
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Timonen, Heikki; Aittala, Miika; Lehtinen, Jaakko
Invertible Hierarchical Generative Model for Images

Published in:
Transactions on Machine Learning Research

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Timonen, H., Aittala, M., & Lehtinen, J. (2023). Invertible Hierarchical Generative Model for Images.
Transactions on Machine Learning Research, 2023. https://openreview.net/forum?id=4rkKN4tM63

https://openreview.net/forum?id=4rkKN4tM63

Published in Transactions on Machine Learning Research (11/2023)

Invertible Hierarchical Generative Model for Images

Heikki Timonen heikki.timonen@aalto.fi
Department of Computer Science, Aalto University

Miika Aittala
NVIDIA

Jaakko Lehtinen
Department of Computer Science, Aalto University
NVIDIA

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4rkKN4tM63

Abstract

Normalizing flows (NFs) as generative models enjoy desirable properties such as exact in-
vertibility and exact likelihood evaluation, while being efficient to sample from. These
properties, however, come at the cost of heavy restrictions on the architecture. Due to
these limitations, modeling multi-modal probability distributions can yield poor results even
with low-dimensional data. Additionally, typical flow architectures employed on real image
datasets produce samples with visible aliasing artifacts and limited variation. The latent
decomposition of flow-models also falls short on that of competing methods, with uneven
contribution to a decoded image. In this work we build an invertible generative model using
conditional normalizing flows in a hierarchical fashion to circumvent the aforementioned
limitations. We show that we can achieve superior sample quality among flow-based models
with fewer parameters compared to the state of the art. We demonstrate ability to control
individual levels of detail via the latent decomposition of our model. Project source code is
available at https://github.com/timoneh/hflow.

1 Introduction

Generative models for image data have taken large leaps of progress in terms sample quality, interpretability
and other performance metrics. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) were
ahead of other types of models in terms of sample quality until only very recently. They, however, optimize
a different loss from other types of generative models that operate on maximizing the likelihood (or a bound
thereof) of the training data. They also require a separate inference network or optimization procedure for
inferring latent variables for real data (Creswell & Bharath, 2018). Recently Denoising Diffusion Probabilis-
tic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have caught up with GANs in terms of
sample quality (Dhariwal & Nichol, 2021). In their standard form, however, they suffer from lack of semantic
structure of the latent space (Preechakul et al., 2022), and have a trade-off between sample quality and sam-
pling speed due to the iterative nature of the denoising process. Variational Autoencoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014) have a robust inference procedure with a smooth and semantically
meaningful latent space and allow one to retrieve an encoded image with a reasonable reconstruction error
as well as compute a lower bound for data likelihood. VAEs can, however, be notoriously difficult to train
with the goal of optimizing sample quality and easily give overly smooth and blurry samples or alternatively
exhibit poor latent structure (Higgins et al., 2016). Recent work on VAEs has moved the focus on very deep
VAEs (Vahdat & Kautz, 2020; Child, 2020) in the search for data-likelihoods that exceed autoregressive
models (Van den Oord et al., 2016), whose depth scales linearly with the data-dimensionality. Normalizing
flows (Tabak & Turner, 2013) offer exact and fast inference as well as exact likelihood instead of a bound
offered by VAEs and DDPMs. Flow-models map data into a latent space deterministically and invertibly,

1

https://openreview.net/forum?id=4rkKN4tM63
https://github.com/timoneh/hflow

Published in Transactions on Machine Learning Research (11/2023)

O
ur

s
↓

G
lo

w
↓

Figure 1: Curated 256 × 256 samples from our model (left) trained with CelebA-HQ. Samples from Glow
(Kingma & Dhariwal, 2018) (right) are generated using the official implementation and pre-trained weights.
Our model produces samples of significantly higher quality in terms of sample variance and spatial consis-
tency, but at much lower model capacity. The reader is encouraged to zoom for a detailed view.

which sets heavy restrictions on their architectures. Enforced invertibility is problematic also for model-
ing multi-modal distributions (Cornish et al., 2020) due to the topology-preserving nature of NFs. Lastly,
Flow-models tend to focus on local pixel correlations while optimizing the data likelihood and disregard the
semantic content of an image (Kirichenko et al., 2020).

In this work, we study the performance problems of normalizing flows purely from the perspective of sample
quality with image datasets. Past work has mostly focused on finding more expressive flow-architectures to
improve a test-set likelihood-score (Dinh et al., 2016; Ho et al., 2019; Hoogeboom et al., 2019; Behrmann
et al., 2019; Chen et al., 2019). Despite yielding competitive likelihood scores, pure flow-models yield
relatively poor samples compared with other likelihood-based generative models. Even very deep flows fail
produce spatially consistent images and lack variation due to heavy truncation, as seen in Figure 1 featuring
samples from Glow (Kingma & Dhariwal, 2018). Here we investigate whether we can construct an invertible
generative model yet avoid the issues arising from enforced one-to-one invertibility. We show that we can
achieve good sample quality with high-resolution natural images with a model that replaces depth with
width.

Multi-resolution coarse-to-fine processing is a key principle behind many generative models. While pure flow
models such as Glow do employ a resolution hierarchy, we find that latents from different resolutions fail to
impact the detail of the associated scale in the expected way. Furthermore, we hypothesize that the invertible
squeeze-and-split image resizing operations employed by Glow are not ideally suited for image generation.
Indeed, from an image processing perspective they can be likened to highly aliased filters, known to bias the
generation towards regular grid and checkerboard artifacts (Karras et al., 2021) such as those apparent in
Figure 1 (right) when viewed at high zoom. Conversely, such grid artifacts may be difficult to smooth out
using the invertible scale-and-shift convolution layers. These observations and the general difficulties of flow
models motivate us to introduce a flexible multi-scale model that employs individual shallow Glow models
where needed. We lose the ability to evaluate the exact likelihood, but retain the exact invertibility through
a pair of encoder and decoder pipelines.

