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Abstract

We show fast deterministic algorithms for fundamental problems on forests in the challenging low-space
regime of the well-known Massive Parallel Computation (MPC) model. A recent breakthrough result by
Coy and Czumaj [STOC’22] shows that, in this setting, it is possible to deterministically identify connected
components on graphs in O(logD+ log log n) rounds, where D is the diameter of the graph and n the number
of nodes. The authors left open a major question: is it possible to get rid of the additive log log n factor and
deterministically identify connected components in a runtime that is completely independent of n?

We answer the above question in the affirmative in the case of forests. We give an algorithm that identifies
connected components in O(logD) deterministic rounds. The total memory required is O(n + m) words,
where m is the number of edges in the input graph, which is optimal as it is only enough to store the
input graph. We complement our upper bound results by showing that Ω(logD) time is necessary even for
component-unstable algorithms, conditioned on the widely believed 1 vs. 2 cycles conjecture. Our techniques
also yield a deterministic forest-rooting algorithm with the same runtime and memory bounds.

Furthermore, we consider Locally Checkable Labeling problems (LCLs), whose solution can be verified by
checking the O(1)-radius neighborhood of each node. We show that any LCL problem on forests can be solved
in O(logD) rounds with a canonical deterministic algorithm, improving over the O(log n) runtime of Brandt,
Latypov and Uitto [DISC’21]. We also show that there is no algorithm that solves all LCL problems on trees
asymptotically faster.

1 Introduction

Graphs offer a versatile abstraction to relational data and there is a growing demand for processing graphs at scale.
One of the most central graph problems in massive graph processing is the detection of connected components of
the input graph. This problem both captures challenges in the study of the fundamentals of parallel computing
and has a variety of practical applications. In this work, we introduce new parallel techniques for finding connected
components of a graph. Furthermore, we show that our techniques can be applied to solve a broad family of other
central graph problems.

The Massively Parallel Computation (MPC) model [29] is a mathematical abstraction of modern frameworks
of parallel computing such as Hadoop [38], Spark [39], MapReduce [25], and Dryad [28]. In the MPC model, we
have M machines that communicate in synchronous rounds. In each round, every machine receives the messages
sent in the previous round, performs (arbitrary) local computations, and is allowed to send messages to any
other machine. Initially, an input graph of n nodes and m edges is distributed among the machines. At the
end of the computation, each machine needs to know the output of each node it holds, e.g., the identifier of its
connected component. We work in the low-space regime, where the local memory S of each machines is limited
to nδ words of O(log n) bits, where 0 < δ < 1. A word is enough to store a node or a machine identifier from a
polynomial (in n) domain. The local memory restricts the amount of data a machine initially holds and is allowed
to send and receive per round. Furthermore, we focus on the most restricted case of linear total memory, i.e.,
S ·M = Θ(n+m). Notice that Ω(n+m) words are required to store the input graph.

In recent years, identifying connected components of a graph has gained a lot of attention. As a baseline, the
widely believed 1 vs. 2 cycles conjecture states that it takes Ω(log n) rounds to tell whether the input graph is a
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cycle of n nodes or two cycles with n/2 nodes [36, 26, 14]. We note that proving any unconditional lower bounds
seems out of reach as any non-constant lower bound in the low-spaceMPCmodel for any problem in P would imply
a separation between NC1 and P [36]. It has been shown that this conjecture also implies conditional hardness
of detecting connected components in time o(logD) on the family graphs with diameter at most D [14, 22].

This bound has been almost matched in a sequence of works. First, a randomized O(logD · log logm/n n) time
algorithm was designed in [2]. This was further improved to O(logD + log logm/n n) in [14] and derandomized
with the same asymptotic runtime in [22]. All of the aforementioned algorithms require only O(n+m) words of
global memory. A fundamental question is whether the runtime necessarily depends on n for some range of m;
we give evidence towards a negative answer. We show that in the case of forests, we can identify the connected
components of a graph in O(logD) time, which we show to be optimal under the 1 vs. 2 cycles conjecture.

Connected Components on Forests. Consider the family of forests with component-wise maximum
diameter D. There is a deterministic low-space MPC algorithm to find the connected components in time
O(logD). The algorithm uses O(n+m) global memory. Under the 1 vs. 2 cycles conjecture, this is optimal.

Sparsification and Dependence on n. In previous works on connected components, the algorithms have
an inherent dependency on the total number of nodes n in the input graph. There is a technical reason for this
dependency, also in the context of problems beyond connected components. A common algorithm design pattern
is to first sparsify the input graph, i.e., the graph is made much smaller and the problem is solved in the sparser
instance [2, 27, 24, 23]. Then, it is shown that a solution to the original input can be recovered from a solution
on the sparsified graph. As an example, a method to sparsify graphs for connectivity is to perform node/edge
contractions, that make the graph smaller and preserve connectivity.

In this pattern, the denser the input graph is, the more global memory the algorithm has on the sparsified
graph, relatively speaking. In the aforementioned previous works, the base m/n of the logarithm can be replaced
by F/n, where F is the global memory. Hence, if F = n1+Ω(1), the dependency on n disappears. This suggests
that the hardest instances are sparse graphs, as the n dependency in the runtime of O(logD + log logF/n n)
becomes better the larger the global memory F is. A limitation to solving connected components through
independent node/edge contractions comes from the global memory bound. If the graph is already sparse, then
the sparsification cannot make the graph any sparser, and hence we do not have an advantage in terms of global
memory on the sparsified graph. In the case that m = O(n) and the global memory is linear in n, the best we
could hope for in the first round of contractions is to drop a constant fraction of the nodes. The low-level details
for the reasons behind this can be extracted from the analysis of [2, 27, 24, 23]. Through the relative increase in

global memory, the (remainder) graph size can be bounded by n · 2−2i in the ith round of contractions, which
leads to an Ω(log log n) runtime.

In previous works, there is even more evidence towards sparse graphs being the hardest instances. Recently,
it was shown that lower bound results from the LOCAL model of distributed message passing can be lifted to MPC
under certain conditions [26, 24]. In the LOCAL model, almost all hardness results are obtained on trees or in high-
girth graphs, implying lower bounds on forests with potentially many connected components [30, 5, 6, 8, 7, 11].
It was shown that a component-stable algorithm cannot solve a problem π faster than in O(log T (n,Δ)), where
T (n,Δ) is the complexity of π in the LOCAL model1 on a graph with n nodes and maximum degree Δ. Roughly
speaking, an MPC algorithm is component-stable if the output on each node u only depends on the size of the
graph and the connected component of u (see Definition 5.4 for more details [24]). While these methods do not
yield unconditional hardness in the MPC model, we face similar difficulties in sparse graphs in the MPC model as
in the message passing models.

Rooted Forests and Applications to Locally Checkable Problems. We believe that our technique to
obtain connected components is of interest beyond solving the connectivity problem. For example, through minor
adjustments to our technique, we obtain an algorithm that roots an (unrooted) input forest. Furthermore, we
show that in a rooted tree, all Locally Checkable Labeling (LCL) problems can be solved very efficiently through
a canonical algorithm. This generalizes to forests and gives an algorithm that can be executed on each connected
component independently of the other components.

1The LOCAL algorithm is allowed to access shared randomness.
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Locally Checkable Labelings on Forests. On the family of forests with component-wise maximum
diameter D, all LCL problems can be solved deterministically in O(logD) time in the low-space MPC model
with O(n+m) global memory. Under the 1 vs. 2 cycles conjecture, this is optimal.

A range of central graph problems, in particular in the area of parallel and distributed computing, are locally
checkable, where the correctness of the whole solution can be verified by checking the partial solution around the
local neighborhood of each node. In particular, the class of LCL problems consists of problems with a finite set of
outputs per node/edge and a finite set of locally feasible solutions (see Definition 6.2), and includes fundamental
problems such as MIS, node/edge-coloring and the algorithmic Lovász Local Lemma (LLL). Our work shows that
any LCL problem can be solved in O(logD) time and that the same runtime can be obtained for many problems
that are not restricted to finite descriptions. We complement our results by showing that for LCL problems, this
bound is tight under the 1 vs. 2 cycles conjecture.

In recent works, the complexity of LCLs in MPC was compared against locality [17, 4], where locality refers
to the round complexity of solving an LCL in the LOCAL model, as a function of n. It was shown that all LCLs on
trees can be solved exponentially faster in MPC as compared to LOCAL. As a consequence, all LCLs on trees can
be solved in O(log n) rounds in the low-regime MPC model. We note that it is often the case that the diameter
of a graph is small, potentially much smaller than the locality of a certain graph problem (which is independent
of the diameter). Hence, our novel technique significantly improves on the state-of-the-art runtimes for various
graph problems in a broad family of graphs.

1.1 Our Contributions Our main contribution is an algorithm that deterministically detects the connected
components of a forest in time logarithmic on the maximum component-wise diameter; crucially, independent of
the size n of the input graph, whose dependence is inherently present in the techniques used in previous works.
We also show that our approach is asymptotically optimal under the 1 vs. 2 cycles conjecture. Next, we present
our results more formally.

Theorem 1.1. (Connected Components) Consider the family of forests. There is a deterministic low-space
MPC algorithm to detect the connected components on this family of graphs. In particular, each node learns the
maximum ID of its component. The algorithms runs in O(logD) rounds, where D is the maximum diameter of
any component. The algorithm requires O(n+m) words of global memory, it is component-stable, and it does not
need to know D. Under the 1 vs. 2 cycles conjecture, the runtime is asymptotically optimal.

The techniques for Theorem 1.1 can be extended to also obtain a rooted forest, where each node also knows
the ID of the corresponding root.

Theorem 1.2. (Rooting) Consider the family of forests with component-wise maximum diameter D. There is
a deterministic low-space MPC algorithm that roots the forest in O(logD) rounds using O(n+m) words of global
memory, and it is component-stable.

The rooting of the input forest gives us a handle for easier algorithm design and memory allocation in low-
space MPC. As a concrete example, our results yield an O(logD) algorithm for deterministically 2-coloring forests.
Without going into technical details, this can be achieved through a rather simple algorithm, where each node
decides its color based on the parity of its distance to the root, and only needs to keep one pointer in memory
for the parity counting. In a sense, we outsource the tedious implementation details to the rooting algorithm in
Theorem 1.2 and obtain a convenient tool for algorithm design.

More broadly, we show how to solve any LCL problem in rooted forests in O(logD) deterministic rounds.
LCLs have gotten ample attention in various distributed models of computation, e.g., [17, 10, 12, 20, 21]. Roughly
speaking, the family of LCLs is a subset of the problems for which we can check if a given solution is correct by
inspecting the constant radius neighborhood of each node. (see Definition 6.2 for a formal definition of LCLs).
Furthermore, we show that for any fixed D ∈ Ω(logn) and D ∈ no(1), there cannot exist an algorithm that solves
all LCL problems in time o(logD) in the family of unrooted forests of diameter at most D. This holds even if
poly(n) global memory is allowed.
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Theorem 1.3. (LCLs on trees) Consider an LCL problem Π on forests and let D be the component-wise
maximum diameter. There is a deterministic low-space MPC algorithm that solves Π in O(logD) rounds using
O(n+m) words of global memory. Under the 1 vs. 2 cycles conjecture, the runtime is asymptotically optimal.

1.2 Challenges and Techniques A canonical approach to solve connected components on forests is to root
each tree and identify each tree with the ID of the root. Also, examining the challenges in rooting demonstrates
the challenges we face when identifying connected components. A natural approach to root a tree is to iteratively
perform rake operations, i.e., pick all the leaves of the tree and each leaf picks the unique neighbor as its parent.
This approach clearly roots a tree in O(D) parallel rounds and furthermore, in the case of a forest, each tree
performs its rooting process independently. If we ignore the memory considerations in the low-space MPC model,
this process could be implemented in O(logD) rounds using the graph exponentiation technique, where, in
O(logD) rounds, every node gathers their D-hop neighborhoods, i.e., the whole graph, to simulate the process
fast. However, when we limit the global memory to O(n+m), we get into trouble. A simulation through graph
exponentiation requires that all nodes iteratively gather larger and larger neighborhoods simultaneously. With
the strict memory bound, this implies that a node can only gather a constant radius neighborhood (and in non-
constant degree graphs that we deal with even that is not possible!), which allows only for simulating a constant
number of rake-iterations in one MPC round.

A hope towards a more efficient approach is to show that the amount of total memory relative to the nodes
remaining in the graph increases as we rake the graph (similarly to previous work [2, 14, 24]). If one can reduce
the size of the graph by a constant factor in each MPC round, then the available total memory increases by a
constant factor per remaining node. Then, we can gather a slightly larger neighborhood per node in the next step
of the simulation. However, even if we had this guarantee, the best we could hope for is a runtime that depends
on n, since this approach relies on a progress measure that depends on shrinking the graph. Informally speaking,
this observation says that we need to have a fundamentally different approach than gradually sparsifying the
graph.

Balanced Exponentiation. One of our main technical contributions is to introduce a new method to gather
a part of the neighborhood of each node that is balanced in the following sense. Suppose, for the sake of argument,
that we have a rooted tree. Then, if a node u has, say, γ descendants, we ensure that u will only gather O(γ)
nodes in the direction of the root, i.e., the direction opposing its descendants. Furthermore, it will also gather its
γ descendants, resulting in a memory demand of O(γ) (for u). A crucial step in our analysis is to show that even
if each node gathered their γ descendants and O(γ) nodes in the direction of the root, we do not create too much
redundancy and we respect the linear total memory bound. A key technical challenge here is that there is no
way for a node to know who are its descendants (because the input graph is unrooted). We show that, without
an asymptotic loss in the runtime, we can deterministically determine which neighbor of u is the worst case for
a choice of a parent and gather the respective nodes slower.

Progress Measure. As mentioned above, to obtain a runtime independent of n, we need to avoid arguments
that are based on the size of the graph getting smaller during the execution of our algorithm. The topology
gathering through exponentiation can be seen as creating a virtual graph, where a virtual edge {u, v} corresponds
to the fact that u knows how to reach v and vise versa. The base of our progress measure is to aim to show that
in this virtual graph, the diameter is reduced by a constant factor in each iteration. Unfortunately, having this
type of guarantee seems too good to be true. Already on a path, it requires too much memory to create a virtual
graph where the distances between all pairs of nodes are reduced. Our contribution is to show that this example
is degenerate in the sense that either we can guarantee that the balanced exponentiation reduces the diameter or
we can reduce it through a node-contraction type of operation.

1.3 Further Related Work In relation to our work, previous works have studied finding rooted spanning
forests. In [15, 2], O(logD · log log n) algorithms for rooting were given and the runtime was improved to
O(logD + log log n) by [22].

Locally checkable problems have been intensively studied in the MPC model. Many classic algorithms from
PRAM imply MPC algorithms with the same runtime, e.g., the MIS, maximal matching and coloring [34, 1].
The runtime of such simulations are typically polylogarithmic and, in MPC, the aim is to obtain something
significantly faster. For MIS and maximal matching, there are Õ(

√
logΔ+ log log log n) time algorithms [27] and

(Δ + 1)-node-coloring can be solved in O(log log log n) rounds, even deterministically [19, 24].

Copyright © 2023
Copyright for this paper is retained by the authors2592



Many of the current state-of-the-art algorithms for locally checkable problems are (at least to some degree)
based on distributed message-passing algorithms. The common design pattern is to design a message-passing
algorithm, for example in the LOCAL model of distributed computing [33] where the output of each node is
decided according to their t-hop neighborhood in t-rounds. These algorithms are then implemented faster in
the MPC model through the graph exponentiation technique [31] that, in the ideal case, collects the t-hop ball
around each node in O(log t)-rounds. This framework was used to obtain an exponential speedup for many locally
checkable problems in general, and in particular, it was used recently to show that all LCL problems on trees with
t-round complexity in LOCAL can be solved in O(log t) MPC rounds [17, 4]. Our work broadens our understanding
on the complexities of LCLs as a function of the diameter, which is somewhat orthogonal to previous works.

On a technical level, a related work gave a clever approach to encode the feasible outputs around each node
into a constant sized type of the node [21]. Given a rooted tree, the type of a node u (or its subtree) is determined
through the set of possible outputs of its descendants. This encoding gives rise to an efficient convergecast
protocol, where the root learns its type and effectively broadcasts a valid global solution to the rest of the tree.
In a recent work, related techniques were used to implement a message passing algorithm for LCLs on trees using
small messages [10]. In our work, we employ similar ideas to aggregate and broadcast information efficiently
through the input tree.

