receptor
(LDL-LDLr) in violet at 4uC (23). The published LDL-LDLr reconstruction (23) was downloaded from the EMdatabank (emdatabank.org accession code
EMD-5158). The isosurfaces were generated at a threshold of m+s. The view from one side is shown in (a) and the view from the same orientation is
shown in (b) as a thick central section from both volumes. Notice that nearly all the regions of volumes of 6uC LDL and LDL-LDLr overlap except the
heterogeneous region L2. The 3D volume of 6uC LDL is low-pass filtered to 15 Å resolution and LDL-LDLr is low-pass filtered to 28Å.
doi:10.1371/journal.pone.0018841.g007

Figure 8. Similar orientation views show LDL-receptor binding site in reconstructions of LDL at 66C and 376C and LDL-LDLr
complex. The published 3D reconstruction LDL in complex with the LDL-receptor (LDL-LDLr) (23) EMdatabank accession code EMDB-5158. The
orientation of the 3D reconstruction of the LDL-LDLr complex was determined by using automatic alignment with 6uC LDL map. For LDL at 37uC and
LDL at 6uC the transparent violet iso-surfaces are made at threshold of m+0.7s (representing lipid) and opaque brown high density iso-surfaces are
made at threshold of m+3s (representing rigid structures of protein). For LDL-LDLr complex the transparent violet isosurface is made at threshold of
m+0.25s and opaque pink high density isosurface is made using a threshold of m+2.5s. The 3D volumes of 6uC LDL and 37uC LDL are low-pass filtered
to 15Å resolution and 3D map of LDL-LDLr is low-pass filtered to 28Å. In (a) LDL at 37uC is also shown with fitted antibodies locations. The shown
antibodies with their epitope locations on the apoB-100 are MB19 (71), MB24 (405–539), 4G3 (2980–3084), MB47 (3429–3453, 3507–3523), MB43
(4027–4081), Bsol16 (4154–4189) and Bsol7 (4517–4536). In (b) the rib like structures in 6uC LDL are indicated by arrows. In (c) the LDL receptor is
visible in LDL-LDLr complex. The visible location of LDL-receptor in LDL-LDLr complex corresponds to the region close to MB47 lying in between 4G3
and MB47 mAb locations in LDL at 37uC.
doi:10.1371/journal.pone.0018841.g008
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the organization of the apoB-100 supramolecular structure shown

in Figure 6 [23,36,39,40,45]. The key differences in our

approach were the noise-reduction method applied during the

reconstruction and the fitting of the lipovitellin atomic model.

These led to a successful higher-resolution 3D reconstruction of

native LDL. The presence of other markers such as antibodies that

have been attempted earlier may contribute to additional

heterogeneity due to conformational flexibility and incomplete

labeling, adding to the noise, [22] thereby lowering the resolution

of subsequent 3D reconstructions.

The segmentation of the 37uC LDL particle reconstruction did

not separate the b2 and a3 regions of the NH- ba1-b1-a2-b2-

a3-COOH pentapeptide, possibly because of their overlapping

locations. However, the docked antibodies clearly point to the

possible location of the a3 domain (shaded area encircled with a

dashed line in Figure 6, bottom left, and green in the Videos S1
and S2. This interpretation is also supported by the variance

computations; on the 3D reconstructions, the areas marked as

H2/H3 (Figure 4) suggests the presence of a location in apoB-100

with variance which surpasses that of the other surface regions.

This location is surrounded by the monoclonal antibody positions

Bsol16, 4G3, and MB47 in the C-terminus of apoB-100, and,

accordingly, most likely reflects increased mobility in b2 and/or

a3 regions. In fact, this interpretation well agrees with previous

results [39], which demonstrated that the remaining 11% of apoB-

100, i.e., the a3 alpha-helical region, is rather mobile and also

controls the visibility of the apoB-100 LDL-receptor binding

region during the conversion of VLDL to LDL in the circulating

blood plasma.

In the recently reported 3D reconstruction using cryo-electron

microscopy data from complexes of LDL and the LDL receptor at

4uC [23], a possibility exists that the selected projection images

reflected only LDL particles belonging to a particular subclass.

However, the automatic alignment of the 3D volume of the LDL-

LDLr complex at 4uC with current 3D LDL volume at 6uC
confirmed the correctness of the predicted LDL-receptor binding

site as well as the fitting of monoclonal antibody locations (see

Figures 7 and 8). As expected, the high-variance region L2 (see

Figures 4 and 7) that has a small non-overlapping region with the

LDL-LDRr complex, lies on the a2 domain of apoB-100. It fits

with earlier models and observations that this major a-helix rich

domain is loosely bound to lipids and it can desorb from and

reabsorb onto the LDL particle surface [10,14,42]. After

confirming the location of apoB-100 supra-molecular structures

in LDL at both temperatures we tried to find features at high

resolution which could give further insight in to the structural

details of apoB-100 at different temperatures. One such feature is

clearly distinguishable in LDL particles at 6uC at the intensity

above the threshold corresponding to a protein mass of 550 kDa,

near the LDL-receptor binding site in b2 domain (see Figure 8).

In the 3D map of LDL at 6uC there are ordered rib-like structures

in the region of b2 domain but such ordered rib-like structures are

not visible in the corresponding locations at 37uC even though

both volumes have the same resolution. We tried different

thresholds to highlight such rib-like structures in 3D volume of

LDL at 37uC but we could not observe similar features in the

whole volume of LDL at 37uC. We could not link them directly to

high-resolution secondary-structure details of b2 domain of apoB-

100. Generally it has been proposed that the b2 domain is

composed of lipid-associated b-sheets [10,23,42]. Coronado and

Antwerpen [46] reported a decrease in anti-parallel b-sheet

content of apoB-100 with an increase in the temperature from

7uC to phase-transition temperature of normal-LDL core (28uC).