Inspired by the success of image super-resolution problem with conditional normalizing flows (Lugmayr
et al., 2020; Liang et al., 2021), we construct a hierarchical stack of shallow Glow-like flows that models
different levels of detail via a conditioning mechanism. An image is encoded into abstract decreasing-
resolution features by a sequence of general-purpose (non-invertible) networks, discarding detail at each step.
Conversely, an image is generated by rebuilding this detail using a sequence of separate Glow-like models,
interleaved with general-purpose CNNs that process and upsample the conditioning signal. The system is
jointly trained on the weighted sum of the conditional flow-losses, inducing the encoder and decoder to find
the appropriate decomposition.

We observe a significant increase in sample quality when compared with deep normalizing flow models,
decreasing the Fréchet Inception Distance (FID) metric (Heusel et al., 2017) of Glow 51.5 to 27.3 on the
CelebA-HQ-dataset (Karras et al., 2017) at 256× 256 resolution, using a significantly smaller model with a
much shorter training time. While there are flow-models with better likelihood-scores, we choose Glow as a
reference since few other flow-models have been shown to generate significantly better samples at 256× 256-
resolution. For instance, while Residual Flows of Chen et al. (2019) achieve a better likelihood than Glow,

2

Published in Transactions on Machine Learning Research (11/2023)

the samples are of very similar quality in terms of subjective visual quality and the FID. We discover a
hierarchical latent structure where we can control elements of various levels-of-detail separately. We show
that images generated by interpolations in the latent space are smooth and remain close to the manifold of
real images. Finally, we notice that individual parts of our model do not need to be very deep and instead
we can trade model depth for width.

Our contribution In summary, in this work we show that we can construct an invertible model that
is trained only with the normalizing flow maximum likelihood-loss and has superior sample quality with
256× 256-resolution CelebA-HQ compared against Glow while being much faster to train. Our model has a
smooth latent space and allows both fast sampling and inference of latent variables.

2 Method

We first introduce the general idea of a hierarchical conditional normalizing flow (Section 2.1) and associated
practical design choices (Section 2.2). We then introduce our architecture by generalizing the idea to a
multi-scale hierarchy, and discuss connections to related methods (Section 2.3).

2.1 Hierarchical Conditional Normalizing Flows

A normalizing flow f yields an exact value for the model probability density function via the change of
variables formula

log p(x) = log pbase(f(x)) + log |det df(x)/dx| , (1)

where df(x)/dx is the Jacobian of f with respect to x. The function f is constructed to be efficiently invert-
ible and to have a Jacobian determinant with a computational time-complexity preferably linear or better
with respect to the data dimensionality. pbase is usually set to a multivariate unit Gaussian distribution. In
this work, we follow the architectural choices of NFs presented in Dinh et al. (2016); Kingma & Dhariwal
(2018) consisting of a sequence of affine coupling layers, invertible 1×1 convolutions and spatially broadcast
learnable scales and biases with data-dependent initialization “actnorms”. We introduce conditioning to a
flow by giving an additional input c to the affine coupling layers h, which invertibly transform a variable x
via

h(x; c) = [xa, xb ⊙NNs(xa; c) + NNb(xa; c)], (2)

where xa, xb is some split of the input tensor x and NNs and NNb are neural networks.

Due to the innate limitations of normalizing flows we want to offload as much work as possible from the
invertible neural networks. Inspired by solving the image super-resolution task with flow-models, we train
a conditional flow-model in such a way that the conditioning input c is in itself function of the data, and
jointly learned in the process of maximizing the likelihood. Essentially this forms an autoencoder whose
“reconstruction loss” is the flow loss. The training loss for such a network is given by:

Lcond(x) = − log pθ (x|y) , (3)

where pθ is the distribution induced by a conditional normalizing flow

x = fcond(zcond; y, θ), (4)

with a unit Gaussian prior. More precisely, pθ is the density induced by the push-forward PX = fcond#PZcond

of the Gaussian prior PZcond . y ∼ qϕ(y|x) is a stochastic encoder with learned components (convolutions)
with parameters ϕ. The encoder is trained jointly with the normalizing flow. This learning objective
leads into finding the latent variable representation Y which has maximal mutual information I(X, Y)
with the original data. If the complex conditional normalizing flow parametrizing pθ was reduced into a
Gaussian likelihood conditioned by y via the mean and covariance, we would recover the standard VAE
reconstruction-loss. Like in a VAE, for generation we need to additionally model the “prior” distribution

3

Published in Transactions on Machine Learning Research (11/2023)

of Y . However, unlike in a standard VAE, we do not directly enforce a Gaussian prior for each q(y|x).
Instead, we approximate the aggregated posterior in a separate step with a distribution induced by another
flow-model

y = fprior(zprior; φ), (5)

of density pφ of the respective push-forward between Zprior and Y prior, using the flow-loss of Equation 1

Lprior(y) = − log pφ (y) , (6)

where y is sampled via x ∼ pdata(x), y ∼ q(y|x). Note that the “prior” label here denotes that the flow
fprior operates on y and is different from the unit Gaussian base distribution of a flow introduced in Equation
1. In practice, we minimize the following expression

min
θ,ϕ,φ

Ex∼pdata(x),y∼qϕ(y|x) [Lcond(x) + Lprior(SG[y])] (7)

where SG[. . .] is the stop-gradient operator with SG(x) = x but which has vanishing partial derivatives;
we discuss the reason for stopping the gradients below. Alternatively, this can be thought of as a two-step
training procedure, with the stop-gradient operator decoupling the prior-flow from rest of the model. Figure
2 illustrates the model setup, as well as shows the two-step -nature. From now on, we omit the flow and
encoder parameters θ, ϕ, φ from the notation for clarity.

cond.

zprior

y

zcondfcondx

fprior

encoder decoder

Figure 2: Hierarchical conditional normalizing flow
structure. The input x is encoded into the latent
[zcond, zprior] by general-purpose CNNs (blue blocks)
and NFs (green blocks) via the intermediate y. The
stop-gradient operation is denoted by the red dashed
line.