Lower Bounds. While simulating LOCAL message passing algorithms in MPC has been fruitful in algorithm
design, there is an inherent limitation to this approach. A näıve implementation results in a component-stable
algorithm, where we can show that the simulation cannot be more than exponentially faster than the message
passing algorithm [26, 24]. An algorithm is said to be component-stable if the output on node v depends
(deterministically) only on the topology, the input of the nodes, and the IDs of the nodes in the connected
component of v. Furthermore, the output is allowed to depend on the number of nodes n, the maximum degree
Δ of the input graph, and in case of randomized algorithms, the output can depend on shared randomness. It
was shown that for component-stable algorithms and under the 1 vs. 2 cycles conjecture, Ω(log t) rounds cannot
be beaten if t is a lower bound on the complexity of the given problem in the LOCAL model. We emphasize that
our lower bounds also work for component-unstable algorithms (still relying on the 1 vs. 2 cycles conjecture).

2 Overview, Roadmap and Notation

Our formal results are presented in Sections 4 to 7. In Section 3, we present the core techniques of our algorithm.
The formal version of this algorithm appears in Section 4.

Section 4: This section contains the most involved part of our work, i.e., an algorithm that lets every node
of an input tree output the maximum identifier of the tree. On a tree G, our algorithm runs in O(log D̂) rounds
and uses global memory O((n + m) · D̂3) where the parameter D̂ ∈ [diam(G), nδ/8] needs to be known to the
algorithm. This sounds like a foolish approach, as this problem can be trivially solved in O(1) rounds if we were
really given a single tree as input. We still chose to present our result in this way, as our seemingly näıve algorithm
is the core of our connected components algorithm that we present in Section 5.

Section 5: In fact, we show that our algorithm can be correctly extended to forests. Note that if every node
knows the maximum identifier of its tree, we automatically solve the connected components problem. In this
section, we also show how to remove the requirement of knowing D̂ via doubly exponentially increasing guesses
for D̂. We also show that we can reduce the overall memory requirement to O(n+m) by preprocessing the graph,
that is, we spend additional O(log D̂) rounds to reduce the size of the graph by a factor D̂3. Lastly, we show that
the runtime reduces to O(logmaxi{Di}) where Di is the diameter of the i-th component of the input graph. In
this section, we also present the full proof of our connected components algorithm (Theorem 1.1) and our rooting
algorithm (Theorem 1.2).

Section 6: In this section, we show a nice application of our rooting algorithm from Theorem 1.2. In
particular, we show that any LCL problem can be solved in just O(logD) rounds, once each tree of the forest is
rooted (Theorem 1.3).

Our approach has a dynamic programming flavor and we explain it for a single tree of the forest. We
iteratively reduce the size of the tree, by compressing small subtrees into single nodes, and paths into single
edges. While performing these compressions, we set additional constraints on the solution allowed on the nodes
into which we compress subtrees, and on the edges that represent compressed paths. We maintain the invariant
that, if we obtain a solution in the smaller tree, then it can be extended to the original one. We show that, by
performing a constant number of compression steps, we obtain a tree that is comprised of a single node, where it

Copyright © 2023
Copyright for this paper is retained by the authors2593



is straightforward to compute a solution. We then perform the same operations in the reverse order, in order to
extend the solution to the whole tree. All of this is preceded by using Theorem 1.2 to compute a rooting of the
tree/forest. The rooting helps, as with a given rooting it is significantly easier to identify the suitable subtrees to
compress without breaking memory bounds.

Section 7: In this section, we show that the runtimes of our algorithms are tight, conditioned on the widely
believed 1 vs. 2 cycles conjecture. Our aim is to use a reduction from the 1 vs. 2 cycles problem to solving
connectivity on paths. In previous work [26], a reduction to connectivity on paths was introduced, but for
technical reasons, it is not sufficient for our purposes. We require a guarantee that each path is of bounded
diameter, which is not directly guaranteed by the previous work. Hence, we start by defining a problem on
forests, called D-diameter s-t path-connectivity, for which we can prove conditional hardness. By a reduction, we
obtain a conditional lower bound of Ω(logD) for the connected components problem.

We then define an LCL problem such that, given an algorithm for it, we can use it to solve the D-diameter
s-t path-connectivity problem. Hence, we obtain a lower bound of Ω(logD) for the problem, implying that our
generic LCL solver is also conditionally tight.

2.1 Definitions and Notation Given a graph G = (V,E), we denote with Δ the maximum degree of G,
with n = |V | the number of nodes in G, and with m = |E| the number of edges in G. We denote with
NG(v) the neighbors of v, that is, the set {u | {u, v} ∈ E}. We denote with degG(v) the degree of a node v,
that is, the number of neighbors of v in G. If G is clear from the context, we may omit G and simply write
N(v) and deg(v). If G is a directed graph, we denote with deg(v) the degree of v in the undirected version
of G, and with degin(v) and degout(v) its indegree and its outdegree, respectively. We define distG(u, v) as
the hop-distance between u and v in G. Again, we may omit G if it is clear from the context. The radius-r
neighborhood of a node v is the subgraph Gr(v) = (Vr(v), Er(v)), where Vr(v) = {u ∈ V : dist(u, v) ≤ r}, and
Er(v) = {(u,w) ∈ E : dist(v, u) ≤ r and dist(v, w) ≤ r}. Also, we denote with Gk the k-th power of G, that is,
a graph containing the same nodes of G, where we connect two nodes u and v (u �= v) if and only if they satisfy
distG(u, v) ≤ k. The eccentricity of a node v in a graph G is the maximum of {dist(u, v) | u ∈ V }.

3 The MAX-ID Problem: Overview and Techniques

In this section, we present the core techniques of our specialized algorithm for solving the MAX-ID problem, that
is the core ingredient for solving connected components on forests (upper bound of Theorem 1.1). In the MAX-ID
problem, one is given a connected tree with a unique identifier for each node, and all nodes must output the
maximum identifier in the tree. We note that it is trivial to solve the problem in O(1) MPC rounds using a
broadcast tree; however, this approach does not extend to forests, and hence a more sophisticated solution is
required. The purpose of this section is to present the high level ideas of an algorithm that solves MAX-ID and
can also be extended to forests. Some lemma statements have been adapted to fit this (informal) version.

Lemma 4.1 (Solving MAX-ID on trees). Consider the family of trees. There is a deterministic low-space MPC
algorithm that solves MAX-ID on any graph G of that graph family when given D̂ ∈ [diam(G), nδ/8]. The algorithms
runs in O(log D̂) rounds, is component-stable2, and requires O(m · D̂3) words of global memory.

We begin with definitions that are essential not only to define our algorithm but also for proving its memory
bounds. Let v be a vertex of a tree G. For all nodes u ∈ N(v), define

Gv−→u = {w ∈ V (G) | u is contained in the shortest path from v to w}
to be all nodes in the tree that are reachable from v via u, including u. Also, let Gv �−→u := V (G) \ Gv−→u. For
every w ∈ G, let rv(w) be the node u ∈ N(v) satisfying that w ∈ Gv−→u, i.e., rv(w) is the neighbor of v which is
on the unique path from v to w.

Definition (Light and heavy nodes) Let 0 < δ < 1 be a constant. A node v is light against a neighbor
u ∈ N(v) if |Gv �−→u| ≤ nδ/8. A node is light if it is light against at least one of its neighbors. Nodes that are not
light are heavy.

2By the formulation of Definition 4.1, any algorithm solving MAX-ID is component-stable by definition. This is discussed in detail
in Section 5.4
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Figure 1: Light nodes are green and heavy nodes are gray.

If there are no heavy nodes, the graph is small and fits into the local memory of one machine.

Lemma (see Lemma 4.4) Any tree with no heavy nodes contains at most 2nδ/2 vertices.

We prove that as soon as there is at least one heavy node, the graph has to look like the one depicted on the
left hand side of Figure 1, that is, light subtrees that are attached to a connected component of heavy nodes. We
exploit this structure in our algorithm.

3.1 MAX-ID: The Algorithm The high-level idea is to iteratively compress parts of the graph (without
disconnecting it) such that the knowledge of the maximum identifier of the compressed parts is always kept
within the resulting graph. We repeat this process until there remains only one node, that knows ID, the
maximum identifier in the graph. Then, we backtrack the process by iteratively decompressing and broadcasting
the knowledge about ID. Eventually, we are left with the original graph where all nodes know ID.

More in detail, our algorithm consists of � = O(1) phases and the same number of reversal phases.
During the phases, we first compress all light subtrees into single nodes (a procedure that we refer to as
CompressLightSubTrees) and then replace all paths by a single edge (CompressPaths). We denote the resulting
graphs by G0, G1,. . . ,G�. The phases are followed by reversal phases, in which we undo all compression steps of
the regular phases in reverse order to spread ID to the whole graph.

Bounding the number of Phases. Consider some phase i and graph Gi with heavy nodes that looks as
illustrated in Figure 1 (left). If we remove all light subtrees from graph Gi, for the resulting graph Gi+1, it holds
that every leaf (aka a formerly heavy node) corresponds to a distinct removed subtree of size at least nδ/8 (if the
subtree was smaller the leaf would not be heavy). If we then contract all paths in Gi+1 into single edges, leaving
no degree-2 nodes in Gi+1, it holds that at least half of the nodes in Gi+1 corresponds to a removed subtree. As
each of these subtrees has ≥ nδ/8 distinct nodes, we have removed a polynomial-in-n fraction of nodes from Gi

to obtain Gi+1. Hence, we can only repeat the process a constant time until the graph becomes small.

3.2 MAX-ID: Compressing Light Subtrees For the sake of this high level overview, we focus on our
most involved part, the procedure that compresses (maximal) light subtrees into the adjacent heavy node
(CompressLightSubTrees). The difficulty is that nodes do not know whether they are light or heavy, and already
one single exponentiation step in the “wrong” direction of the graph can ruin local and global memory bounds.
However, there seems to be no way to obtain a runtime that is logarithmic in the diameter without exponentiation.
Thus, we perform careful exponentiations that always ensure the memory bounds but at the same time make
enough progress.

Consider a graph G with n nodes—starting from the second phase we will actually use this algorithm on
graphs with fewer than n nodes. At all times, every node v has some set of nodes Sv in its memory, which we
initialize to N(v). Set Sv can be thought of as the node’s view or knowledge. During the execution, Sv grows,
and if |Sv| ≥ 2nδ/4, v becomes full. Similarly to definitions Gv−→u and Gv �−→u, let us define the following. For a
node v and a node u ∈ N(v), let Sv−→u = Sv ∩Gv−→u. Also, let Sv �−→u := Sv \ Sv−→u.

All nodes in the graph have the property that they are either light or heavy. Initially, nodes themselves do
not know whether they are light or heavy, since these properties depend on the topology of the graph. During
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the algorithm each node is in one of the four states: active, happy, full, or sad. Initially, all nodes are active.
A node v becomes happy, if at some point during the execution, there exists u ∈ N(v) such that Gv �−→u ⊆ Sv

and |Gv �−→u| ≤ nδ/8. If a node, that is not full, realizes that it can never become happy (for example by having
|Sv−→u| > nδ/8 for two different neighbors u), it becomes sad. Upon becoming happy, sad or full, nodes do not
partake in the algorithm except for answering queries from active nodes. We call nodes unhappy if they are in
some other state than happy (including state active). The goal is that all light nodes become happy. We will prove
that the algorithm that we will provide satisfies the following lemma.

Lemma 4.16. After O(log D̂) iterations, all light nodes become happy, while heavy nodes always remain unhappy.

Intuition for its correctness requires further details and is defered to the end of this section.
When comparing the definitions of happy and light, it is evident that when a node becomes happy, it knows

that it is light. Similarly, a node becoming full or sad knows that it is heavy. At the end of the algorithm, happy
nodes with a full or sad neighbor compress their whole subtree in that neighbor. A crucial challenge here is to
ensure that these compressions are not conflicting as all such nodes execute these in parallel and without a global
view.

Exponentiation. Recall the definition of rv(w) at the beginning of the section. For a node v and any
X ⊆ N(v), define an exponentiation operation as

Exp(X) : Sv ←−
⋃
u∈X

⋃
w∈Sv−→u

Sw �−→rw(v).

We say that node v exponentiates in the direction of u ∈ N(v) if v performs Exp(X) with u ∈ X.
The algorithm consists of O(log D̂) iterations, in each of which nodes perform a carefully designed graph

exponentiation procedure. The aim is for light nodes v to become happy by learning their subtrees, after which,
(certain) light nodes compress into their unhappy neighbor.

Failed Exponentiation Approaches. If there were no memory constraints and every node could do a
proper (uniform) exponentiation step in every iteration of the algorithm, i.e., execute Exp(N(v)), after O(log D̂)
iterations all nodes would learn the whole graph—a proper exponentiation step executed on all nodes halves the
diameter—and the highest ID node could compress the whole graph into itself. However, uniform exponentiation
would result in all nodes exceeding their local memory O(nδ), and also significantly breaking the global memory
requirement. Even if we were to steer the exponentiation procedure such that light nodes would learn a Dv radius
ball around them, where Dv is the diameter of their light subtree, this would still break global memory. In fact,
we cannot even do a single exponentiation step for all nodes in the graph without breaking memory bounds!

Our Solution (Careful Exponentiation & Probing). Hence, we let every node exponentiate in all but
one direction, sparing the direction which currently looks most likely to be towards the heavy parts of the graph.
Note that the knowledge of a node about the tree changes over time and in different iterations it may spare
different directions. This step is further complicated as nodes neither know whether they are heavy or light nor
do they know the size of their subtree, nor in which direction the heavy parts of the graph lie. Thus, in our
algorithm, nodes perform a careful probing for the number of nodes into all directions to determine in which
directions they can safely exponentiate without using too much memory. More formally, a node v computes
Bv−→u =

∑
w∈Sv−→u

|Sw �−→rw(v)| for every neighbor u ∈ N(v) as an estimate for the number of nodes it may learn
when exponentiating towards u. This estimate may be inaccurate and may contain a lot of doublecounting. The
precise guarantees that this probing provides are technical and presented in Section 5.

We now reason (in a nutshell) why this algorithm meets the memory requirements and why we still make
enough progress in order to make all light nodes happy in O(log D̂) iterations.

Local and Global Memory Bounds. If there were no memory limitation, we would already know that
after � = O(1) phases G� would consist of a single node r. For the sake of analysis, we assume a rooting of G at
r. We emphasize that fixing a rooting is only for analysis sake, and we do not assume that the tree is actually
rooted beforehand.

Given the rooting at r, we define T (v, r) as the subtree rooted at v (including v itself). Then, the following
lemma is crucial to bound the memory. The lemma is standalone as it does not use any properties of r.

Lemma 4.5. Consider an n-node tree T with diameter D that is rooted at node r. Let T (v, r) denote the subtree
rooted at v (including v) when T is rooted at r. It holds that

∑
v∈V |T (v, r)| ≤ (D + 1) · n.
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Proof. Consider the unique path Prv from the root r to a node v. Observe that node v is only in the subtrees of
the nodes in Prv. Since |Prv| ≤ D + 1, node v is overcounted at most D times, and

∑
v∈V |T (v, r)| ≤ (D + 1) · n.

The probing ensures that a node, if it exponentiates into a direction, essentially never learns more nodes than
there are contained in its “rooted subtree” T (v, r).

Lemma (see Lemma 4.17) Let v be any node with a parent u (according to the hypothetical rooting at r). If in
some iteration, node v exponentiates in the direction of u, i.e., it performs Exp(X) with u ∈ X, the size of the
resulting set Sv−→u is bounded by |T (v, r)| · D̂.

This is sufficient to sketch the global memory bound.

Lemma (see Lemma 4.18) In CompressLightSubTrees, the global memory never exceeds O(n · D̂3).

Proof. [Proof sketch] Assume that there is at least one heavy node and consider an arbitrary iteration j of the
algorithm. For node v define the set Cv ⊆ Sv as the set of nodes that v has added to Sv as a result of performing
Exp in all iterations up to iteration j. Let u be the parent of v (according to the hypothetical rooting at r). For
that u, let Cv−→u := Cv ∩Gv−→u. We obtain

|Cv| ≤ |Cv−→u|+
∑

w∈N(v)\u
|Sv−→w| ≤ |T (v, r)| · D̂ + |T (v, r)| = (1 + D̂)|T (v, r)| .