Such local-conformational changes in apoB-100 could be confined

to their own domains, while the major folding of apoB-100 around

the lipid core remains the same at 6uC and 37uC. Several studies

have tried to link LDL-receptor binding affinity of normal-LDL

and TG rich-LDL with apoB-100 confirmation and physical state

of the lipid core [16,17]. The complete explanation and insight of

such phenomenon awaits the structure determination of the

receptor binding region of apoB-100 in native LDL to an even

higher resolution.

The direct benefit of the achieved medium resolution (,16 Å)

structures of lipids and apoB-100 in native LDL particles is that

they define clear spatial boundaries for molecular-modeling for the

determination of higher resolution features at both temperatures

(6uC and 37uC). Even though heterogeneity would always pose a

challenge, the 3D variance map of LDL calculated by bootstrap

analysis, raises hope that not all the apoB-100 domains are

flexible. Some domains are rigid and determining their structural

detail could be within reach for the current state-of-the-art cryo-

electron microscopy techniques. Currently there are four main

approaches in the literature to handle sample heterogeneity with

cryo-EM based 3D reconstruction. These approaches are

Maximum likelihood methods [48], focused 2D classification

[32], sorting using, for instance, multivariate statistical analysis

prior to 3D reconstruction [49] and ab initio methods [50]. These

methods have been shown to work relatively well for two state

systems, i.e. for sorting out mixed ribosome populations [48] and

mixed chaperone populations [51]. The success with even three,

let alone four states is very low. Several researchers have used

radial profiling from MSA [49] to separate projections from

different configurations, and this is also a common approach with

icosahedrally-symmetric viruses. For the present study, radial

profiling was chosen as one way to approach the heterogeneity in

LDL particles, since these particles have a normal distribution due

to variable lipid composition and since this affects apoB-100

conformation. Although we have interpreted the reliable areas in

the reconstructions as being domains of apoB-100, there is also the

possibility that we are looking at averages of different conforma-

tions of apoB-100. Unfortunately, the methods currently available

do not allow us to distinguish between these two possibilities.

Conclusions
Due to complexity issues related to the huge molecular size of

apoB-100 and to the large number of lipid molecules in the

particles, structural and functional studies of these particles pose

challenges. Being micellar complexes, the LDL particles share the

typical lipoprotein structure with an amphipathic surface mono-

layer and a hydrophobic lipid core. Since the particles are

biologically functional only in this complex state of a non-covalent

apoB-100-lipid aggregate, understanding their 3D structure in an

aqueous environment is particularly valuable. Using modern cryo-

EM techniques with a large number of images of individual LDL

particles, we have improved the resolution to ,16 Å and

presented some new information regarding the structure of native

LDL particles and apoB-100. Due to the predominance of CE

molecules in the particle core, the shape of the LDL particles is

temperature-sensitive; at physiological temperatures the particles

appear spherical and at lower temperatures discoidal, as has been

observed in many laboratories previously. While the present 3D

model on the LDL-encircling apoB-100 is still rather crude, it is a

step forward towards a coherent experimental determination of

the approximate locations of the apparent domains in the

pentapartite NH-ba1-b1-a2-b2-a3-COOH model of apoB-100

on the surface of native LDL particles. Albeit several aspects

remain to be defined regarding the conformation and function of

native apoB-100, particularly regarding molecular interplays
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between particle lipids and the apoB-100, this study shows the

potential of cryo-EM in resolving at least some of the concealed

structural details of native LDL particles also at the physiological

body temperature.

Supporting Information

Figure S1 The radial profiles of reference-free classifi-
cation-averages and projection from 3D volumes of
LDL. The radial profiles of reference-free class averages indicate

that majority of the LDL particles were similar in size. Cross-

correlation between radial profiles of reference-free classes and

projections were used to further remove images. The radial

profiles are shown at sampling-rate of 2.8Å/pixels. (a) Reference-

free class-averages of images of LDL at 37uC (b) Projections of 3D

volumes of LDL at 37uC. (c) Reference-free class averages of LDL

at 6uC obtained using reference free classification. (d) Projections

of 3D volumes of LDL at 6uC.

(TIF)

Figure S2 Resolution estimation by EMAN-eotest tool
using Fourier Shell correlation (FSC) for LDL 3D
reconstructions. The resolution at 0.5 FSC is about 15.8 and

15.9 for LDL volume at 37uC (a) and at 6uC (b), respectively.

(TIF)

Video S1 Video showing LDL at 376C with protein shell
segments and lipid core. The lipid core is shown in gray and is

slightly transparent, while the protein shell segments from 3D

reconstruction of 37uC LDL are opaque and colored as in

Figure 6, except the suggested a3-region that is shown green in

the video. The segments shown represent equivalent segments

found automatically by 3D segmentation of unfiltered reconstruc-

tion of 37uC LDL at a threshold, when the whole reconstructed

3D volume represents a protein mass of 550 kDa. The video was

made using UCSC Chimera [47].

(MPEG)

Video S2 Video showing LDL at 376C to visualize
regions of overlap between protein shell segments and
lipid core. The regions corresponding to automatically found

protein shell segments from 3D reconstruction of 37uC LDL are

colored as in Figure 6, except the suggested a3-region that is

shown green in the video. The lipid core is shown opaque and the

protein shell segments are slightly transparent.

(MPEG)

Table S1 Results of the automatic fitting of the first 780 residues

of the lipovitellin atomic model backbone to the reconstruction of

LDL at 37uC using the program ADP_EM [34]. The orientations

(Psi, Theta, and Phi) and coordinates (X, Y, and Z) found are

shown. The correlation and Z scores of the top 40 solutions were

used to calculate the P-values of the top 10 solutions.

(DOC)
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