Stop-gradient operations The loss resembles
that used in VAEs, only lacking the negative entropy
term of the encoder in the KL-divergence between
the approximate posterior and the prior. This intro-
duces a loophole where—in the case of a determin-
istic encoder—the prior flow loss can be arbitrarily
improved by concentrating the distribution of y’s,
leading to a degenerate solution. A related form of
this degenerate solution with vanishing variance was
described by Hoffman et al. (2017) in the context of
the β-VAE (Higgins et al., 2016) and an implicit use
of a data-dependent prior. Xiao et al. (2019) also
described similar degeneracy in their closely related
work. For stochastic encoders with Gaussian noise
(as used by us; described later), a related loophole
exists through intentionally decreasing the signal-to-noise ratio of y, making it uninformative akin to poste-
rior collapse in VAEs. We employ the stop-gradient operations to prevent the prior flow fprior from directly
impacting the distribution of y during training. Adding the entropy-terms into the loss (and bringing the
loss even closer to the VAE-loss) can make the tendency for reaching degenerate state even stronger as it
directly encourages q(y|x) to have an entropy matching that of the prior.

Separation of modeling tasks The most important design point of the described model is the choice of
the form of the stochastic encoder q(y|x) subject to the limitations of the normalizing flows. A deterministic
q(y|x) = δx(y) (the identity) only pushes the modeling work to the flow modeling the prior, fprior, while
too strong a bottleneck (either by strong noise or aggressive blurring) does not provide enough conditioning
information for the conditional flow. We deliberately avoid using squeeze-and-split operations in both the
conditional flow and the prior-flow. That is, none of the operations within a flow change the spatial resolution
from that of the respective flow’s input. Instead, we design the stochastic encoder q to greatly reduce the
spatial resolution with non-aliasing filters, but also allow for learned components (convolutions). Ideally,
all perceptually meaningful, spatially long-range correlations that the conditional flow might not be able to
consistently capture can be routed via the encoder q(y|x). Finally, the resulting distribution of y should be
such that it can be approximated — without squeeze-and-split-operations — with another flow.

4

Published in Transactions on Machine Learning Research (11/2023)

Algorithm 1 Inference and sampling for the model in Figure 2

Require: Data point x, noise scale α
procedure Inference

y ← Encoder(x)
σ ← σX ▷ Defined in Eq. 10
ε ∼ N (0, α2σ2I)
y ← y + ε
zprior ← f−1

prior(y)
zcond ← f−1

cond (x; Decoder(y))
z ← [zprior, zcond]
return z

end procedure

Require: Sampling standard deviation σsampling
procedure Sampling

zprior ∼ N (0, σ2
samplingI)

zcond ∼ N (0, σ2
samplingI)

y ← fprior(zprior)
x← fcond(zcond; Decoder(y))
return x

end procedure

In the limit of the encoder being only fixed deterministic filtering and downsampling we recover the image
super-resolution task with a learned prior on the low-resolution images. The purpose of the learned encoder-
components is to allow for finding a more compact representation for y than a merely downsampled image.
Conversely, we want to avoid near-perfect auto-encoding via the y-variable. We require the conditional
normalizing flow to be able to generate an appropriate level of spatially coherent detail, such that the capacity
of the conditioning y-variable be used to only model global, high-level features. Otherwise, the capacity of
the conditional flow to produce variation will essentially be wasted if each image can be generated using only
a higher-level representation.

Invertibility and sampling Our construction remains invertible as each datapoint can be encoded into
a latent with

y ∼ q(y|x) (8)
z = [zprior, zcond] =

[
f−1

prior (y) , f−1
cond (x; y)

]
, (9)

that is, the datapoint is lifted into a space that has more dimensions than the original datapoint. Any
encoded datapoint can deterministically be recovered with zero reconstruction-error via Equations 4 and 5,
since fprior and fcond are by construction bijective. This holds for any type of encoder q(y|x). The inference
and sampling procedures for the model in Figure 2 are summarized in Algorithm 1.

2.2 Individual design choices

Stochastic encoders While the encoder q could be deterministic, we empirically find it useful to inject
Gaussian noise to the outputs of the encoders. That is, we have q(y|x) = N (y; µ(x), α2σ2

XI), where

σX = 1/ dim y
(√

Var(µ(X))
T

1
)

, (10)

where µ is parametrized as a neural network (CNN with downsampling in Figure 3, the encoder in Figure
2). We choose the σ of the noise to be proportional to the variance (with parameter α) to prevent the
model from scaling the signal up to improve signal-to-noise ratio and effectively ignoring the noise. The
mean is taken in order to have isotropic noise so that the model cannot corrupt only a part of elements
of x and squeeze an almost clean signal in the remaining elements. Assumptions of similar spirit of data
corrupted with isotropic (instead of anisotropic) noise have been found to yield higher-quality samples within
the VAE-literature (Rybkin et al., 2021). In practice, the variance is computed as a Monte Carlo estimate
over the current minibatch by computing µ, taking the empirical element-wise standard deviation over the
minibatch and normalizing with the dimensionality of y.

The noise can be thought of as a regularizer or as augmentation like in the work of Ghosh et al. (2019).
An alternative view is to consider the noise as mollification for the prior distribution, rendering it more

5

Published in Transactions on Machine Learning Research (11/2023)

reasonable to model with the prior-flow. The purpose of the noise is hence not the same as in VAEs (we
could choose to have a deterministic encoder), where it is strictly a construction for allowing optimization of
the Evidence Lower Bound (ELBO). Here, σ of the Gaussian q(y|x) does not appear in the loss and hence
our optimization target is not a bound for the data-likelihood, missing the entropy-term of the KL-divergence
of the VAE-loss. We can, however, compute a Monte Carlo estimate of the ELBO by adding the missing
entropy-term, which can readily be computed for the Gaussian-conditional stochastic encoder.