The bound on |Cv−→u| is obtained by applying the previous lemma for the last iteration where v has
exponentiated in the direction of u, and the bound on the sum is by the definition of T (v, r).

We need to introduce the notation Cv, as in our actual algorithm, exponentiations are not symmetric. In
order to ensure a symmetric enough view, nodes v that add some vertex u to their set Sv also add themselves
to the set Su. Thus Cv �= Sv. However, this results in at most a factor 2 increase in global memory. The total
memory is then bounded by

∑
v∈V

|Sv| =
∑
v∈V

2|Cv| ≤
∑
v∈V

2(1 + D̂)|T (v, r)| = O(n · D̂2).

Here, the bound on
∑

v∈V |T (v, r)| is due to Lemma 4.5. The additional D̂ factor in the lemma statement is due

to the fact that a node may learn about the same node D̂ times in a single exponentiation step resulting in a
local peak in global memory; details are given in the full proof.

The bounds on local memory use that the probing ensures that we do not exponentiate into a direction if it
would provide us with too many new nodes.

Measure of Progress. In order to show that all light nodes become happy, we prove that the distance
between a light node and a leaf in its subtree decreases by a constant fraction in a constant number of rounds.
Distance, in this case, can be measured via a virtual graph where there is an edge between two nodes u and v if
v ∈ Su or u ∈ Sv. Our algorithm design ensures that light nodes always exponentiate in all but one direction. This
is sufficient to show that each segment x1, . . . x5 of length 5 of a shortest path in the virtual graph H, shortens by
at least one edge in each iteration. Intuitively, one can simply use that x3 in such a segment either exponentiates
in the direction of x1 or x5 and will hence add the respective node to its memory. The actual proof needs a
more careful reasoning, e.g., as we cannot rely on x1 being part of the memory of x2, due to non homogeneous
exponentiations in previous iterations.

4 The MAX-ID Problem

In this section, we give a specialized algorithm for the MAX-ID problem on trees, which will be the core ingredient
for solving connected components on forests (upper bound of Theorem 1.1). Once having the algorithm for solving
MAX-ID, one can extend it to work as a connected components algorithm. We defer this extension and its proofs
to Section 5. We define the problem as follows.
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Definition 4.1. (The MAX-ID problem) Given a connected graph with a unique identifier for each node, all
nodes output its maximum identifier.

Lemma 4.1. (Solving MAX-ID on trees) Consider the family of trees. There is a deterministic low-space
MPC algorithm that solves MAX-ID on any graph G of that graph family when given D̂ ∈ [diam(G), nδ/8]. The
algorithms runs in O(log D̂) rounds, is component-stable3, and requires O(m · D̂3) words of global memory.

4.1 Definition and Structural Results We begin with structural properties of trees that are essential for
proving our memory bounds. Also, the introduced notation plays a central role in each step of our algorithms.
Let v be a vertex of a tree G. For all nodes u ∈ N(v), define

Gv−→u = {w ∈ V (G) | u is contained in the shortest path from v to w}

to be all nodes in the tree that are reachable from v via u, including u. Also, let Gv �−→u := V (G) \ Gv−→u. For
every w ∈ G let rv(w) be u ∈ N(v) such that w ∈ Gv−→u, i.e., rv(w) is the neighbor of v which is on the unique
path from v to w.

Definition 4.2. (Light and heavy nodes) Let 0 < δ < 1 be a constant. A node v is light against a neighbor
u ∈ N(v) if |Gv �−→u| ≤ nδ/8. A node is light if it is light against at least one of its neighbors. When v is light
against u, let Tv,u denote Gv �−→u. Nodes that are not light are heavy.

Observe that a light node v can be light against multiple neighbors u and hence, we need to use a subscript in
the notation Tv,u. We emphasize that v ∈ Tv,u. Throughout most of our proofs we need to consider the cases that
a (virtual) tree contains heavy nodes and the case that it only consists of light nodes separately. Both situations
are depicted in Figure 1. We continue with proving structural properties for both cases. Any tree has light nodes
as its leaves are light.

Lemma 4.2. Consider a tree G that contains a heavy node and let v ∈ G be a light node against neighbor u. Then
all nodes x ∈ Tv,u are light. Moreover, any x ∈ Tv,y, x �= v is light against rx(v).

Proof. The first part of the claim must holds since Gx �−→rx(v) < Gv �−→u ≤ nδ/8. The second part must hold, since
otherwise, all nodes are light, contradicting the assumption that there exists a heavy node.

Lemma 4.3. For every tree G with at least one heavy node, it holds that (i) heavy nodes induce a connected
component, and that (ii) every light node is light against exactly one neighbor.

Proof. For both parts, assume the opposite. Then there is a heavy node in Tv,u for some light node v, which
contradicts Lemma 4.2.

Due to Lemma 4.3, we write Tv instead of Tv,u for a light node in a tree with (a) heavy node(s) and call Tv

the node’s subtree.

Observation 4.1. For any tree G and any two adjacent nodes u, v ∈ G, we have G = Gv �−→u ∪Gu�−→v.

Proof. Since Gv−→u = Gu�−→v, we obtain Gu�−→v ∪Gv �−→u = Gv−→u ∪Gv �−→u = G.

Lemma 4.4. Any tree with no heavy nodes contains at most 2nδ/2 vertices.

Proof. For the sake of analysis, let each node v put one token on each incident edge {v, u} where v is light against
u, i.e., |Gv �−→u| ≤ nδ/8. As all nodes are light the total number of tokens is at least as large as the number of
nodes. Since the graph is a tree, at least one edge receives two tokens. Let {u, v} be such an edge and observe
that G = Gv �−→u ∪Gu�−→v holds due to Observation 4.1. It holds that |G| = |Gv �−→u ∪Gu�−→v| ≤ 2nδ/8, because v
is light against u and u is light against v.

3By the formulation of Definition 4.1, any algorithm solving MAX-ID is component-stable by definition. This is discussed in detail
in Section 5.4

Copyright © 2023
Copyright for this paper is retained by the authors2598



The following lemma will be central to bounding the global memory of our algorithm. It considers a rooted
tree, which we will only use for analysis; we do not assume a rooting is given as input.

Lemma 4.5. Consider an n-node tree T with diameter D that is rooted at node r. Let T (v, r) denote the subtree
rooted at v (including v) when T is rooted at r. It holds that

∑
v∈V |T (v, r)| ≤ (D + 1) · n.

Proof. Consider the unique path Prv from the root r to a node v. Observe that node v is only in the subtrees of
the nodes in Prv. Since |Prv| ≤ D + 1, node v is overcounted at most D times, and

∑
v∈V |T (v, r)| ≤ (D + 1) · n.

4.2 MAX-ID: The Algorithm In this section, we present a MAX-ID algorithm for trees, which we refer to
as MAX-ID-Solver. In our algorithm, every node of an input tree G outputs the maximum identifier of the tree,
which we denote by ID. We assume we are given D̂ ∈ [diam(G), nδ/8]. The runtime of our algorithm is O(log D̂)
and it requires O(n · D̂3) words of global memory.

The high-level idea is to iteratively compress parts of the graph (without disconnecting it) such that the
knowledge of the maximum identifier of the compressed parts is always kept within the resulting graph. We repeat
this process until there remains only one node, that knows ID. Then, we backtrack the process by iteratively
decompressing and broadcasting the knowledge about ID. Eventually, we are left with the original graph where
all nodes know ID.

As reasoned in Section 1 it is far from clear how to implement this simple outline with neither breaking the
runtime nor the global memory bounds. From a high level point of view our algorithm consists of O(1) phases
and O(1) reversal phases. During the phases, we first compress all light subtrees into single nodes (a procedure
that we refer to as CompressLightSubTrees) and then replace all paths by a single edge (CompressPaths). In this
section, we blackbox the properties of both procedures and prove that O(1) phases are sufficient to reduce the
graph to a single node (Lemma 4.11). By far the most technically involved part of our algorithm is the procedure
CompressLightSubTrees, which we explain in detail in Section 4.3. The phases are followed by reversal phases, in
which we undo all compression steps of the regular phases in reverse order to spread ID to the whole graph.

Let us be more formal and define the compression/decompression steps. Throughout the algorithm, every
node v keeps track of a variable idv, which is initially set to be the identifier of v. The intuition behind variable
idv is that it represents the largest identified v has “seen” so far. Let us define compressing and decompressing
operations for node v and any node set X. Note that decompressing X from v is only defined for X, v such that
X was at some point compressed into v.

• Compress X into v: set idv ←− maxu{idu | u ∈ X} remove X (and its incident edges) from the graph. For
any edge {x, y} with x ∈ X and v �= y /∈ X we introduce a new edge {v, y}.

• Decompress X from v: set idu ←− idv, ∀u ∈ X and add X (and its incident edges) back to the graph.
Remove any edge {v, y} that was added during the compression step of X into v.

Phases. We initialize G0 as the input graph. From G0, we derive a sequence G1, G2, . . . , G� of smaller trees
until eventually, for some � = O(1), it holds that G� = {v} for which idv = ID. The tree Gi+1 (0 < i ≤ �) is
obtained from Gi as follows: first compressing all light subtrees via CompressLightSubTrees(Gi, D̂) and call the
resulting tree G′

i, then Gi+1 is the result of compressing all paths of G′
i into single edges via CompressPaths(G′

i, D̂).
Throughout the sequence, we maintain the properties that compressions do not overlap, every Gi is connected

and non-empty, and that idw = ID for some node w ∈ Gi.
Reversal Phases. From G� = {v}, we derive a reversal sequence G�−1, G�−2, . . . , G0 such that any Gi

(� > i ≥ 0) has the same node and edge sets as Gi during the regular phases, and idw = ID for every node w ∈ Gi.
The tree Gi−1 is obtained from Gi as follows: first decompressing all paths via DecompressPaths(Gi) and call the
resulting tree G′

i−1, then Gi−1 is the result of decompressing all light subtrees via DecompressLightSubTrees(G′
i−1).

Note that in reversal phase i we only decompress paths and subtrees that were compressed during the regular
phase i.

MAX-ID-Solver(G, D̂)
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Initialize G0 ←− G

1. For i = 0, . . . , �− 1 phases:

(a) G′
i = CompressLightSubTrees(Gi, D̂)

// If there are heavy nodes, all light nodes are compressed into the closest heavy node. Otherwise, all
nodes are light and are compressed into a single node.

(b) Gi+1 = CompressPaths(G′
i, D̂)

// All paths are compressed into single edges.

2. For i = �− 1, . . . , 0 reversal phases:

(a) G′
i = DecompressPaths(Gi+1)

// All paths that were compressed during Step 1(b) are decompressed.

(b) Gi = DecompressLightSubTrees(G′
i)

// All light nodes that were compressed during Step 1(a) are decompressed from v.

The correctness of MAX-ID-Solver is contained in the following lemma.

Lemma 4.6. There exists some � such that

1. after � phases, graph G� consists of exactly one node v for which idv = ID.

2. after � reversal phases, graph G0 is the input graph and all nodes know ID.

Proof. The proof is straightforward, given the thee essential lemmas (Lemmas 4.7 to 4.9) on the subroutines that
we prove in the sections hereafter. Let us prove the two claims separately.

1. Consider graph Gi at the start of any phase i. We first claim that Gi never becomes empty during phase i,
for which there are two cases: either Gi contains heavy nodes, or all nodes in Gi are light. In the case of the
former: in Step 1(a), by Lemma 4.7, if there are heavy nodes in the graph, they are never compressed. In
Step 1(b), by Lemma 4.8, all degree-2 nodes are compressed into single edges, leaving the graph non-empty.
In the case of the latter, by Lemma 4.7, we are left with a single node. Observe that since any tree always
contains light nodes (leaves are always light), the number of nodes decreases in every phase, and the first
part of the claim 1 holds for some �. Since G� = {v} is a result of consecutive compression steps applied to
the input graph G0 without disconnecting it, by the definition of compression, it holds that idv = ID.

2. Observation. Graph Gi during reversal phases i has the same node and edge sets as graph Gi during phase
i.

Proof. We prove the claim by induction. The base case holds since G� from Step 1 is given directly to
Step 2 as input. Assume that the claim holds for reversal phase i+ 1. By Lemma 4.9, all nodes that were
compressed in phase i during Step 1(a) (resp. (b)) can decompress themselves in reversal phase i during
Step 2(b) (resp. (a)), proving the claim.

Consider graph G� that consists of a single node v for which idv = ID by Lemma 4.6. Since graph G0 after �
reversal phases (which is the input graph by the observation above) is a result of consecutive decompression
steps applied to G�, by the definition of decompression, it holds that idu = ID for all u ∈ G0.

Lemma 4.7. (CompressLightSubTrees) Let G be a tree and D̂ ∈ [diam(G), nδ/8]. If G contains a heavy node, then
CompressLightSubTrees(G, D̂) returns a tree in which all light nodes of G are compressed into the closest heavy
node. If G does not contain any heavy nodes, all nodes are compressed into a single node. The algorithm runs in
O(log D̂) low-space MPC rounds using O(n · D̂3) words of global memory.
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Lemma 4.8. (CompressPaths) For any tree G and D̂ ∈ [diam(G), nδ/8], CompressPaths(G, D̂) returns the graph
that is obtained from G by replacing all paths of G with a single edge. The algorithm runs in O(log D̂) low-space
MPC rounds using O(n · D̂2) words of global memory.

Lemma 4.9. (DecompressPaths,DecompressLightSubTrees) All nodes that were compressed by CompressLightSub-
Trees and CompressPaths can be decompressed by DecompressLightSubTrees and DecompressPaths, respectfully.
The algorithms run in O(1) low-space MPC rounds using O(n) words of global memory.

We will now show that the number of phases of (and therefore reversal phases) is bounded by O(1). In
particular, we want to prove that after � = O(1) phases, graph G� consists of exactly one node. After a clever
observation in Lemma 4.10, we will prove the claim in Lemma 4.11.

Lemma 4.10. If |Gi+1| ≥ 2, all nodes in Gi+1 were heavy in Gi. Moreover, for every leaf node w ∈ Gi+1 it holds
that ≥ nδ/8 light nodes were compressed into w during phase i.

Proof. Since |Gi+1| ≥ 2 (and not |Gi+1| = 1), by Lemma 4.7, there must have been heavy nodes in Gi. Since all
light nodes were compressed in phase i, all nodes in Gi+1 were heavy in Gi. Observe that even though w is a
leaf in phase i+ 1, it was not a leaf node in phase i, since leaf nodes are light by definition. Let u be the unique
neighbor of w in Gi+1. We must show that |Gw �−→u| > nδ/8 and that Gw �−→u \ w was compressed into w during
phase i. It must be that |Gw �−→u| > nδ/8, since otherwise, w would have been light against u in phase i. Nodes
Gw �−→u \ w were compressed into w during phase i by Lemma 4.7, since w was their closest heavy node (due to
the graph being a tree).

Lemma 4.11. After � = O(1) phases, graph G� consists of exactly one node.

Proof. Consider graph Gi at the beginning of some phase i. If there are no heavy nodes in Gi, this is the last
phase of the algorithm by Lemma 4.7. If there is exactly one heavy node in Gi, we are also done by Lemma 4.7.
What remains to be proven is that if there are at least two heavy nodes in the graph, we reduce the size of the
graph by a polynomial factor in n.

Assume that there are at least 2 heavy nodes in graph Gi, and let us analyze what happens. In Step 1(a), all
light nodes are compressed into the closest heavy node by Lemma 4.7. In Step 1(b), all paths are compressed into
single edges by Lemma 4.8, leaving no degree-2 nodes in the graph (compressing paths never creates new degree-2
nodes). Consider graph Gi+1, which by Lemma 4.7 consists of the nodes that were heavy in Gi. By Lemma 4.10
it also holds that during phase i, at least nδ/8 light nodes were compressed into every leaf node w of graph Gi+1.
It holds that

ni ≥ ni+1 + |{w ∈ Gi+1 | degGi+1
(w) = 1}| · nδ/8 > ni+1 + nδ/8 · ni+1/2 = ni+1(1 + nδ/8/2)

and ni+1 < ni/(1 + nδ/8/2) < 2ni/n
δ/8 .

The first strict inequality stems from the fact that there are no degree-2 nodes left after phase i, and hence
the number of leaf nodes in Gi+1 is strictly larger that ni+1/2. The proof is complete, as we have shown that if
graph Gi contains at least 2 heavy nodes, Gi+1 is smaller than Gi by a factor of Θ(nδ/8).

The outline for the rest of this section is as follows. The procedure CompressLightSubTrees and the proof of
Lemma 4.7 are presented in Section 4.3. This is the most technically involved part of our algorithm. The procedure
CompressPaths and the proof of Lemma 4.8 are presented in Section 4.4. The procedures DecompressPaths and
DecompressLightSubTrees and the proof of Lemma 4.9 are presented in Section 4.5. In Appendix A, we show
technical details how MAX-ID-Solver can be implemented in the low-space MPC model.

4.3 MAX-ID: Single Phase (CompressLightSubTrees) In this section, we focus on a single execution of
CompressLightSubTrees(G, D̂) on a graph G and prove Lemma 4.7. With out loss of generality, we assume there
are n nodes in the graph—starting from the second phase of MAX-ID-Solver we will actually use this algorithm
on graphs with fewer than n nodes.

At all times, every nodes v has some set of nodes Sv in its memory, which we initialize to N(v). Set Sv can
be thought of as the node’s view or knowledge. During the execution, Sv grows, and if |Sv| ≥ 2nδ/4, v becomes
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full. Similarly to definitions Gv−→u and Gv �−→u, let us define the following. For a node v and a node u ∈ N(v), let
Sv−→u = Sv ∩Gv−→u. Also, let Sv �−→u := Sv \ Sv−→u. Recall the definition of rv(w): for every w ∈ G let rv(w) be
u ∈ N(v) such that w ∈ Gv−→u.

All nodes in the graph have the property that they are either light or heavy (see Definition 4.2). Initially,
nodes themselves do not know whether they are light or heavy, since these properties depend on the topology of
the graph. During the algorithm each node is in one of the four states: active, happy, full, or sad. Initially, all
nodes are active. A node v becomes happy, if at some point during the execution, there exists u ∈ N(v) such
that such that Gv �−→u ⊆ Sv and |Gv �−→u| ≤ nδ/8. In that case, we say that node v is happy against u. If a node,
that is not full, realizes that it can never become happy (for example by having |Sv−→u| > nδ/8 for two different
neighbors u), it becomes sad. Upon becoming happy, sad or full, nodes do not partake in the algorithm except for
answering queries from active nodes. We call nodes unhappy if they are in some other state than happy (including
state active). The goal is that all light nodes eventually become happy, and heavy nodes always remain unhappy.
When comparing the definitions of happy and light, it is evident that when a node becomes happy, it knows that
it is light. Similarly, a node becoming full or sad knows that it is heavy.

For a node v and any X ⊆ N(v), define an exponentiation operation as

Exp(X) : Sv ←−
⋃
u∈X

⋃
w∈Sv−→u

Sw �−→rw(v).

We say that a node v exponentiates towards (or in the direction of) u if u ∈ N(v) and v performs Exp(X)
with u ∈ X.

High level overview of CompressLightSubTrees. The algorithm consists of O(log D̂) iterations, in each of
which nodes perform a carefully designed graph exponentiation procedure. The aim is for light nodes v to become
happy by learning their subtrees Tv, after which, (certain) light nodes compress Tv into their unhappy neighbor.
If there were no memory constraints and every node could do a proper (uniform) exponentiation step in every
iteration of the algorithm, i.e., execute Exp(N(v)), after O(log D̂) iterations all nodes would learn the whole
graph—a proper exponentiation step executed on all nodes halves the diameter—and the highest ID node could
compress the whole graph into itself. However, uniform exponentiation would result in all nodes exceeding their
local memory O(nδ), and also significantly breaking the global memory requirement. Even if we were to steer
the exponentiation procedure such that light nodes would learn a DTv

radius ball around them, where DTv
is

the diameter of their light subtree, this would still break global memory. In fact, we cannot even do a single
exponentiation step for all nodes in the graph without breaking memory bounds! Hence, we need to steer the
exponentiation with some even more stronger invariant in order to abide by the global memory constraint.

Observation 4.2. If every light node v keeps O(|Tv,u|) nodes in its local memory for some (possibly unique)

neighbor u it is light against, this does not violate local memory O(nδ) nor global memory O(n · D̂).

Proof. If there is a heavy node in the graph, |Tv,u| is unique by Lemma 4.3. The claim follows by considering a
hypothetical rooting of the tree at some heavy node and applying Lemma 4.5. Otherwise, the claim holds trivially
because the graph is of size ≤ 2nδ/8 by Lemma 4.4.

Inspired by the observation above, we aim to steer the exponentiation such that it is performed in a balanced
way, where a node learns roughly the same number of nodes in each direction (or sees only leaves in one direction).
In fact, we do not want to exponentiate in a direction if that exponentiation step would provide us with  |Tv|
nodes. This step is further complicated as nodes neither know whether they are heavy or light nor do they know
the size of their subtree. In our algorithm that is presented below we perform a careful probing for the number
of nodes into all directions to determine in which directions we can safely exponentiate without using too much
memory. In the probing procedure ProbeDirections, a node v computes Bv−→u =

∑
w∈Sv−→u

|Sw �−→rw(v)| for every
neighbor u ∈ N(v) as an estimate for the number of nodes it may learn when exponentiating towards u. This
estimate may be very inaccurate and may contain a lot of doublecounting. In Section 4.3.3, we present the full
procedure and prove the following lemma.

Lemma 4.12. (ProbeDirections) Consider an arbitrary iteration of algorithm CompressLightSubTrees. Then
algorithm ProbeDirections(D̂) returns:
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(i) fullDirs ⊆ N(v) such that if we were to exponentiate in all directions, we would obtain |Sv→u′ | > nδ/8 for
all u′ ∈ fullDirs and |Sv−→u′ | ≤ nδ/8 · D̂ for all u′ ∈ N(v) \ fullDirs.

(ii) largestDir ∈ N(v) (returned if fullDirs = ∅) such that if we were to exponentiate in all directions, we would
obtain |Sv→largestDir| ≥ |Sv→u′ | for all u′ ∈ N(v) and |Sv−→largestDir| ≤ nδ/8 · D̂.

ProbeDirections can be implemented in O(1) low-space MPC rounds, using O(n · D̂3) global memory. It does not
alter the state of Sv for any node v in the execution of CompressLightSubTrees.

The main difficulty of CompressLightSubTrees lies in ensuring the global and local memory constraints
(Lemmas 4.18 and 4.19) that prevent us from blindly exponentiating in all directions, while at the same time
ensuring enough progress for light nodes such that every light node becomes happy by the end of the algorithm
(Lemma 4.16).

CompressLightSubTrees(Gi, D̂)

All nodes are active. Initialize Sv ←− N(v). If |Sv| > nδ/8 + 1, v becomes sad.

1. For O(log D̂) iterations:

(a) fullDirs, largestDir ←− ProbeDirections(D̂)

// The properties of ProbeDirections(D̂) are formally stated in Lemma 4.12. Informally, fullDirs ⊆
N(v) contains directions with > nδ/8 nodes, and largestDir contains the direction with the largest
number of nodes if fullDirs = ∅.

(b) If |fullDirs| ≥ 2, v becomes sad.

(c) If |fullDirs| = 1:

i. Perform Exp(N(v) \ fullDirs)
(d) If |fullDirs| = 0:

i. Perform Exp(N(v) \ largestDir)
ii. If v is in Sw for some w, add w to Sv // ensure symmetric view

(e) Node v asks nodes w ∈ Sv whether or not they are happy against rw(v), and if so, what is the size of
subtree Tw,rw(v). Node v can locally compute if it can become happy by learning subtrees Tw,rw(v).
If v can, it asks for them and becomes happy.

// After Step 1, all light nodes are happy, and all heavy nodes are unhappy (Lemma 4.16)

2. Happy nodes v with an unhappy neighbor u compress Sv �−→u = Gv �−→u into u.

3. Nodes v that are happy against u such that u is happy against v update Sv ←− Sv ∪ Su and compress Sv

into the highest ID node in Sv.

In Section 4.3.1, we discuss the measure of progress and correctness, with the final correctness proof of
Lemma 4.7. In Section 4.3.2, we discuss local and global memory bounds, with the final memory proofs of
Lemma 4.7. The MPC implementation is deferred to Appendix A.

4.3.1 Measure of Progress and Correctness We begin by proving the measure of progress and correctness,
which will give us the means to analyze the memory requirements as if the tree was rooted.

Lemma 4.13. Let v be a node that is light against neighbor u. If in some iteration of CompressLightSubTrees, v
exponentiates in the direction of u, i.e., it performs Exp(X) with u ∈ X, the size of the resulting set Sv−→u is
bounded by |Tv|.
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Proof. Consider an arbitrary iteration of the algorithm. If u ∈ fullDirs, we do not exponentiate towards u, so there
is nothing to prove. If u /∈ fullDirs, but fullDirs �= ∅, there is some w �= u such that, by the Probing Lemma 4.12,
|Gv−→w| > nδ/8, which is a contradiction to v being light against u.

Hence, consider the case that fullDirs = ∅. If largestDir = u, we do not exponentiate towards u and there
is nothing to prove. If largestDir �= u, then we exponentiate towards u and by Lemma 4.12 (ii), we have
|Sv−→u| ≤ |Gv−→largestDir| ≤ |Tv|.
Lemma 4.14. In any iteration of CompressLightSubTrees, a light node neither becomes full nor sad.

Proof. Node v never becomes full due to initialization Sv ←− N(v), since for a light node it must hold that
|N(v)| ≤ |Tv| + 1 ≤ nδ/8 + 1 < 2nδ/4. During execution, Sv grows only in Steps 1(c)–(e). During (c), it must
be that fullDirs = u, since otherwise it would imply that |Tv| > nδ/8. Hence, as a result of (c), v cannot become
full. During (d)i, if Exp(X) with u �∈ X, it holds that X ⊂ Tv and v cannot become full. Otherwise if u ∈ X,
by Lemma 4.13, v cannot become full. Node v cannot become full even when performing Step 1(d)ii, since a
hypothetical exponentiation step in the direction of u would yield a set that is bounded by nδ/8 · D̂ < 2nδ/4

(fullDirs is empty and u is largestDir). During (e), node v becomes happy against u and hence |Sv �−→u| ≤ nδ/8. In

the worst case, |Sv−→u| < nδ/8 · D̂ ≤ nδ/4. Hence, as a result of (e), v cannot become full.
A node can become sad only if its degree is too large, or in Step 1(b). A light node v never becomes sad since

it must hold that |N(v)| ≤ |Tv| + 1 ≤ nδ/8 + 1, and v cannot have two or more neighbors u with Gv−→u > nδ/8

(one neighbor would have to be in Tv, implying that |Tv| > nδ/8).

For the proofs of the next two lemmas, let G = (V,E) be the input graph, and consider graph G′ = (V ′, E′)
such that V ′ = V and E′ = E ∪ { {v, w} | v, w ∈ V and w ∈ Sv or v ∈ Sw}.
Lemma 4.15. (Measure of progress) At the start of any iteration j, consider a light (but still active) node
v, and the longest shortest path P j

vw in G′ between v and an a leaf node w ∈ Tv. If |P j
vw| ≥ 4 holds, then holds

that |P j+1
vw | ≤ �3/4 · |P j

vw|� holds.

Proof. Consider any subpath Px1x5
= {x1, x2, x3, x4, x5} ⊆ P j

vw of length 4. For 1 ≤ i ≤ 5, let Sxi
(S′

xi
) be the

memory of node i at the start (end) of iteration j. Note that all nodes on the path are light. By Lemma 4.14,
nodes in Px1x5

never get full nor sad, and hence always exponentiate in all but one direction (either fullDirs or
largestDir).

Claim. For 1 ≤ i < 5 it holds that xi+1 ∈ Sxi
.

Proof. Since edge {xi, xi+1} exists in G′, it must be either that either xi+1 ∈ Sxi or xi ∈ Sxi+1 . In the first
case the claim holds, so consider the latter. Since xi is light, rxi

(xi+1) has never been in fullDirs for xi. Hence,
whenever xi+1 had added xi to Sxi+1

, either xi added xi+1 to Sxi
via exponentiation, or via Step 1(d)ii.

We continue with proving that the path shortens. It is sufficient to prove that for some i, j ∈ [1, 5], i �= j, it
holds that xi ∈ S′

j \ Sj , as this shortens the path between x1 and x5 by one edge.

1. If x2 �∈ Sx3 : Since there is an edge in G′ such that x2 �∈ Sx3 , it means that x2 added x3 to Sx2 during
some iteration j, and since x3 did not add x2 in Step 1(d)ii of iteration j, direction rx3(x2) must have
been in fullDirs for x3. Hence, x3 will exponentiate in all directions besides rx3

(x2). In particular, as
rx3

(x4) �= rx3
(x2), x3 will exponentiate towards x4. As x5 ∈ Sx4

, we obtain x5 ∈ S′
x3

\ Sx3
. This creates an

edge between x3 and x5 in G′ and shortens the path from 4 to 3, i.e., by a factor 3/4.

2. If x2 ∈ Sx3
: Assume that x1 ∈ Sx2

. Since nodes in Px1x5
exponentiate in all but one direction, node x3 will

exponentiate either towards x2 or x4 (it must be that x4 ∈ Sx3 by the claim above). If x3 exponentiates
towards x4, we obtain x5 ∈ S′

x3
\ Sx3 as x5 ∈ Sx4 . If x3 exponentiates towards x4, we obtain x1 ∈ S′

x3
\ Sx3

as x1 ∈ Sx2
. If x1 �∈ Sx2

, we can apply the analysis of 1. for node x2.

Lemma 4.16. After O(log D̂) iterations, all light nodes become happy, while heavy nodes always remain unhappy.
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Proof. Let us adopt the notation of the proof of Lemma 4.15. Since Lemma 4.15 holds for any light node v, after
j = O(log D̂) iterations it must holds that |P j

vw| ≤ 3 because D̂ ∈ [diam(G), nδ/8]. Let the resulting path be
P = {x1, x2, x3, x4}, where x4 is a leaf node. It must be the case that if x2 learns Sx3 �−→x2

for all possible nodes
x3, node x2 becomes happy. Hence, in Step 1(e), P shortens by one. Eventually, after two iterations, P is of
length one, and x1 becomes happy.

For the second part of the claim it is sufficient to show that heavy nodes never become happy. Recall
that heavy nodes are defined as nodes that are not light. Hence, for a heavy node v, there does not exist a
neighbor u ∈ N(v) such that |Gv �−→u| ≤ nδ/8. This implies that during the algorithm, it is not possible for
|Sv �−→u| = |Gv �−→u| ≤ nδ/8 for any u ∈ N(v). Hence, heavy nodes never become happy.

Proof. [Proof of Lemma 4.7 (Correctness)] By Lemma 4.16, we know that after O(log D̂) iterations all light nodes
of G become happy, while all heavy nodes always remain unhappy. In order to prove the correctness of Lemma 4.7,
we need to show that all light trees are compressed into the closest heavy node, if a heavy node exists, and that
the whole tree is compressed into a single node if there are no heavy nodes. We consider both cases separately.
Also consult Figure 1 for an illustration of both cases.

Case 1 (there are heavy nodes). Consider a light node v. As there are heavy nodes, Lemma 4.3 implies
that there is a unique neighbor u ∈ N(u) against which v is light. Let Tv = Gv �−→u. Now, by Lemma 4.16,
v is happy at the end of the algorithm, i.e., there is a neighbor u′ ∈ N(v) for which Sv �−→u′ = Gv �−→u′ and
|Gv �−→u′ | ≤ nδ/8. The latter condition says that v is light against u′ and due to the earlier discussion we deduce
that u = u′ and Tv = Gv �−→u = Sv �−→u ⊆ Sv holds. In summary, for every light node v, the tree Tv (that does not
depend on the algorithm) is contained in Sv. By Lemma 4.3, heavy nodes induce a single connected component,
and hence every light node v is contained in the subtree of some light node v′ that has a heavy neighbor u′. Since
we are in a tree, u′ is the closest heavy node for v′, and in particular, for all light nodes v ∈ T ′

v. By Lemma 4.16,
v′ is happy at the end of the algorithm, and u′ remains unhappy. Performing Step 2 fulfills the first claim of
Lemma 4.7. Step 3 is never performed, since there are no happy nodes left in the graph.