Multi-scale architecture We introduce a multi-scale representation for y to enforce more hierarchy into
the generation process. That is, instead of encoding x into a single y (Figure 2), we create a multi-scale
representation y = [yR1 , yR2 , . . . , y1, yprior], where Ri are the resolutions of the y-variables up to y1 and
x = yR1 . The hierarchical encoder–decoder structure is illustrated in Figure 3. The conditional part of loss
of the training-loss now becomes

Lcond(x) =−
∑

Ri∈R
log p(yRi

|y<Ri
)

− log p(y1|yprior), (11)

where each p is induced by a separate conditional normalizing flow. In training, we weight each term in
Equation 11 by a separate weight wi. Sampling follows the same procedure as in the two-level model of
Figure 2, with independent Gaussian samples drawn from the base distribution of each of the flows followed
by their conditional inversion using the results from the higher levels of hierarchy.

decoder

encoder

CNN w/upsample

z32CNN w/downsample

+ noise

1x1 conv cond.

concat
IN

y8

CNN w/downsample

+ noise

y1

CNN w/upsample

z8

cond.

concat

cond.

zprior

x = y256

z256

yprior

split

Flow z1

Flow

Flow

Flow

…

…y32

Figure 3: Multi-scale architecture. The encoder (left)
and decoder (right) pipelines consist of repeating per-
resolution blocks (light blue) with each intermediate
representation yRi

further encoded into Gaussianized
latents zRi

via normalizing flows (green). Refer to
Appendix F for a detailed breakdown of the CNN and
flow layers.

The multi-level hierarchical framework is in fact
quite general and does not enforce any particular
form for the normalizing flows used to model con-
ditional distributions of Equation 11. One could
also use probabilistic models of other types instead
of normalizing flows. However, with other types
of model, one may lose strict invertibility or suf-
fer in terms of sampling efficiency. For example,
Preechakul et al. (2022) introduce a two-stage model
which can be thought of as a similar hierarchical
construction but with normalizing flows replaced
with denoising diffusion models. We choose to re-
main close to the Glow-architecture with the choice
of model for the conditional distribution to high-
light the benefits of replacing the limited resolution-
hierarchy of the baseline Glow-model with our pro-
posed hierarchical construction. Modifications are
justified with ablation studies in Section 3.2.

Trading depth for width We drastically re-
duce the number of latent variables when compared
with deep VAEs, by only using ∼ 5 levels for y.
Deep VAEs have an order of magnitude more depth
(Child, 2020; Vahdat & Kautz, 2020). Instead, we
move capacity to the normalizing flows (which them-
selves are shallow compared to Glow) and ensure
that each flow-prior models meaningful variation in
the data, instead of merely adding Gaussian noise
to the output of the previous decoder. There has
been evidence in previous work that replacing depth in VAEs with the ability to handle long distance inter-
dependencies with attention within the latent code yields competitive likelihood-scores (Apostolopoulou
et al., 2021). However, it is not clear if this also translates into better image quality in high-resolution
images.

6

Published in Transactions on Machine Learning Research (11/2023)

U-Nets in Normalizing Flows We find it necessary to use U-Nets (Ronneberger et al., 2015) in the
coupling layers of the normalizing flows despite the desire for routing semantic information via a lower-
resolution latent. Low-level detail that is not encoded into the latent might still have spatially long-range
dependencies (long strands of hair, color of the eyes) and hence equipping the flows with tools to model
these dependencies is required. If the conditional normalizing flows operate only on very local detail, the
model has to route these low-level features via the high-level latent, potentially stealing capacity from other
useful high-level features and violating our design principles. Bottle-necking the encoder–decoder pipeline
with e.g. blurring might also render this impossible and the aforementioned details might simply be lost.
Within flows using U-Nets, we split the tensor spatially in 8 × 8, 4 × 4 and 2 × 2 checkerboard-patterns to
differentiate from the Glow-like split in the channel-direction. While an equivalent split can be achieved with
the spatial-to-channels squeeze operations and pure channel-direction splits, we do not observe Glow-like grid
artifacts in any of our samples.

2.3 Related Work

VAEs Our model can be seen as a special case of a VAE, where instead of a Gaussian likelihood we have
more complex normalizing flow. Our approach also models the aggregated posterior Ex∼pdata(x)

[
q(yprior|x)

]
and disregards the negative entropy-term of the approximate posterior–prior type KL-divergence terms in
the optimization process. There is no pressure from the perspective of the optimization loss to have each
q(y|x) be zero-mean unit Gaussian, preventing the phenomenon known as “posterior-collapse”, “information
preference” or “optimization challenges” of VAEs (Bowman et al., 2015; Chen et al., 2016). We see the
addition of noise more as a regularization technique rather than a necessity for a variational bound. Even
more generally, the difference between VAEs and NFs is not always very clear. A flow-model trained on
noise-augmented data can be seen as a VAE and vice versa (Huang et al., 2020). Some VAEs also use
normalizing flows as components for a more expressive posterior approximation or likelihood-model (Rezende
& Mohamed, 2015; Kingma et al., 2016; Agrawal & Dukkipati, 2016). Finally, while normalizing flows are
usually described as being able to yield exact likelihoods, they often employ “dequantization” to render
discrete data continuous. However, dequantization, or the addition of uniform (Theis et al., 2015) or more
complex noise (Ho et al., 2019) to lift the data distribution to a continuous space renders a model to only
give bounds of likelihoods rather than an exact likelihood.

Flows with noise-augmented data Huang et al. (2020); Chen et al. (2020); Grcić et al. (2021) all
share the same idea of lifting the data distribution into a higher-dimensional space via padding of noise for
fixing issues with multi-modal data and invertibility with normalizing flows. Their work focuses mostly on
improvements in the likelihood score and for images with resolutions less than 256× 256. Our construction
of the padding is more delicate. Rather than padding the original data with noise, we pad the data with
a slightly noisy (or even noiseless), maximally informative compression of the data which is specifically
designed to combat issues of flow-models on images.

Wavelet Flow Yu et al. (2020) build a similar hierarchy of conditional flows, but with direct one-to-one
invertibility and exact likelihood-evaluation using Haar-wavelet transforms as a fully invertible encoder–
decoder structure. The conditional flows generate the the detail coefficients conditioned on the mean.
Compared with their work, we see benefit in using an overcomplete representation to allow a more informative
high-level latent (that is, one that is not necessarily a low-resolutions image). We also avoid aliasing due to
not using box-filtering. We do however, lose the ability to measure exact likelihood.

Flows on manifolds Instead of defining data-likelihood for the space of all RGB-images of a fixed resolu-
tion, one can choose to parametrize a manifold using points in a lower-dimensional space and model density
only on this manifold. As an image is unlikely to lie exactly on the manifold, one needs to work with the
projections of images onto the manifold. The training process hence comprises of two steps: finding the
manifold that is on average closest to the training data, and modeling the density of the projected data on
the manifold. Several pieces of prior work explore ways of achieving this: Kothari et al. (2021); Brehmer &
Cranmer (2020). Our work is in spirit very similar, yet we do not limit the density modeling to a manifold
but work in the full space of RGB-images. In particular, we do not simply train a deterministic autoencoder

7

Published in Transactions on Machine Learning Research (11/2023)

Figure 4: Curated samples from our model (Config A) trained with CelebA-HQ 256 × 256 using truncated
σsampling = 0.7 (reduced-temperature sampling as in Kingma & Dhariwal (2018)) for latent resolutions
greater than 1.

to approximate the manifold of real images and then fit a flow-model into the latent space of the autoencoder.
Our encoders and decoders are trained jointly with the conditional flows, using their likelihood-loss as the
training signal.

3 Results

Our model greatly improves the FID for Flow-based models using the CelebA-HQ (Karras et al., 2017) dataset
in 256×256: our model reaches a score of 27.3 against Glow’s 51.5 with only about 36% of Glow’s parameters
1. Furthermore, we measure a throughput of around 50 samples / second on an NVIDIA RTX 3090 GPU,
which is around 4 times the throughput of Glow on the same hardware. Next, we show qualitatively that our
model constructs a latent decomposition which allows controlling individual levels of detail independently and
in a more uniform fashion than Glow. We also present ablation studies, showing how different architectural
choices within our model change its behavior and performance in terms of FID. Finally, we train baseline
Glow-like flow-models with similar capacity to ours using the church and bedroom classes of the LSUN-
dataset (Yu et al., 2015). We present a simple toy-case on a 2D mixture of Gaussians, showing the ability of
our model to capture multimodal distributions, in Appendix E. Likelihood-scores of the models are tabulated
in Appendix G. Details on the training parameters are aggregated in Appendix H.

3.1 Qualitative model behavior

Samples from a model trained with CelebA-HQ 256× 256 exhibit good spatial coherency and variation both
in high and low-level detail (Figure 4). Samples from our model also lack checkerboard-like aliasing artifacts
that can be seen in the Glow counterparts.

Though the effect of z256 is subtle, each part of the latent has an observable effect on the decoded image,
which is not true for Glow. Figure 5 shows pixel-wise standard deviations for an encoded image when
sampling a part of the full latent from the prior but fixing the others. We perform the same operation for
Glow. With our model, the latent codes of increasing resolution change increasingly high-frequency details
in the image. For example z1 changes the identity of the person and the background, while z128 mostly
affects the fine structure of the hair. Compared with Glow, our latent structure has a more uniform effect
on a decoded image, with the high-resolution latent codes also yielding visible changes in the image. We
encourage the reader to also look at Video 3 from the supplementary material for another visualization of
the variance.

Figure 6 presents another view to the latent decomposition by showing how various levels of detail are
encoded into the latent space. We encode a real image, and cumulatively set zRi to zero starting from
high resolutions. This process gradually removes detail from the image with the zprior and z1-variables only
containing very high-level information like the orientation of the head and the hair color. Interestingly, the
eye-color is stored in z32, showing that being able to model long-range correlations within the normalizing
flows is still required despite the encoder–decoder -mechanism within our model. Otherwise, there would be
inconsistencies in the samples of our model, like mismatching eyes.

1We computed the parameter count of Glow using the official pre-trained model.

8

Published in Transactions on Machine Learning Research (11/2023)

O
ur

s

zprior z1 z8 z32 z128 z256

G
lo

w

42 82 162 322 642 1282

Figure 5: Pixel-wise standard deviations while re-sampling of latents from the prior one resolution at a
time (columns) with 32 samples and no truncation. The latent code of each resolution is responsible for
changing detail of the corresponding level of detail. Compared with Glow, our method yields a more uniform
effect of latents of different resolutions. Note that the spatial dimensions of the latents differ between the
corresponding colums.

Original z256 ← 0 z128 ← 0 z32 ← 0 z8 ← 0 z1 ← 0 zprior ← 0
(mean image)

Figure 6: To complement Figure 5, we visualize the contributions of individual latents by inverting a real
image (left) and cumulatively zeroing them starting from the finest resolution. This causes a progressive loss
of detail at larger and larger scales. The rightmost image is the the result of setting all latents to zero.

9

Published in Transactions on Machine Learning Research (11/2023)

Interpolations in the latent space of our model result in smooth changes in the decoded images, but also
yield sharp images. In contrast to Glow, our interpolations also lack strong aliasing-artifacts. Videos on
interpolations in the latent space for random samples and real images can be found in the supplementary
material.

3.2 Ablations

We train our model using several variations in the configuration. We identify important design-elements
that affect sample quality, compared by FID-values in Figure 7a. We refer the reader to Appendix A for a
supporting visualization for the ablations, similar to Figure 6.

Noise in Encoders From Figure 7a we notice that adding a non-zero amount noise to the y-variables is
beneficial in terms of sample quality. If no noise is added (Config B) — rendering the encoder deterministic
— we notice that the model tries to encode an increasing amount of low-level detail into the high-level,
low-resolution latents. Conversely, for a high amount of noise (Config C), images after the aforementioned
procedure become increasingly blurry. Hence we need to specifically tune the noise-level for optimal sample-
quality. We hypothesize that the added noise is more destructive to high-frequency details of a y-variable and
renders it more favorable to encode global features into higher-level y-variables. The decoder can tolerate
noisy y inputs to a limit, but too heavy noise likely starts to degrade the results, causing blurring. In the
limit of very strong noise, the signal of yRi

is lost and the task of the respective normalizing flow becomes
trivial (a “posterior collapse”), due to yRi

already being almost Gaussian.