Case 2 (all nodes of G are light). Step 2 of CompressLightSubTrees is never performed, since all (light)
nodes are happy due to Lemma 4.16. For the sake of analysis, let each node v put one token on each incident edge
{v, u} for which Gv �−→u ⊆ Sv holds. As all (light) nodes are happy, i.e., there is a neighbor u such that Gv �−→u ⊆ Sv

holds, the total number of tokens is at least as large as the number of nodes. Since the graph is a tree, at least
one edge receives two tokens. Let {u, v} be such an edge and observe that Gv �−→u ⊆ Sv and Gu�−→v ⊆ Su. Due to
Observation 4.1, Gv �−→u ∪ Gu�−→v = G and after Step 3 of CompressLightSubTrees both nodes have the complete
tree in their memory and both nodes trigger a compression of the whole tree into the largest ID node.

The edge {u, v} with the above properties is not unique, but after Step 3, the endpoints of any edge having
these properties yield the exact same compression.

4.3.2 Local and Global Memory Bounds The most difficult part is proving the memory bounds when
there are heavy nodes. If there were no memory limitation, Lemmas 4.6 and 4.11 (building up on versions of
Lemmas 4.7 to 4.9 without memory limitations) already imply that after O(1) phases of MAX-ID-Solver, there is
exactly one node left in the graph. Denote this node by r. Node r has never been compressed by definition. For
the sake of analysis, we assume a rooting of G at r. We emphasize that fixing a rooting is only for analysis sake,
and we do not assume that the tree is actually rooted beforehand. We define T (v, r) as the subtree rooted at v
(including v itself), as if tree G was rooted at r.

Observation 4.3. Consider tree G with at least one heavy node during an arbitrary iteration of CompressLight-
SubTrees. For every light node v, it holds that T (v, r) = Tv, and every heavy node u has a unique subtree T (u, r).

Recall that the definition of Tv for a light node v was independent from any algorithmic treatment. Still, it
holds that Tv equals T (v, r) (that depends on our algorithm as the node r depends on it). The next lemma states
that a node only exponentiates into the direction of root r if it is safe to do so in terms of memory constraints.
In spirit, it is very similar to Lemma 4.13, with the slight difference that it applies to all nodes, and we prove the
claim using a hypothetical rooting of the tree.

Lemma 4.17. Let v be any node with a parent u (according to the hypothetical rooting at r). If in some iteration
of CompressLightSubTrees when there are heavy nodes, node v exponentiates in the direction of u, i.e., it performs
Exp(X) with u ∈ X, the size of the resulting set Sv−→u is bounded by |T (v, r)| · D̂.
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Proof. If v performs Exp(X) such that u ∈ X, there must exists either w = fullDirs or w = largestDir
such that w ∈ T (v, r). If w = fullDirs, it implies that v is heavy, and by Lemma 4.12 (i), we have that
|Sv−→u| ≤ nδ/8·D̂ < |T (v, r)|·D̂. If w = largestDir, by Lemma 4.12 (ii), we have that |Sv−→u| ≤ |Gv−→w| ≤ |T (v, r)|.

Observation 4.4. When node v performs an exponentiation step, multiple nodes w can send the same node to
v, resulting in duplicates in set Sv. After every exponentiation step, node v has to locally remove these duplicates.
As a result, when bounding the memory of a node, we have to take into account the momentary spike in global
memory due to duplicates. This momentary spike can at most result in an D̂ factor increase in the memory
bounds.

Proof. When node v exponentiates, nodes w send Sw �−→rw(v) and not Sw. Consider node x that v has received via
exponentiation, and consider the unique path Pvx between v and x. Since only nodes w ∈ Pvx could have sent x
to v, and |Pvx| ≤ D ≤ D̂, x has at most D̂ duplicates in Sv.

Lemma 4.18. In CompressLightSubTrees, the global memory never exceeds O(n · D̂3).

Proof. The global memory O(n · D̂3) of ProbeDirections (Step 1(a)) follows from Lemma 4.12. Hence, we analyze
the global memory excluding Step 1(a).

When all nodes are light, by Lemma 4.4, the size of the graph is ≤ 2nδ/8. When taking duplicates into
account (Observation 4.4), since D̂ ≤ nδ/8, even if the whole graph is in the local memory of every node, this
does not violate global memory constraints. For the rest of the proof assume that there is at least one heavy.

Consider an arbitrary iteration j of the algorithm when there are heavy nodes. Define set Cv ⊆ Sv as the
set of nodes that v has added to Sv as a result of performing Exp in all iterations up to iteration j. Let u be the
parent of v (according to the hypothetical rooting at r). For that u, define Cv−→u := Cv ∩Gv−→u. For a node v,
we have

|Cv| ≤ |Cv−→u|+
∑

w∈N(v)\u
|Sv−→w| ≤ |T (v, r)| · D̂ + |T (v, r)| = (1 + D̂)|T (v, r)|

The bound on |Cv−→u| is obtained by applying Lemma 4.17 for the last iteration where v has exponentiated
in the direction of u, and the bound on the sum is by the definition of T (v, r). Observe the crucial difference
between Sv and Cv. Set Sv may contain nodes that are not a result of v performing Exp, but rather the result of
Step 1(d)ii of the algorithm, where some other node w has added v to Sw. However, this can result in at most
a factor-2 overcounting for every node. Combining this with the duplicates of Observation 4.4 results in global
memory

D̂ ·
∑
v∈V

|Sv| = D̂ ·
∑
v∈V

2|Cv| ≤ D̂ ·
∑
v∈V

2(1 + D̂)|T (v, r)| = O(n · D̂3),

where the bound on
∑

v∈V |T (v, r)| is due to Lemma 4.5.

Lemma 4.19. In CompressLightSubTrees, the local memory of a node v never exceeds O(nδ).

Proof. The local memory of ProbeDirections (Step 1(a)) follows from Lemma 4.12. Hence, we analyze the local
memory excluding Step 1(a).

When all nodes are light, by Lemma 4.4, the size of the graph is ≤ 2nδ/8. When taking duplicates into
account (Observation 4.4), since D̂ ≤ nδ/8, even if the whole graph is in the local memory of every node, this
does not violate global memory constraints. For the rest of the proof assume that there is at least one heavy.

Consider the start of an arbitrary phase i. If deg(v) > nδ, we defer the discussion to Lemma A.1 on the MPC
implementation details. Assuming deg(v) ≤ nδ, we prove the claim by induction. During the algorithm, the size
of the local memory is at most of order |Sv| · D̂ (the extra D̂ factor is due to Observation 4.4). The claim clearly
holds in the first iteration when Sv is initialized as N(v). Observe that if deg(v) > nδ/8 +1, node v becomes sad.
Hence, we can further assume that deg(v) ≤ nδ/8 + 1. Assume the claim holds in iteration j. We perform a case
distinction on the different changes of Sv, and show that for a node v, it holds that |Sv| = O(n7δ/8), implying
that |Sv| · D̂ = O(nδ) since D̂ ≤ nδ/8.
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• Step 1(c) and |fullDirs| = 1,

|Sv| becomes at most |Sv−→fullDirs|+ (deg(v)− 1) · nδ/8 · D̂ ≤ 2nδ/4 + (nδ/8)3 < n7δ/8. The term |Sv−→fullDirs|
has a (loose) upper bound of 2nδ/2, since v is not full. Observe that exponentiating in all directions except
fullDirs yields ≤ nδ/8 · D̂ nodes per direction by Lemma 4.12 (i), and that D̂ ≤ nδ/8 by assumption.

• Step 1(d) and |fullDirs| = 0,

|Sv| becomes at most deg(v) · nδ/8 · D̂ ≤ (nδ/8 + 1) · (nδ/8)2 < n7δ/8. Observe that exponentiating in any
direction yields ≤ nδ/8 · D̂ nodes per direction by Lemma 4.12 (ii) (fullDirs is empty), and that D̂ ≤ nδ/8

by assumption.

• Step 1(e),

If a node v becomes happy against u, |Sv| becomes |T (v, r)|+ |Sv−→u| ≤ nδ/8 +2nδ/4 < n7δ/8, where nδ/8 is
an upper bound for |T (v, r)| since it is light, and 2nδ/4 is (loose) upper bound on |Sv−→u| since v is not full.

Hence, the claim holds in iteration j + 1.

Proof. [Proof of Lemma 4.7 (Memory bounds)] The local memory bounds follow from Lemma 4.19, and the global
memory bounds follow from Lemma 4.18.

4.3.3 Probing Our probing procedure is an integral part of CompressLightSubTrees, as it steers the exponenti-
ation of every node such that, informally, a node never learns a (significantly) larger neighborhood in the direction
of the root (which is imagined only for the analysis), than in the direction of its subtree.

Lemma 4.12. (ProbeDirections) Consider an arbitrary iteration of algorithm CompressLightSubTrees. Then
algorithm ProbeDirections(D̂) returns:

(i) fullDirs ⊆ N(v) such that if we were to exponentiate in all directions, we would obtain |Sv→u′ | > nδ/8 for
all u′ ∈ fullDirs and |Sv−→u′ | ≤ nδ/8 · D̂ for all u′ ∈ N(v) \ fullDirs.

(ii) largestDir ∈ N(v) (returned if fullDirs = ∅) such that if we were to exponentiate in all directions, we would
obtain |Sv→largestDir| ≥ |Sv→u′ | for all u′ ∈ N(v) and |Sv−→largestDir| ≤ nδ/8 · D̂.

ProbeDirections can be implemented in O(1) low-space MPC rounds, using O(n · D̂3) global memory. It does not
alter the state of Sv for any node v in the execution of CompressLightSubTrees.

ProbeDirections(D̂)

1. For every neighbor u ∈ N(v), compute Bv−→u =
∑

w∈Sv−→u
|Sw �−→rw(v)|.

2. Define fullDirs := {u ∈ N(v) | Bv−→u ≥ nδ/8 · D̂}.
3. If |fullDirs| > 0, define largestDir := ∅. Otherwise, let umax = argmaxu∈N(v){Bv−→u} and if Bv−→umax

≥
D̂ ·Bv−→u′ for all u′ ∈ N(v) \ umax

(a) define largestDir := umax,

(b) otherwise, perform Exp(N(v)) and define largestDir := argmaxu∈N(v){|Sv−→u|}.
4. Return fullDirs, largestDir.

Lemma 4.20. If a node v were to perform Exp(u) for a neighbor u ∈ N(v), it would hold that Bv−→u/D̂ ≤
|Sv−→u| ≤ Bv−→u.
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Proof. Recall the definition of Bv−→u. Let us compute how many times a node w in Bv−→u can be overcounted.
Consider the unique path Pvw from v to a node w. Observe that out of the nodes in Sv−→u, node w is in Sx �−→v

only for nodes x ∈ Pvw. Since |Pvw| ≤ D + 1 ≤ D̂ + 1, any node w is overcounted at most D̂ times, completing
the proof.

Proof. [Proof of Lemma 4.12] Combining the condition |Bv−→u| ≥ nδ/8 ·D̂ of Step 2 and the D̂-factor overcounting
of Lemma 4.20 proves the properties of fullDirs. The properties of largestDir hold by definition: in the case of Step
3(a), umax is the largest direction by Lemma 4.20, and in the case of Step 3(b), we exponentiate and find the
absolute values. Local memory is respected in Step 1, since node v only aggregates an integer from every other
node in Sv. More importantly, it is respected in Step 3: a node performing ProbeDirections has deg(v) < nδ/8 +1
(otherwise it is sad), Exp(N(v)) is only performed if all directions yield ≤ nδ/8 · D̂ nodes (fullDirs is empty), and
we are promised that D̂ ≤ nδ/8.

Global memory is respected by a clever observation similar to Lemma 4.18. Similarly to Section 4.3.2, assume
we have a rooting at some node r, and that node u is the parent of v. We want to bound the size of the resulting
set Sv−→u if node v performs Exp(N(v)). In particular, we want to show that |Sv−→u| ≤ |Sv−→w| ·D̂2 ≤ |T (v, r)| ·D̂2

for some node w ∈ N(v) \ u. Towards contradiction, assume that |Sv−→u| > |Sv−→w| · D̂2 for all w ∈ N(v) \ u. It
must then hold that

Bv−→u ≥ |Sv−→u| > |Sv−→w| · D̂2 ≥ Bv−→w/D̂ · D̂2 = Bv−→w · D̂
for all w ∈ N(v) \ u by Lemma 4.20. However, this implies that u would have been chosen as umax,

largestDir would have been defined as umax, and Exp(N(v)) would have never been performed; we have arrived at
a contradiction. It holds that |Sv−→u| ≤ |T (v, r)| · D̂2, which bounds set Sv of every node by (D̂2 + 1) · |T (v, r)|,
and by Lemma 4.5, the global memory is bounded by∑

v∈V

|Sv| ≤ (D̂2 + 1)
∑
v∈V

|T (v, r)| ≤ (D̂2 + 1)(D + 1) · n = O(n · D̂3).

Regarding MPC implementation, ProbeDirections only performs Exp(N(v)) (implementability proven in
Lemma A.1) and computes Bv−→u, which is only a modified version of Exp(N(v)): instead of nodes w sending
Sw �−→rw(v) to node v, they only send |Sw �−→rw(v)|.

4.4 MAX-ID: Single Phase (CompressPaths) Let us prove the following lemma, which allows us to compress
all paths in the tree into single edges. This operation does not create new paths or disconnect the graph.

Lemma 4.8. (CompressPaths) For any tree G and D̂ ∈ [diam(G), nδ/8], CompressPaths(G, D̂) returns the graph
that is obtained from G by replacing all paths of G with a single edge. The algorithm runs in O(log D̂) low-space
MPC rounds using O(n · D̂2) words of global memory.

We describe a algorithm, which we denote as CompressPaths, and which we run on every path P ⊆ G. A
path only includes consecutive degree-2 nodes. Similarly to CompressLightSubTrees, every node v ∈ P has some
set Sv in its memory, which we initialize to NP (v). Every node performs Exp(N(v)) until Sv no longer grows,
whereupon, for every node v, it holds that Sv = P . The highest ID node w ∈ P figures out the endpoints x, y
of path P in G (which either have degree 1 or ≥ 3). Then, w.l.o.g., assume that ID(x) > ID(y), whereupon w
compresses P into x. By the definition of compression, node w also creates edge {x, y}.
Proof. [Proof of Lemma 4.8] After performing CompressPaths, every node v ∈ P learns path P , i.e., it holds that
Sv = P , after O(log D̂) rounds, since the path is of length at most diam(G) and D̂ ∈ [diam(G), nδ/8]. Node w
can learn x, y by asking for the neighbors (that are in G \ P ) of the leaf.

Because |P | ≤ D ≤ D̂ ≤ nδ/8, the local memory of a node is bounded by nδ/4 (when taking Observation 4.4
into account). The global memory is respected since in the worst case, all nodes have at most D̂2 nodes in memory
(when taking Observation 4.4 into account). Compressing and creating a new edge {x, y} comprises of sending a
constant sized message to both x and y. Even in the case when x or y are endpoints to multiple paths, their total
incoming message sizes are O(deg(x)) and O(deg(y)). The small caveat to this scheme is that if deg(x) or deg(y)
are > nδ/8, we have to employ the aggregation tree structure as discussed in Lemma A.1. The implementation
details of performing Exp can also be found in Lemma A.1.

Copyright © 2023
Copyright for this paper is retained by the authors2608



4.5 MAX-ID: Single Reversal Phase A single reversal phase consist of steps DecompressPaths and Decom-
pressLightSubTrees. In the former, we essentially reverse CompressPaths, and in the latter, we reverse Com-
pressLightSubTrees. We prove the following.

Lemma 4.9. (DecompressPaths,DecompressLightSubTrees) All nodes that were compressed by CompressLightSub-
Trees and CompressPaths can be decompressed by DecompressLightSubTrees and DecompressPaths, respectfully.
The algorithms run in O(1) low-space MPC rounds using O(n) words of global memory.

Let us introduce both steps formally.

• DecompressPaths. For every path P that was compressed in phase i into node x, node x decompresses P
from itself.

• DecompressLightSubTrees. Every node v that had compressed Tv into a neighbor u (or itself), decompresses
Tv from u (or itself).

Proof. [Proof of Lemma 4.9] As long as the nodes X that a node v wants to decompress are in its local memory,
both steps are clearly correct and implementable in O(1) low-space MPC steps. Observe that all nodes v that
decompress a node set X, have at some point compressed set X and hence, have had X in local memory (in the
form of Sv). By simply retaining set X in memory until it is time to decompress, we fulfill the requirement.

5 Connected Components (CC)

By Lemma 4.1, we can solve MAX-ID on any tree in O(log D̂) time using MAX-ID-Solver. The algorithm requires
O(m · D̂3) words of global memory and value D̂ ∈ [diam(G), nδ/8] as input. This section is mostly devoted to
showing how to use MAX-ID-Solver to solve the connected components (CC) problem.

Definition 5.1. (The CC Problem) Given a graph with unique identifiers for each node, and disconnected
components C1, . . . , Ck, every node v ∈ Ci outputs the maximum identifier of Ci.

Observe that MAX-ID-Solver actually solves CC for the case when the input graph is a single tree. We show
how to extendMAX-ID-Solver to solve CC for forests, effectively proving the upper bounds of the following theorem.

Theorem 5.1. (Connected Components) Consider the family of forests. There is a deterministic low-space
MPC algorithm to detect the connected components on this family of graphs. In particular, each node learns the
maximum ID of its component. The algorithms runs in O(logD) rounds, where D is the maximum diameter of
any component. The algorithm requires O(n+m) words of global memory, it is component-stable, and it does not
need to know D. Under the 1 vs. 2 cycles conjecture, the runtime is asymptotically optimal.

The proof is contained in Section 5.1 with references to subroutines from Sections 5.2 to 5.4. In Section 5.5,
we show how to modify the algorithm of Section 5.1 to obtain a rooting.

5.1 Proof of Theorem 1.1 There are three steps to extending MAX-ID-Solver and proving Theorem 1.1: (1)
reducing the global memory to O(n +m); (2) removing the need to know diam(G) in order to give D̂ as input;
(3) generalizing it from trees to forests while maintaining component-stability. We address all steps separately.

1. By applying Lemma 5.1 before executing MAX-ID-Solver, we reduce the number of nodes in G by a
polynomial factor in D̂. This reduces the global memory to a strict O(n+m).

2. By employing the guessing scheme of Section 5.3, we perform multiple (sequential) executions of MAX-ID-
Solver. Every execution is given a doubly exponentially growing guess for D̂. The guessing scheme does not
violate global memory O(n+m) and results in a total runtime of O(log diam(G)).

3. By the discussion in Section 5.4, we can execute MAX-ID-Solver on forests such that the runtime becomes
O(logD), where D is the largest diameter of any component. Moreover, when executing MAX-ID-Solver on
forests, it is component-stable.
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5.2 CC: Pre- and Postprocessing The aim of our preprocessing is to reduce the number of nodes in the input
graph G by a factor of poly(D̂) (in fact D̂3 would suffice), resulting in graph G′. By executing MAX-ID-Solver
on G′, we achieve a strict O(n +m) global memory for one execution. When reducing the number of nodes, we
must not disconnect the graph, and also keep the knowledge of the maximum ID inside the remaining graph.

After the connected components problem is solved on G′, we must extend the solution to the nodes in G \G′

such that the solution is consistent. Extending the solution simply means informing every node in G \G′ of ID,
which is the maximum identifier of the graph. We call this stage postprocessing. This section is devoted to proving
the following lemma.

Lemma 5.1. Consider a tree G with n nodes. The number of nodes can be reduced by a factor of poly(D̂) such that
the resulting graph G′ remains connected, and one of the remaining nodes knows the maximum ID set VG \ VG′ .
If connected components is solved in G′, the solution can be extended to G. Both obtaining graph G′ from G
and extending the solution from G′ to G takes O(log D̂) low-space MPC rounds using O(n +m) words of global
memory.

Let us restate a known result that is going to be an essential tool in our preprocessing. We present a proof
sketch to explicitly reason the memory bound.

Lemma 5.2. ([23]) There is an O(1)-round sublinear local memory (component unstable) MPC algorithm that,
given a subset U ⊆ V of nodes of a graph G = (V,E) with dG(u) = 2 for all u ∈ U , computes a subset
S ⊆ U that is an independent set in G and satisfies |S| ≥ |U |/8. The global memory used by the algorithm is
O(|U |) +O(|M | · log n) = O(n).

Proof. [Proof Sketch] Consider the following random process: Each node marks itself with probability 1/2. If a
node is marked and no neighbor is marked, it joins the set S, otherwise it does not. The probability of a node to
be marked and not having any of its neighbors marked is 1/8. Thus, the expected size of S is |U |/8. Further, note
that this analysis still holds if the randomness for the nodes is 3-independent. |U | coins that are 3-independent
can be created from a bitstring of length O(3 · log |U |) = O(log n) (see Definition 5.2 and Theorem 5.2).

In order to deterministically compute the set S we use the method of conditional expectation to compute a
good bit string. For that purpose break the bitstring into O(1) chunks of length at most δ/100 log n. Then we
deterministically choose the bits on these segments such that the expected size of S is remains |U |/8 conditioned
on all already determined segments of random bits. To fix one segment introduce the indicator random variable
Sv that equals 1 if and only if v ∈ S. Let φ be the event that fixes to bitstring to what is already there and
for α ∈ [nδ/100] let φα be the event that the to be fixed segment equals α. Knowing the Ids of its neighbors
and the already fixed part of the bitstring, each machine can for each v ∈ U that it holds compute the values
Sv,α = E[Sv | ψ = α∧ φ]. Then, nodes fix the current segment to the α0 such that minimizes

∑
v∈U Sv,α. By the

method of conditional expectation we have E[|S| | ψα0
∧ φ] ≤ |U |/8. At the end the whole bitstring is fixed and

we have deterministically selected an independent set S satisfying |S| ≤ |U |/8.
For an MPC implementation, we need to be able to globally, i.e., among all machines, to agree on the good

bit string obtained from the method of conditional expectations. For this purpose, consider an aggregation tree
structure, where the machines are arranged into a (roughly) nδ/2-ary tree Definition A.1 with depth O(1/δ). In
this tree, each machine can choose the (locally) good bit segments (conditioned on the previous segments) of
δ/100 log n bits. Notice that there are at most nδ/100 such bit segments. Now, we can convergecast the expected
size of S, given a segment, to the root. Then, the root can decide on the good (prefix of a) bit string. In each
round, each machine receives a nδ/2 · nδ/100 � nδ bits, which fits the local memory. Since we have O(n1−δ)

machines, the total memory requirement to store the bits is O(nδ/2+δ/100+(1−δ)) = O(n).

Definition 5.2. ([37]) For N,M, k ∈ N such that k ≤ N , a family of functions H = {h : [N ] → [M ]} is
k-wise independent if for all distinct x1, . . . , xk ∈ [N ], the random variables h(x1), . . . , h(xk) are independent and
uniformly distributed in [M ] when h is chosen uniformly at random from H.

Theorem 5.2. ([37]) For every a, b, k, there is a family of k-wise independent hash functions H = {h : {0, 1}a →
{0, 1}b} such that choosing a random function from H takes k ·max{a, b} random bits.
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Next, we introduce elementary operations Rake, Contract, which we use during preprocessing, and Insert,
Expand, which we use during postprocessing. Operation Insert can be thought of as the reversal of Rake, and
operation Expand as the reversal of Contract. Recall the definition of compression and decompression from the
beginning of the section.

Definition 5.3. For a degree-1 node v define the following two operations.

− Rake(v): Node v compresses into its unique neighbor u

+ Insert(v): Node v that underwent Rake decompresses from u.

For a degree-2 node v define the following two operations.

− Contract(v): Node v with neighbors u and w compresses into its highest ID neighbor.

+ Expand(v): Node v that underwent Contract decompresses from u (w.l.o.g. ID(u) > ID(w)).

As long as we ensure that Insert(v) and Expand(v) are executed on nodes which have undergone Rake(v) and
Contract(v) operations, respectively, we obtain the following observation.

Observation 5.1. The operations Rake(v), Insert(v), Contract(v) and Expand(v) can be implemented in O(1)
low-space MPC rounds using O(n+m) global memory on all nodes v ∈ Z ⊆ V in parallel, if Z is an independent
set containing only degree-1 and degree-2 nodes.

Let us introduce preprocessing and postprocessing formally. Note that preprocessing is performed directly on
the input graph G, resulting in smaller graph G′. Whereas postprocessing is performed on a solved version of G′,
i.e., with all nodes v having idv = ID, resulting in a solved version of the input graph G. Both of the following
routines use some constant c in their runtime in order to reduce the number of nodes by a factor of D̂c. Initialize
G0 as the input graph G.

• Preprocessing. For j = 0, . . . , c log D̂ iterations:

1. Let H be the subgraph induced by all degree-2 nodes in Gj . Compute an independent set Z ∈ H of
size at least |H|/8 using Lemma 5.2.

2. Contract(v) for every v ∈ Z.

3. Rake(v) for every degree-1 node v. If two leaves are neighbors, perform Rake only on the higher ID
one.

• Postprocessing. For j = c log D̂, . . . , 0 iterations:

1. Insert(v) for every node v that performed Rake(v) in iteration j of Preprocessing.

2. Expand(v) for every node v ∈ Z in iteration j of Preprocessing.

Proof. [Proof of Lemma 5.1] Performing Preprocessing takes O(log D̂) time since Steps 1–3 can be performed in
constant time. Let G (G′) be the graph before (after) performing Preprocessing. Graph G′ has a poly(D̂) fraction
less nodes that graph G because a constant fraction of nodes in a tree have degree ≤ 2, and we compress all
degree ≤ 2 nodes in the graph in each iteration.

Performing Postprocessing simply reverses Preprocessing while extending the current solution, so it has the
same runtime as Preprocessing. Both Preprocessing and Postprocessing can be implemented in low-space MPC
using O(n +m) global memory, since other that Lemma 5.2, nodes only exchange constant sized messages with
their neighbors, and don’t store anything non-constant in local memory.
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5.3 CC: Removing Knowledge of the Diameter Our MAX-ID-Solver algorithm requires value D̂ ∈ [D,nδ/8]
as input, where D denotes the diameter of the input tree. We show that we don’t actually need to know D in order
to give value D̂ as input. We achieve this by sequentially executing MAX-ID-Solver with a doubly exponential
guess for D̂ as follows.

D̂ = D̂1, D̂2, . . . , D̂log lognδ/8 = 22
1

, 22
2

, . . . , 22
log log nδ/8

.

We proceed with the next guess only if the previous has failed to terminate after a runtime of O(log D̂i).
Detecting a failure within the given runtime, and making sure that a wrong guess does not violate memory
constraints is a delicate affair, and is discussed in a separate paragraph. If all of our guesses fail, it must be that
D > nδ/8. In this case, we can run the deterministic O(log n) time connected components algorithm of Coy and
Czumaj [22] with the requirement that all nodes output the maximum ID of the component (their algorithm is
component-stable for the same reasons the algorithm in this paper is). Hence, we can safely assume thatD ≤ nδ/8.
Assuming that failure detection can be performed within O(log D̂i) and the given memory constraints, we show
that the algorithm terminates successfully for some guess D̂, and that the runtime resulting from our guessing
scheme is acceptable. Eventually for some guess l, it holds that D ≤ D̂l and D̂l′ < D for all l′ < l. In particular,
it holds that D ≤ D̂l ≤ D2. Since D̂l ∈ [D,min(nδ/8, D2)] ⊆ [D,nδ/8], MAX-ID-Solver will terminate successfully
for D̂l. Our guessing scheme results in a runtime of at most

l∑
i=1

O(log D̂i) ≤
( ∞∑

i=0

1

2i

)
O(logD) +O(logD2) = O(logD) .

Detecting Failure. Let us consider the case when our guess D̂ for the diameter is < D. It is possible for
the algorithm to terminate even with a wrong diameter guess. However, we want to show that when the guess is
wrong, we are able to detect it in O(log D̂) time even when the algorithm has not terminated. We also want to
show that using a wrong diameter guess does not violate our memory constraints.

Our aim is to show that there exists a constant c such that if, after c log D̂ rounds, the algorithm is unsuccessful
(failed), we can manually terminate the execution and move on to the next diameter guess. The algorithm can
be seen as unsuccessful, if after a constant number of phases, the graph is larger than a singleton (Lemma 4.11).
Note that failure cannot be detected during preprocessing, since there we simply free an appropriate amount of
memory for the actual algorithm. The exact number of phases can be deduced from Lemma 4.11. Phases consist of
algorithms CompressLightSubTrees and CompressPaths which both have a runtime of O(log D̂) by Lemma 4.7 and
Lemma 4.8, respectively. The exact constant in Lemma 4.7 can be computed from Lemmas 4.12, 4.15 and 4.16.
If the diameter guess is wrong, it will simply result in removing too small subtrees, and possibly a graph larger
than a singleton being left after the phases. The exact constant in Lemma 4.8 can be computed from its proof in
Section 4.4. If the diameter guess is wrong, it may still result in CompressPaths terminating successfully. However,
it may also result in nodes not learning the whole path they are in, which we can detect and manually terminate
the execution.

It is left to show that for a wrong diameter guess, the local memory O(nδ) and global memory O(n+m) are not
violated. Both cases are surprisingly straightforward. The former holds since all of the local memory arguments
of the section are independent of D̂ (they only use its upper bound nδ/8). The latter holds by performing
Preprocessing for 3 log D̂ iterations before every execution, since all of our lemmas use at most O((n +m) · D̂3)
global memory.

5.4 CC: Forests and Stability When executing algorithm MAX-ID-Solver and the scheme developed in
Section 5.1 on forests instead of trees, we have to consider how the disjoint components can affect each other with
regards to runtime, memory, and component-stability (Definition 5.4).

Definition 5.4. (Component-stability, [24]) A randomized MPC algorithm AMPC is component-stable if its
output at any node v is entirely, deterministically, dependent on the topology and IDs (but independent of names)
of v’s connected component (which we will denote CC(v)), v itself, the exact number of nodes n and maximum
degree Δ in the entire input graph, and the input random seed S. That is, the output of AMPC at v can be expressed
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as a deterministic function AMPC(CC(v), v, n,Δ,S). A deterministic MPC algorithm AMPC is component-stable
under the same definition, but omitting dependency on the random seed S.

If we were to execute MAX-ID-Solver on a forest, nodes from disjoint components would never communicate
with each other, rendering the runtime and memory arguments local. Hence, the algorithm is compatible with
forests. In the scheme developed in Section 5.1 nodes from disjoint components communicate with each other
only during preprocessing, when we employ the O(1) time independent set algorithm of Lemma 5.2. Since the
independent set is used to reduce the number of nodes globally, all of the runtime and memory arguments are
still compatible with forests, as long as the given value D̂ is in [D,nδ/8], where D is the largest diameter of any
component.

What is left to argue is that if the input graph is a forest, MAX-ID-Solver and the scheme developed in
Section 5.1 are component-stable. This however follows directly from the stability definition (Definition 5.4)
and our problem definition (Definition 5.1), because we require nodes to output the maximum identifier of their
component, which is fully independent of other components.

5.5 Computing a Rooted Forest In this section, we show how to use the connected components algorithm
of Theorem 1.1, with minor adjustments, to root a forest. We prove the following.

Theorem 5.3. (Rooting) Consider the family of forests with component-wise maximum diameter D. There is
a deterministic low-space MPC algorithm that roots the forest in O(logD) rounds using O(n+m) words of global
memory, and it is component-stable.

First, we execute the algorithm of Theorem 1.1 in order for every node to learn the maximum ID of its
component. Using this knowledge, we execute a modified version of the same algorithm that roots (in a component-
stable way) every component towards the single node (per component) that is left after � phases. The modifications
are the following.

1. Redefine compression and decompression as follows

• Compress X into v: remove X (and its incident edges) from the graph. For any edge {x, y} with x ∈ X
and v �= y /∈ X we introduce a new edge {v, y}.

• Decompress X from v: Decompress X from v: add X (and its incident edges) back to the graph. If
set X is a subtree, orient the revived edges towards the single node to which the subtree is attached
to. If set X is a path, orient the revived edges in the same direction as edge {v, y} that was added
during the compression step of X into v.

2. In the derandomization of Lemma 5.2, the process is run independently on each connected component.
For each component, we use an aggregation tree (recall Definition A.1) that consist of nodes only in the
corresponding component with the maximum ID node as a root. Then, the good bitstrings can be determined
through the independent aggregation trees.