U-Nets in Normalizing Flows Employing U-Nets in the normalizing flows is beneficial in terms of FID.
A model with no U-Nets in the normalizing flows (Config D) has a stronger preference to attempt to encode
this into the high-level latent code improve the flow-losses. We attribute the this failure to the disability
of the model to generate this content using the high-resolution y modeling normalizing flows. With only a
limited receptive field the model has to use the capacity of the high-level latent for these features. We also
see traces of very low-frequency noise which may be an attempt of the model to represent the low frequencies
of the slight Gaussian noise used in data augmentation via the low-level latents.

Flows at additional resolutions In the best-performing Config A, we do not take constant-size steps
down in resolution within the decoder but decompose y = [y256, y128, y32, y8, y1, yprior]. Surprisingly, adding
additional resolutions levels to the encoder–decoder (Config E) to model the missing resolutions y64, and y16,
(while reducing capacity at other flows, encoders and decoders, to have an approximately similar number
of parameters), renders the results considerably worse. We again observe that high-frequency details are
again encoded more aggressively into the low-resolution latents. While the model might have lower-capacity
encoders and decoders, it is clearly misusing the given resources.

Deeper Normalizing Flows Making the normalizing flows longer (Config F, two times the affine coupling
blocks, with less feature maps to keep the parameter count constant) has a small negative impact on the
FID. The model hence does not seem to be limited by the length of the normalizing flows (width of the
model), but rather by the inductive bias of how the image is encoded into the hierarchical y.

3.3 Other datasets

We train our model also using the LSUN churches and bedrooms datasets at 128 × 128 resolution. For
comparison we also train a Glow-like model from scratch using similar capacity and the same computational
resources as was used to train our own model. From Figure 7b we see that our model consistently yields much
better FID than Glow. We did not experiment tuning the parameters of our model with the lower-resolution
data. Because of the limitation in the parameter budget, the Glow-like model is not as deep as in Kingma
& Dhariwal (2018). Uncurated samples from the models described above are found in Appendix C.

10

Published in Transactions on Machine Learning Research (11/2023)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Shown images / million images

20

30

40

50

60

70

80

90

FI
D

Config A
Config B / No-noise
Config C / Heavy-noise
Config D / No-UNets
Config E / Add-y-res.
Config F / Longer-flows

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Shown images / million images

100

150

200

250

FI
D

Glow/Bedroom
Ours/Bedroom
Glow/Church
Ours/Church

(b)

Figure 7: (a) Ablations with CelebA-HQ 256 × 256. Effect of model strucure and parameters on the
achieved FID measured during training. The FID is computed using 25k samples with all the training
data-augmentations enabled. Each model has the same learning rate and approximately the same number of
parameters. A proper level of added noise to y-variables improves the FID drastically. Addition of U-Nets
into the flows also has a large effect. Interestingly, the FID is also very sensitive to the number of resolutions
modeled with flows in the hierarchy. (b) FIDs during the training of our model on LSUN church and
LSUN bedroom at 128×128-resolution, compared against a Glow-like model with similar capacity. The FID
is computed using 25000 random samples from the entire trainset (which is > 3 million images for LSUN
bedrooms), causing the noise in the measurements.

4 Discussion

Flow-based models have many useful properties, but have suffered from poor sample quality relative to many
other families of generative models. While not on par with the current best GAN and diffusion models,
the exactly invertible generative model presented in this work yields much higher-quality samples than the
previous state-of-the-art invertible models. Moreover, we have shown that by constructing a hierarchical stack
of conditional normalizing flows we can separate high and low-level features and model them conditionally
on each other to resolve some of the issues concerning standard normalizing flow models. We find that data
augmentation or regularization with noise is essential for our model to perform well. Studying different
regularization methods and their effect on the latent decomposition as well as the applicability of the latent
space of our model to downstream tasks would be interesting avenues for future research.

Limitations. Our model has a relatively large number of hyperparameters, such as the noise levels α,
that drastically affect its performance. While we have presented empirical evidence why certain choices
might be better that others, we have no principled method of optimizing those values. Adding them as
optimization parameters and employing the VAE loss is hardly an option, since the VAE loss also requires
complex parameter-tuning for good sample quality. While our model yields better samples than other flow
models, they still lag behind GANs and DDPMs. Like other flow models, ours also has difficulties modeling
high-resolution, highly variable data, as seen in the LSUN results. Finally, our model does not directly
extend to conditional tasks like inpainting or denoising in a principled Bayesian way due to the model not
yielding an exact likelihood but only a bound.

Acknowledgments

We thank Pauli Kemppinen and Erik Härkönen for help with the code release. This work was partially sup-
ported by the European Research Council (ERC Consolidator Grant 866435), and made use of computational
resources provided by the Aalto Science-IT project.

11

Published in Transactions on Machine Learning Research (11/2023)

References
Siddharth Agrawal and Ambedkar Dukkipati. Deep variational inference without pixel-wise reconstruction.

arXiv preprint arXiv:1611.05209, 2016.

Ifigeneia Apostolopoulou, Ian Char, Elan Rosenfeld, and Artur Dubrawski. Deep attentive variational infer-
ence. In International Conference on Learning Representations, 2021.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible
residual networks. In International Conference on Machine Learning, pp. 573–582. PMLR, 2019.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Gener-
ating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
Advances in Neural Information Processing Systems, 33:442–453, 2020.

Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. Vflow: More expressive generative flows with
variational data augmentation. In International Conference on Machine Learning, pp. 1660–1669. PMLR,
2020.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible
generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images. arXiv
preprint arXiv:2011.10650, 2020.

Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity constraints
with continuously indexed normalising flows. In International conference on machine learning, pp. 2133–
2143. PMLR, 2020.

Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial network.
IEEE transactions on neural networks and learning systems, 30(7):1967–1974, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Advances in
neural information processing systems, 32, 2019.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational
to deterministic autoencoders. arXiv preprint arXiv:1903.12436, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pp. 2672–2680, 2014.

Matej Grcić, Ivan Grubišić, and Siniša Šegvić. Densely connected normalizing flows. Advances in Neural
Information Processing Systems, 34:23968–23982, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

12

Published in Transactions on Machine Learning Research (11/2023)

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. 2016.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-based
generative models with variational dequantization and architecture design. In International Conference
on Machine Learning, pp. 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Matthew D Hoffman, Carlos Riquelme, and Matthew J Johnson. The β-vae’s implicit prior. In Workshop
on Bayesian Deep Learning, NIPS, pp. 1–5, 2017.

Emiel Hoogeboom, Rianne Van Den Berg, and Max Welling. Emerging convolutions for generative normal-
izing flows. In International Conference on Machine Learning, pp. 2771–2780. PMLR, 2019.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the gap
between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34:
852–863, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. Advances
in neural information processing systems, 31, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing systems,
29, 2016.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect out-of-
distribution data. Advances in neural information processing systems, 33:20578–20589, 2020.

Konik Kothari, AmirEhsan Khorashadizadeh, Maarten de Hoop, and Ivan Dokmanić. Trumpets: Injective
flows for inference and inverse problems. In Uncertainty in Artificial Intelligence, pp. 1269–1278. PMLR,
2021.

Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin Danelljan, Luc Van Gool, and Radu Timofte. Hierar-
chical conditional flow: A unified framework for image super-resolution and image rescaling. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4076–4085, 2021.

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow: Learning the super-
resolution space with normalizing flow. In European conference on computer vision, pp. 715–732. Springer,
2020.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion
autoencoders: Toward a meaningful and decodable representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022.

13

Published in Transactions on Machine Learning Research (11/2023)

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International con-
ference on machine learning, pp. 1530–1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pp. 234–241. Springer, 2015.

Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. Simple and effective vae training with calibrated decoders.
In International Conference on Machine Learning, pp. 9179–9189. PMLR, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256–2265.
PMLR, 2015.

Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms. Com-
munications on Pure and Applied Mathematics, 66(2):145–164, 2013.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844, 2015.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in Neural
Information Processing Systems, 33:19667–19679, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29, 2016.

Zhisheng Xiao, Qing Yan, and Yali Amit. Generative latent flow. arXiv preprint arXiv:1905.10485, 2019.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Con-
struction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

Jason J Yu, Konstantinos G Derpanis, and Marcus A Brubaker. Wavelet flow: Fast training of high resolution
normalizing flows. Advances in Neural Information Processing Systems, 33:6184–6196, 2020.

14

Published in Transactions on Machine Learning Research (11/2023)

A Cumulative zeroing of the latent code for ablations
C

on
fig

A
(o

ur
s)

C
on

fig
B

C
on

fig
D

C
on

fig
E

Original z256 ← 0 z128 ← 0 z32 ← 0 z8 ← 0 z1 ← 0 zprior ← 0
(mean image)

Figure 8: Cumulatively setting the latent-code of a real image to zero starting from high-resolution latents.
Highlighting the failure cases of the ablations. Config B / no noise: Part of the low-resolution latent
code is used for attempting to model hair texture while the color of the hair is lost after setting z8 to zero.
Config D / No U-Nets: Same problem as with Config B, but with a coarser hair-texture encoded to the
1 × 1-resolution latent. In fact, the hair texture might be from a learned constant since it is visible in the
mean image as well. The 1× 1 latent merely modulates this texture. Low-frequency noise-artifacts can also
be clearly seen after z32 is set to zero. Config E / different y-repr.: Note that since Config E also has
z64 and z16, those are also cumulative set zero, between the z128 / z32 and z32 / z8 columns, respectively.
The intermediate results are not viualized here. Very fine hair-texture is carried down to 32× 32-resolution.
Some high-level features such as the coloring is completely lost by the 1× 1 latent.

15

Published in Transactions on Machine Learning Research (11/2023)

B Does the model memorize the dataset?

Figure 9: 5 L2-closest training images (columns on the right) for generated images with Config A (rows)
with the CelebA-HQ dataset. We see that the sampled images do not appear in the dataset.

16

Published in Transactions on Machine Learning Research (11/2023)

C Comparison with a Glow with similar capacity
Ours Glow

LS
U

N
ch

ur
ch

12
8

LS
U

N
be

dr
o o

m
12

8

Figure 10: Uncurated samples from our model and from a Glow-like model with similar capacity and the
same training time. All models use truncated sampling with σ = 0.875.

17

Published in Transactions on Machine Learning Research (11/2023)

D Uncurated FFHQ 256× 256 samples with model Config A

Figure 11: Uncurated samples from model with Config A trained with FFHQ 256 × 256. Sampled with
truncation σ = 0.7 for latent resolutions larger than 1.

18

Published in Transactions on Machine Learning Research (11/2023)

E 2D Toymodel

Figure 12: Real NVP-based normalizing flow (Dinh et al., 2016) and our model trained on a 2-dimensional
mixture of Gaussians target distribution (left). The models have similar capacity. The standard normal-
izing flow (middle panel) suffers from the well-documented problem of failing to separate the modes due
to the invertibility constraint of the architecture. While our model (right panel) does not capture the
relative weights of the modes correctly, it captures the multi-modality better than the reference. The
dimensionality of the latent y in our model is dim(y) = 1, modeled by a neural spline flow (Durkan et al.,
2019) as the prior fprior. In this experiment fcond is a conditional real NVP and the encoder and decoder
are small fully-connected neural networks.