Proof. [Proof of Theorem 1.2] The first modification to the algorithm ensures a rooted forest. We prove it by
induction, with the base case being a rooted graph G� = {v}. If graph Gi is rooted in the beginning of a reversal
phase i, DecompressPaths extends the rooting of (some) single edges to paths, and DecompressLightSubTrees
extends the rooting of (all) leaf nodes to subtrees, resulting in a rooted graph Gi−1 (recall that the reversal phase
indices are in decreasing order). The same exact logic also holds for Postprocessing, where we extend the rooting
to the nodes that were removed during Preprocessing.

The second modification ensures component-stability. Since the maximum ID node of each component is
responsible only for its own component, we can choose the bitstring independently of the other components
and create the broadcast tree (like in Lemma 5.2) for each component separately and independently. Then, the
orientation of the rooting (i.e., which node will become the root) only depends on the topology and the maximum
ID of the component, making it independent of the other components.
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6 Solving LCL Problems

In this section, we show a useful application of our forest rooting algorithm. In particular, we show that all
problems contained in a wide class of problems that has been heavily studied in the distributed setting, called
Locally Checkable Labelings (LCLs), can be solved in O(logD) deterministic rounds.

Informally, LCLs are a restriction of a class of problems called locally checkable problems. These problems
satisfy that, given a solution, it is possible to check whether the solution is correct by checking the constant radius
neighborhood around each node separately. Examples of these problems are classical problems such as maximal
independent set, maximal matching, and (Δ+1)-vertex coloring, but also more artificial problems, such that the
problem of orienting the edges of a graph such that every node must have an odd number of outgoing edges.

The restriction that is imposed on locally checkable problems to obtain the class of LCLs is to require that
the number of possible input and output labels that are required to define the problem must be constant, and
moreover only graphs of bounded degree are considered. In the distributed setting, and in particular in the LOCAL
model of distributed computing, LCLs have been extensively studied, see, e.g., [3, 9, 21, 12, 20, 10, 18, 16]. In
particular, the imposed restriction makes it possible to prove very interesting properties on them, and to develop
generic techniques to solve them. For example, we know that, if we restrict to forests, there are LCLs that can
be solved in O(1) rounds, there are LCLs that require Ω(log∗ n) rounds, but we also know that there is nothing

in between, even if randomness is allowed (e.g., there are no LCLs with complexity Θ(
√
log∗ n)). Interestingly,

techniques that have been developed to study LCLs have then often been extended and used to understand locally
checkable problems in general (that is, problems that are not necessarily LCLs).

Since the LOCAL model is very powerful, and allows to send arbitrarily large messages, any solvable problem
can be solved in O(D) rounds. In this section, we provide an MPC algorithm for solving any solvable LCL problem
on forests. The algorithm is deterministic, component-stable, and runs in O(logD) time in the low-space MPC
model using O(n + m) words of global memory (formal statement in Theorem 1.3). Moreover, our algorithm
can be used even for unsolvable LCLs, that is, problems for which there exists some instance in which they are
unsolvable. Hence, given any LCL, our algorithm produces a correct output on any instance that admits a solution,
and it outputs ”not solvable” on those instances where the LCL is not solvable.

Theorem 1.3. (LCLs on trees) All LCL problems on forests with maximum component diameter D can be
solved in O(logD) time in the low-space MPC model using O(n +m) words of global memory. The algorithm is
deterministic and does not require prior knowledge of D.

Notice that it is enough to prove Theorem 1.3 for rooted forests, since we can first root the forest by spending
the same runtime and memory (Theorem 1.1), and then solve the LCL.

The remaining of the section is structured as follows: we start by giving a formal definition of LCLs
(Section 6.1); we proceed by providing a high-level overview of our algorithm (Section 6.2); then, we provide
the definition of the concept of “compatibility tree”, that will be useful later (Section 6.3); in Section 6.4 we give
the explicit algorithm, called LCLSolver; in Sections 6.6 to 6.10 we show some properties of the subroutines used
in LCLSolver, and we bound the time complexity of each of them; finally, we put things together and prove the
main theorem of this section in Section 6.11.

We note that, for the sake of simplicity, algorithm LCLSolver is described for trees, but we will show in
Section 6.11 that it can also be executed on forests.

6.1 Locally Checkable Labelings Locally Checkable Labeling (LCL) problems have been introduced in a
seminal work of Naor and Stockmeyer [35]. The definition they provide restricts attention to problems where the
goal is to label nodes (such as vertex coloring problems), but they remark that a similar definition can be given
for problems where the goal is to label edges (such as edge coloring problems). A modern way to define LCL
problems that captures both of the above types of problems (and combinations thereof) consists of labeling of
half-edges, i.e., pairs (v, e) where e is an edge incident to vertex v. Let us first formally define half-edge labelings,
and then provide this modern LCL problem definition.

Definition 6.1. (Half-edge labeling) A half-edge in a graph G = (V,E) is a pair (v, e), where v ∈ V , and
e = {u, v} ∈ E. We say that a half-edge (v, e) is incident to some vertex w if v = w. We denote the set of
half-edges of G by H = H(G). A half-edge labeling of G with labels from a set Σ is a function g : H(G) → Σ.

We distinguish between two kinds of half-edge labelings: input labelings, that are labels that are part of the
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input, and output labelings, that are provided by an algorithm executed on input-labeled instances. Throughout
the paper, we will assume that any considered input graph G comes with an input labeling gin : H(G) → Σin and
will refer to Σin as the set of input labels; if the considered LCL problem does not have input labels, we can simply
assume that Σin = {⊥} and that each half-edge is labeled with ⊥.

Informally, LCLs are defined on bounded-degree graphs, where each node may have in input a label from a
constant-size set Σin of labels, and must produce in output a label from a constant-size set Σout of labels. Then,
an LCL is defined through a set of locally checkable constraints that must be satisfied by all nodes.

Definition 6.2. (LCL) An LCL problem Π = (Σin,Σout, C, r) is defined as follows:

• Σin and Σout are sets of constant size that represent, respectively, the possible input and output labels.

• The parameter r is a constant called checkability radius of Π.

• C is a set of constant size, containing allowed neighborhoods. Each element ci = (Gi, vi) of C, where
Gi = (Vi, Ei), is such that:

– Gi is a graph satisfying that vi ∈ Vi and that the eccentricity of vi in Gi is at most r;

– Every half-edge of Gi is labeled with a label in Σin and a label in Σout.

Definition 6.3. (Solving an LCL) In order to solve an LCL on a given graph G = (V,E) where to each
element (v, e) ∈ V × E is assigned an input label from Σin, we must assign to each element (v, e) ∈ V × E an
output label from Σout such that, for every v ∈ V , it holds that (Gr(v), v) ∈ C, where Gr(v) is the subgraph of G
induced by nodes at distance at most r from v and edges incident to at least one node at distance at most r − 1
from v.

Example 6.1. (Maximal Independent Set) In the maximal independent set problem, the goal is to select an
independent set of nodes that cannot be extended. That is, selected nodes must not be neighbors, and non-selected
nodes must have at least one neighbor in the set.

For this problem, Σin = {⊥}. Then, we can use two possible output labels, 1 to indicate nodes that are in the
set, and 0 to indicate nodes that are not in the set. Hence, Σout = {0, 1}. Finally, we need to define r and C.
For this problem, it is sufficient to pick r = 1. In C, we put all possible pairs (G, v) satisfying the following:

• G is a star centered at v;

• G has at most Δ leaves (and there can be 0 leaves);

• For each node in G, either all incident half-edges are output labeled 0, or all incident half-edges are output
labeled 1;

• If v is labeled 1, then all leaves are labeled 0;

• If v is labeled 0, then at least one leaf is labeled 1.

Hence, the idea is that MIS can be checked by just inspecting the radius-1 neighborhood of each node, which
is a star, and we just list all stars that are valid.

While Definition 6.2 gives an easy way to define problems, such a definition is not the most convenient for
proving statements about LCLs. In order to make our proofs more accessible, we consider an alternative definition
of LCLs, called node-edge formalism. It is known that, on trees and forests, any LCL defined as in Definition 6.2
can be converted, in a mechanical way, into an LCL described by using this formalism, such that the obtained
LCL has the same asymptotic complexity of the original one [10].

Definition 6.4. (Node-edge-checkable LCL) In this formalism, a problem Π is a tuple (Σin,Σout, CV , CE)
satisfying the following:

• As before, Σin and Σout are sets of constant size that represent, respectively, the possible input and output
labels;
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• CV and CE are both sets of multisets of pairs of labels, where each pair is in Σin × Σout, and multisets in
CE have size 2.

Definition 6.5. (Solving a node-edge checkable LCL) Solving an LCL given in this formalism means that
we are given a graph G = (V,E) where to each element (v, e) ∈ V × E is assigned a label iv,e from Σin, and to
each element (v, e) ∈ V × E we must assign a label ov,e from Σout such that:

• For every node v ∈ V it holds that the multiset Mv = {(iv,e, ov,e) | e is incident to v} satisfies Mv ∈ CV ;

• For every edge e ∈ E it holds that the multiset Me = {(iv,e, ov,e) | e is incident to v} satisfies Me ∈ CE.

Hence, in the node-edge checkable formalism, we are given a graph where each half-edge (that is, an element from
V × E) is labeled with a label from Σin, the task is to label each half-edge from a label from Σout, and the LCL
constraints are expressed by listing tuples of size at most Δ representing allowed configurations for the nodes,
and tuples of size 2 representing allowed configurations for the edges. In [10] it has been shown that any LCL
Π defined on trees or forests can be converted into a node-edge checkable LCL Π′ satisfying that the complexity
of Π and Π′ differ only by an additive constant. Hence, for the purposes of this work, we can safely restrict our
attention to node-edge-checkable LCLs.

Example 6.2. (Maximal Independent Set) Sometimes, defining an LCL in the node-edge checkable formal-
ism is non-trivial. MIS is an example of problems in which the conversion requires a bit of work (it can be done
mechanically, though, as shown in [10]). We hence use MIS as an example for this formalism.

As before, Σin = {⊥}, and hence when listing the elements in CV and CE we will not specify the input labels.
This time, it is not actually possible to use just 2 labels as output. In fact, we define Σout = {0, 1,P}. Then, CV

contains all multisets of size at most Δ satisfying that:

• All elements are 1, or

• one element is P and all the others are 0.

Then, CE = {{1, 0}, {1,P}, {0, 0}}. In other words, nodes in the MIS output 1 on all their incident half-edges,
nodes not in the MIS output P on one incident half-edge and 0 on all the others. The label P is used to prove
maximality. That is, nodes not in the set must point to one neighbor in the set by using the label P. In fact, on
the edge constraint, P is only compatible with 1. Observe that, given a solution for the standard MIS problem, a
solution for this variant can be produced with just one round of communication.

6.2 Overview On a high level, our algorithm works as follows. We describe it from the point of view of a
single node, and for a single tree of the forest. Firstly, we root the tree, obtaining that each node knows the edge
connecting it to its parent. Then, the algorithm proceeds in phases, and in total the number of phases is going
to be a constant that depends on the amount of memory available to the machines. In each phase, we compress
the tree into a smaller tree, as follows:

• all subtrees containing less than a fixed amount of nodes are compressed to their root;

• all paths are compressed into a single edge.

Each phase is going to require O(logD) time. In other words, this part of our algorithm works similar to the
standard rake-and-compress algorithm. Moreover, while compressing the tree, we maintain some information
about the LCL that we are trying to solve. This information is called compatibility tree.

The compatibility tree, for each node and for each edge, keeps track of the possible configurations that they
can use. At the beginning, for each node, these configurations correspond to the configurations in CV that are
compatible with the given input, and for each edge, these configurations correspond to the configurations in CE

that are compatible with the given input.
When compressing a subtree into a single node, we update the list of the configurations usable on that node,

in such a way that each configuration satisfies the following: if the node uses it, then it is possible to assign a
labeling on the subtree compressed into that node, in such a way that, for each node and edge in the compressed
subtree we use only configurations allowed by the compatibility tree before the compression.
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Similarly, when compressing a path, for the new edge that we add, we store a list of configurations satisfying
that, if we label the first and last half-edge of the removed path with the labels of the configuration, then we
can complete the compressed path by only using configurations allowed by the compatibility tree before the
compression.

At the end, we obtain that the whole tree is recursively compressed on a single node v. If the compatibility
tree does not allow any configuration for v, then we know that the LCL is unsolvable. Otherwise, we can pick
an arbitrary configuration allowed by the compatibility tree and assign it to v. By performing this operation,
we know that we can safely put back the paths and subtrees that were compressed on v and have the guarantee
that we can label them using only allowed configurations. Hence, we again proceed in phases, where we put
back compressed paths and subtrees in the opposite order in which they have been compressed, and each time
we assign labels allowed by the compatibility tree. At the end, we obtain that the whole tree is labeled correctly,
and hence the LCL is solved.

6.3 Compatibility Tree A compatibility tree is an assignment of sets of allowed configurations to nodes and
edges, where this time configurations are not just multisets, but they are tuples. In other words, we may allow a
node to use a configuration, but only if the labels of that configuration are used in a very specific order.

Definition 6.6. (Compatibility Tree) A compatibility tree of a tree G = (V,E) is a pair of functions φ and
ψ, where φ maps each node v ∈ V into a set of tuples of size at most Δ, and ψ maps each edge e ∈ E into a set
of tuples of size 2.

In order to specify how the compatibility tree is initialized, it is useful to first assign an order to the edges
incident to each node, and to the nodes incident to each edge. This ordering is called port numbering assignment.
Observe that an arbitrary port numbering assignment can be trivially computed in 1 round of communication.

Definition 6.7. (Port Numbering) A node port numbering is a labeling of every half-edge satisfying that, for
each node v, half-edges incident to v have pairwise distinct values in {1, . . . , deg(v)}. An edge port numbering is
a labeling of every half-edge satisfying that, for each edge e, half-edges incident to e have pairwise distinct values
in {1, 2}. A port numbering is the union of a node port numbering and an edge port numbering.

Assume that the tree G is already provided with a port numbering. The compatibility tree of G is
initialized as follows. For each node v, φ(v) = {(�1, . . . , �deg(v)) | {(i1, �1), . . . , (ideg(v), �deg(v))} ∈ CV },
where ij is the input assigned to the half-edge incident to v with node port number j. For each edge e,
ψ(e) = {(�1, �2) | {(i1, �1), (i2, �2)} ∈ CE}, where ij is the input assigned to the half-edge incident to e with
edge port number j. In other words, we initialize φ and ψ with everything that is allowed by the constraints of
the problem, in all possible orders that are compatible with the given input.

We can observe that, by construction, φ and ψ still encode the original problem. In other words, we can now
forget about CV and CE , and try to find a labeling assignment that is valid according to φ and ψ. We make this
observation more formal in the following statement.

Observation 6.1. The LCL problem Π is solvable if and only if there is a labeling gout : H → Σout that solves Π
that satisfies that:

• For each node v, let �j be the label assigned by gout to the half-edge incident to v with port number j. It
must hold that (�1, . . . , �deg(v)) ∈ φ(v).

• For each edge e, let �j be the label assigned by gout to the half-edge incident to e with port number j. It must
hold that (�1, �2) ∈ ψ(e).

On a high level, when compressing a subtree into a node v, we will redefine φ(v) and discard some tuples.
The discarded tuples are the ones satisfying that, if node v uses such a configuration, there is no way to complete
the labeling of the subtree in a valid way. Similarly, when compressing a path, we will define ψ(e), where e is
the new (virtual) edge that we use to replace the path, in such a way that, if ψ(e) contains the tuple (�1, �2) and
we label the first half-edge of the compressed path with �1 and the last half-edge with �2, then we can correctly
complete the labeling inside the path. Here it should become clear why we use tuples and not just multisets: it
may be that v can use a label on the half-edge connecting it to one child (because that subtree can be competed
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by starting with that label), but the same label cannot be used on the half-edge connecting v to a different child.
A similar situation could happen on a compressed path: it could be that it is possible to label �1 the half-edge
connecting the first endpoint to the path and �2 the half-edge of the second endpoint to the path, but not vice
versa.