19

Published in Transactions on Machine Learning Research (11/2023)

F Detailed network architecture

Figure 13: Detailed architecture. IN denotes instance normalization, and also appears in the U-Nets and
among the affine coupling convolutions. The non-linearities are leakyReLUs apart from the conditioning of
checkerboard-masked U-Net -type affine coupling blocks and the first of the N convolutions of convolutional-
type affine coupling blocks. Multiple units of CNN up/downsample -blocks are concatenated if there is a
change of resolution differing from 2 (e.g. from y32 to y8). In case of this stacking, the U-Net at the beginning
of the CNN-upscaler is omitted from blocks other than the first. The last and first affine coupling-layers of a
normalizing flow-block use U-Nets (apart from y8 and y256) and completely mask out the flow-input. That
is, the scales and biases are computed only using the conditioning signal.

20

Published in Transactions on Machine Learning Research (11/2023)

G Additional metrics
Table 1: Negative log-likelihood (NLL, lower values are better) from our model and Glow. The likelihood-
bound for our model is computed as the VAE ELBO as discussed in Section 2.2, which is not directly the
optimization target of our model, partially explaining the performance difference with Glow, which directly
optimizes for likelihood. All values are measured by us using our own implementations apart from Glow /
CelebaHQ-256, which is taken from Kingma & Dhariwal (2018). As our focus is on improving FID, which
is not necessarily computed against a specific test-set, we do not have a separate test-set and all our values
are computed against the train-set.

Model / dataset NLL / bits-per-dimension
Ours / CelabaHQ 256 (5bit) ≤ 1.3
Glow / CelabaHQ 256 (5bit) = 1.03

Ours / LSUN-Church 128 (8bit) ≤ 4.0
Glow / LSUN-Church 128 (8bit) = 3.6

Ours / LSUN-Bedroom 128 (8bit) ≤ 3.8
Glow / LSUN-Bedroom 128 (8bit) = 3.4

21

Published in Transactions on Machine Learning Research (11/2023)

H Hyperparameters and training details

Table 2: Training details for Config A with CelebA-HQ/FFHQ 256× 256

Name Values
Batch size 16

Batch size Var(X) 4
Optimizer Adam (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999

LR (encoders/decoders/flows) 5× 10−4, 2× 10−3, 5× 10−3

LR decay Multiplicative (encoders / decoders+flows) 0.92/0.95
Encoder parameter freeze at 60 epochs

Gradient L2 clipping 50.0
GPUs 2× V100 16 GB

Train time 96 h
Total parameter count 80.15 M

Table 3: Training details for Config A (LSUN) with LSUN church / bedroom 128× 128

Name Values
Batch size 16

Batch size Var(X) 8
Optimizer Adam with β1 = 0.9, β2 = 0.999

LR (encoders/decoders/flows) 3× 10−4, 1× 10−3, 3× 10−3

LR decay Multiplicative (encoders / decoders+flows) 0.92/0.95
Encoder parameter freeze at 60 epochs

Gradient L2 clipping 50.0
GPUs 1× V100 16 GB

Train time 96 h
Total parameter count 74.58 M

Data Preprocessing We augment each dataset by adding uniform 1/255 noise to 8-bit images normalized
to [0, 1] on top of which we also add slight zero-mean Gaussian noise with standard deviation 5×10−3. During
training, we apply random horizontal flips with probability p = 0.5.

FID Measurement When comparing to Glow, we compute the FID using 30000 samples (the full CelebA-
HQ -dataset). We use 5-bit dequantization (and the tiny Gaussian noise-augmentation mentioned in the
previous paragraph), when computing the value for Glow, with the result being a few points weaker (56.8)
for 8-bit data. We use truncated sampling with σ = 0.8 when generating images with Glow. Our model uses
8-bit images.

22

Published in Transactions on Machine Learning Research (11/2023)

Table 4: Model hyperparameters for Config A. The LSUN-128 models are trained with the same configura-
tion, but the Flows at resolutions -parameter (Ri) set to [128,64,32,8,1, prior] instead. The affine-coupling
split type uses format M × split type, where C denotes splits along the channel dimension and SK a spatial
checkerboard split with K-pixel alternation. Coupling types are listed starting from the side of the input
(e.g. the channel-splits are in general closer to the input than the latent). Affine coupling blocks with spatial
splits (denoted with SK) use U-Nets as their forward neural networks. There is no additional source of noise
for the flow at the highest resolution x = y256 and hence α is not defined there. LeakyReLU-nonlinearities
use slope 0.1.

Name Values
Flows at resolutions (Ri) [256, 128, 32, 8, 1, prior]

Number of channels at flows [3, 4, 8, 8, 408, 4]
Noise scale to flow (α) [n/a, 0.4, 0.05, 0.05, 0.05, 0.05]

Noise scale to decoder (α) [n/a, 0.4, 0.05, 0.05, 0.075, 0.075]
Flow-loss-weight (wi) [1/(256x256x3), 10/(128x128x4), 10/(32x32x8), 1/29, 1/29, 1/29]

Flow-lengths (K) [4, 8, 8, 8, 8, 8]
Affine-coupling-split-type [2C, 2S2], [2C, 2S2, 2S4, 2S8], [2C, 2S2, 2S4, 2S8] , [8C], [8C], [8C]

Affine-coupling-length (N) [4, 4, 4, 4, 4, 4]
1× 1 invertible convolution kernel [free-form, free-form, free-form, free-form, unitary, unitary]

Total latent space dimensionality |y| 271360
Affine-coupling conditioning channels [16, 32, 64, 128]
Affine-coupling hidden layer channels [32, 64, 128, 128]

Encoder hidden layer channels [64, 256, 256, 512]
Decoder hidden layer channels [64, 256, 512, 512]

Table 5: Model hyperparameters for our reference Glow implementation using notation of Kingma & Dhari-
wal (2018). We use the Adamax variant of Adam for optimization, with learning rate 5 × 10−3 and batch
size 16. The data is dequantized to 8 bits. Gradient magnitude is clipped at 50.0.

Name Values
Levels (L) 5

Depth per level (K) 24
Coupling type Additive

Hidden channels coupling layers 256

23