In the algorithm, we will solve the problem Π in the tree obtained by compressing some subtrees into single
nodes, and some paths into single edges. We now formally define what it means to partially solve an LCL Π
w.r.t. a compatibility tree (φ, ψ). Observe that, in a tree G obtained after performing some compression steps, a
node v may have a degree that is smaller than the size of the tuples given by φ(v), that always have size equal
to the original degree of v, denoted by origdeg(v), and hence the ports incident to v may be just a subset of
{1, . . . , origdeg(v)}.
Definition 6.8. (Partially solving an LCL w.r.t. the compatibility tree) Let G be a tree, and let
(φ, ψ) be a compatibility tree for G. A solution for Π that is correct according to φ and ψ is a labeling gout
satisfying that:

• For each node v, let origdeg(v) be the size of the tuples given by φ(v), and let P (v) ⊆ {1, . . . , origdeg(v)} be
the subset of ports of v that are present in G. For each j ∈ P (v), let �j be the label assigned by gout to the
half-edge incident to v with port number j. There must exist labels �k, for all k ∈ {1, . . . , origdeg(v)}\P (v),
such that it holds that (�1, . . . , �origdeg(v)) ∈ φ(v).

• For each edge e, let �j be the label assigned by gout to the half-edge incident to e with port number j. It must
hold that (�1, �2) ∈ ψ(e).

In other words, solving the LCL in the tree obtained by performing some compression steps, means to pick, for
each node, a configuration allowed by φ, in such a way that all edges that are still present have a configuration
allowed by ψ.

6.4 The Algorithm Let Π = (Σin,Σout, CV , CE) be the considered LCL problem, and let G0 = G denote a
rooted input tree with root r. The high-level idea of our approach is to first initialize φ0 and ψ0 as the functions
φ and ψ shown in Section 6.3. Then, we perform the following distinct parts.

Steps 1–2 of LCLSolver. From G0, we iteratively derive a sequence G1, G2, . . . , Gt of smaller trees until
eventually, for some t = O(1), it holds that Gt consists of a single node (the root r). In the meanwhile, we also
update the compatibility tree, and compute φj and ψj for all 0 < j ≤ t. The sequence is derived such that Gj

(0 < j ≤ t) is obtained from Gj−1 by first compressing all subtrees of size ≤ nδ/2 into their respective roots (we
refer to the roots of the subtrees and not (necessarily) the actual root node r), and then compressing all paths
into single edges. Throughout the sequence of compatibility trees, we maintain the following property, which we
prove in Lemmas 6.3 and 6.6.

Claim 6.1. Let 1 ≤ j ≤ t. If there exists a correct solution for Gj−1 according to φj−1 and ψj−1 (w.r.t.
Definition 6.8), then there exists also a correct solution for Gj according to φj and ψj (w.r.t. Definition 6.8).
Moreover, given any correct solution for Gj, we can transform it into a correct solution for Gj−1.

Steps 3–4 of LCLSolver. For all 0 ≤ i ≤ t, we define Ġi to be Gi where to each node v is assigned a
configuration c(v) ∈ φi(v) in such a way that the assignment c induces a labeling gout that is correct according to
φi and ψi (w.r.t. Definition 6.8). The sequence is derived such that Ġi is obtained from Ġi+1 by decompressing
the subtrees and paths that were compressed when Gi+1 was obtained from Gi, and simultaneously solving the
problem, which is possible by Claim 6.1. Finally, the solution on Ġ0 is a solution for Π on G by Observation 6.1.

The Algorithm. Let us now formally present the algorithm LCLSolver (along with its subroutines) that
solves any LCL on rooted trees in O(logD) time. Note that the subroutines are state-changing functions, i.e.,
they modify their input graphs.

LCLSolver(Π, G(V,E))

1. Initialize φ0 and ψ0 according to Section 6.3.
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2. Initialize phase counter j ←− 0. Repeat the following until the graph is a singleton.

(a) CountSubtreeSizes(G)

(b) GatherSubtrees(G)

(c) CompressSubtrees(G)
// compress all subtrees of size ≤ nδ/2 into single nodes, also compute φj+1

(d) AdvancedCompressPaths(G)
// compress all paths into single edges, also compute ψj+1

(e) Update j ←− j + 1

3. Set c(v) to be an arbitrary element of φj(v), where v is the obtained singleton.

// the graph Ġj = Ġ is obtained

4. Initialize repetition counter k ←− j. Repeat the following while k ≥ 0.

(a) DecompressPaths(Ġ)
// decompress the paths from phase k

(b) DecompressSubtrees(Ġ)
// decompress the subtrees from phase k, the graph Ġk−1 is obtained

(c) Update k ←− k − 1

Observe that the phase counter is incremented, while the repetition counter is decremented, which is inline
with the indexing used in the previous high-level overview. Next, we give a brief introduction to the subroutines,
before defining them formally in the following subsections. Recall that T (v) denotes the subtree that is rooted at
a node v such that v belongs to T (v) and G \ T (v) is connected.

• CountSubtreeSizes: Every node v learns either the exact size of T (v) or that |T (v)| > nδ/2. In the former
case, v marks itself as light, and in the latter case, as heavy. If a heavy node has a light child, it remarks
itself as a local root.

• GatherSubtrees: Every local root v learns T (u) for every light child u.

• CompressSubtrees: Every local root v checks, for each half-edge h connecting it to a light child u, what are
the possible labelings of h that allow to complete the labeling of T (u) in such a way that it is valid according
to φ and ψ. Then, v compresses all of these trees into itself, and updates φ in such a way that any LCL
solution on the remaining graph can be extended to a solution on T (u) for every light child u. This is done
according to the computed possible labelings of the half-edges.

• AdvancedCompressPaths: For every path P with some endpoints u and w (both have either degree 1 or
≥ 3), compress P into a new edge {u,w}, and assign an arbitrary edge port numbering to this edge. The
value of ψ({u,w}) is then defined in a way that any LCL solution on the edge {u,w} can be extended to a
solution on P . After performing CompressPaths, there are no degree-2 nodes left, which will be crucial for
the analysis.

• DecompressPaths: The LCL problem on the input graph is solved. In repetition k, we decompress all paths
that were compressed during phase k. While decompressing, we extend the solution to the paths.

• DecompressSubtrees: The LCL problem on the input graph is solved. In repetition k, every local root of
phase k decompresses all subtrees that it compressed during phase k. While decompressing, we extend the
solution to the subtrees.

The following sections are rather self-contained and correspond to a specific subroutine that is called by
LCLSolver (in the order they are called). They are written from a node’s point of view, with the proofs intertwining
correctness, runtime, and MPC details.
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6.5 Solving LCLs: CountSubtreeSizes During the execution of the subroutine, every node v maintains the
following variables:

• i: iteration counter

• s(v): size of T (v) until depth 2i (v is at depth 0)

• C(v): set of all descendant nodes (if any) of v at depth 2i (v is at depth 0).

The aim of the subroutine is to detect all heavy nodes, i.e., nodes which have a subtree of size > nδ/2 rooted
at them. This can be thought of as a preprocessing step for GatherSubtrees. All nodes are initially marked as
active.

CountSubtreeSizes(G)

Each node v initializes: C(v) ←− set of children of v in G, s(v) ←− |C(v)|, and i ←− 0.

1. Repeat the following steps until C(v) = ∅ for every node v.

(a) If v is active and all u ∈ C(v) are also active, v updates

– C(v) ←− ⋃
u∈C(v) C(u)

– s(v) ←− s(v) +
∑

u∈C(v) s(u).

Otherwise, v marks itself as heavy, and it becomes inactive.

(b) If s(v) > nδ/2, v marks itself as heavy, and it becomes inactive. Heavy nodes update C(v) ←− ∅.
(c) All active nodes update i ←− i+ 1.

Non-heavy nodes marks themselves as light.

Upon termination, for every heavy node v it holds that |T (v)| > nδ/2. Note that the ancestors of heavy nodes
are also heavy; heavy nodes induce a single connected component in G.

Lemma 6.1. (CountSubtreeSizes) Every node v learns either the exact size of T (v) or that |T (v)| > nδ/2. The
algorithm terminates in O(logD) low-space MPC deterministic rounds using O(n+m) words of global memory.

Proof. We first show that every active node v maintains the correct values for s(v) and C(v) throughout the
algorithm. In iteration i = 0, values s(v) and C(v) are correct by initialization. During iteration i in Step 1(a), v
updates its values only if v together with all of its descendants in C(v) are active, resulting in the correct values
for iteration i+ 1 by construction (see Figure 2). A node v marks itself as heavy only when s(v) > nδ/2 or when
one of its descendants is heavy. Both conditions imply that |T (v)| > nδ/2. If neither conditions are met and
C(v) = ∅ at some point, then the value s(v) for node v is the exact size of T (v) and v marks itself light.

The algorithm terminates in O(logD) iterations (with each iteration taking O(1) MPC rounds), since an
active node knows T (v) until depth 2i in iteration i, and the depth of a tree is D. Observe that for every light
node v, it holds that |C(v)| ≤ s(v) ≤ nδ/2. Hence, local memory is never violated, because when a node updates
C(v) in Step 1(a), the resulting set is of size at most nδ/2 ·nδ/2 nodes. Also, storing value s(v) takes only O(log n)
bits. Global memory is never violated, since, by design, a node u is only kept in the set C(·) of exactly one node.

Algorithm CountSubtreeSizes can be thought of as a modified version of graph exponentiation where nodes
only keep track of the furthest away descendants. For the communication in Step 1(a) to be feasible, the set C(v)
is simply a set of IDs corresponding to the desired nodes. Observe that the communication in Step 1(a) is always
initialized by v, and not by the descendants in C(v) (nodes in C(v) don’t even know the ID of v). This is feasible,
because, by design, every node has at most one ancestor that initializes communication.
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Figure 2: An illustration of an update in Step 1(a) of CountSubtreeSizes. The intuition is that node v learns the
size of the partial subtrees hanging from every child in C(v). The values d and d + 2i on the left refer to the
depth of nodes v and u,w, respectively, with regards to the whole tree. The oriented edges are not the actual
edges of G, but rather a representation of sets C(·). The incoming edges of node v are incident to the nodes in
set C(v) in both iterations i and i+ 1. The value s(v) in iteration i+ 1 is simply the sum of s(v), s(u) and s(w)
from iteration i.

6.6 Solving LCLs: GatherSubtrees After executing CountSubtreeSizes, by Lemma 6.1, every node knows if it
is heavy or light. Moreover, every heavy node v knows if it has a light child or not. If so, node v remarks
itself from heavy to local root. If there are no local roots in G, mark the actual root of the tree as a local root.
During algorithm GatherSubtrees, heavy nodes do nothing, and all other nodes (including local roots) maintain
the following variables:

• i: iteration counter

• C(v): a subset of descendant nodes.

The procedure is as follows (see Figure 3 for an example).

GatherSubtrees(G)

Each node v initializes: C(v) ←− set of light children of v in G, and i ←− 0.

1. Repeat the following steps until C(v) for every local root v consist of the union of subtrees T (u) for every
light child u.

(a) Every local root v updates C(v) ←− C(v) ∪⋃
u∈C(v) C(u).

(b) Every light node w updates C(w) ←− ⋃
u∈C(w) C(u).

(c) Update i ←− i+ 1.

We phrase the algorithm in terms of the subtrees of the light children of a local root v, instead of the subtree
of v directly, and we do this for a simple reason: a local root v may have children that are also local roots, in
which case, v does not want to learn anything in their direction.

Lemma 6.2. (GatherSubtrees) Every local root has gathered the subtree T (u) for every light child u. The algorithm
terminates in O(logD) low-space MPC deterministic rounds using O(n+m) words of global memory.
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i = 0 i = 1 i = 2

Figure 3: Three iterations of GatherSubtrees, with a local root marked black. The directed edges are not necessarily
the actual edges of G, but rather a representation of sets C(·). The incoming edges of a node v are incident to the
nodes in set C(v). The figure illustrates how local roots behave differently than other nodes: local roots aggregate
all descendants, while other nodes replace current ones with new ones.

Proof. By design, the set C(v) of a local root v contains T (u) until depth 2i−1 for every light child u in iteration
i. Since the depth of a tree is D, after at most O(logD) iterations, for every local root v, C(v) contains T (u) for
every light child u.

Observe that |T (u)| ≤ nδ/2 for every light node u. This implies that |C(v)| ≤ nδ for every local root v, since
it has a constant number of children (the maximum degree of the graph is constant). Hence, local memory is
respected. Global memory is never violated, since by design, a node u is only kept in set C(·) of exactly one node.

Similarly to CountSubtreeSizes, algorithm GatherSubtrees can be thought of as a modified version of graph
exponentiation. However, as opposed to CountSubtreeSizes, algorithm GatherSubtrees actually gathers the whole
subtrees into the memory of preselected nodes (local roots). Similarly to CountSubtreeSizes, we store IDs in the
sets C(·) in order for the communication in Step 1 to be feasible. Also, the communication is made possible due
to every node having at most one ancestor that initializes the communication.

6.7 Solving LCLs: CompressSubtrees After executing GatherSubtrees, by Lemma 6.2, every local root has
gathered the IDs of the nodes in the subtree T (u) for every light child u.

CompressSubtrees(G)

1. Perform the following step for every light child u of every local root v. Denote e∗ = (u, v). Every local
root v gathers the topology of T (u), along with φ(w) for every node w in T (u) and ψ(e) for every edge
e in T (u). Every local root v computes the set of labels L(e∗) satisfying that, by labeling the half-edge
(v, e∗) with a label in L(e∗), it is possible to complete the labeling in T (u) by only using configurations
allowed by φ and ψ.

2. Every local root v updates φ(v) by possibly discarding some tuples. Let P (v) be the set of ports of v
connecting it to light nodes, and let ei be the edge reached from v by following port i. A tuple (�1, . . . , �d)
is kept in φ(v) if and only if �i ∈ L(ei) for all i ∈ P (v).

Lemma 6.3. Let φ and ψ be the compatibility tree before performing CompressSubtrees, and let φ′ be the
updated compatibility tree after performing CompressSubtrees. Let G′ be the resulting graph after performing
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CompressSubtrees. The following holds.

• If there exists a correct solution for the input graph G according to φ and ψ, then there exists also a correct
solution for G′ according to φ′ and ψ.

• Given any correct solution for G′ according to φ′ and ψ, it can be transformed into a correct solution for G
according to φ and ψ.

Proof. In order to show the first statement, suppose that there is a correct solution for G. Notice that, since G′ is
a subgraph of G, if, for every v ∈ G′, we use the tuple in φ(v) of the correct solution in G, then we get a correct
solution for G′. Hence, we need to ensure that the tuple used by v is in φ′(v). But this is exactly what we do:
every tuple excluded from φ(v) in Step 2 is not part of any correct solution for G, and hence the first statement
holds. For the second statement, observe that from the definition of G′, it follows that any correct solution for
G′ provides a partial solution for G (all labels are fixed except the ones in the compressed subtrees), and this
partial solution is part of a correct solution for G. Hence, a correct solution for G can be obtained by extending
the provided solution to the compressed subtrees. An extension is guaranteed to exist, since all non-extendable
tuples of φ(v) were removed previously in Step 2. Note that this extension can be performed by all local roots
simultaneously, since there are no dependencies between subtrees.

Lemma 6.4. (CompressSubtrees) The algorithm terminates in O(1) time in the low-space MPC model and uses
O(n+m) words of global memory.

Proof. Gathering the topology of T (u), along with φ(w) for every node w in T (u) and ψ(e) for every edge e
in T (u) is possible: by Lemma 6.2, the local root v knows the IDs of all nodes in T (u), and hence node v can
simply gather all incident edges from all nodes in T (u) in constant time, and reconstruct T (u) locally. This does
not break any memory constraints, since v receives every edge from at most two nodes, the number of edges is
bounded by the number of nodes, and the sets φ(w) and ψ(e) are of constant size. Computing the sets L(·) does
not require communication, and can be done locally in constant time. Finally, the removal (contraction) of nodes
and updating the set φ(v) also takes constant time, concluding the runtime proof. Moreover, the global memory
is not violated, since similarly to GatherSubtrees, a node u is gathered by only one local root v.

6.8 Solving LCLs: AdvancedCompressPaths The aim of this algorithm is to compress all paths into single
edges while retaining the compatibility information of the paths, i.e., if the problem is solved, the solution can be
extended to the paths that were compressed. As opposed to the previous subroutines, AdvancedCompressPaths
does not capitalize on anything that is done by the previous routines.

We begin with a slight detour and first show how all degree-2 nodes can compute their distance to the highest
ID endpoint with the following algorithm. To keep things simple, we present an algorithm for a single path H
with two endpoints of degree 1.

CountDistances(G)

1. Define degree-2 nodes as internal nodes, degree-1 nodes as endpoints, and the higher ID endpoint as the
head. The head is denoted by h. Assign weight w(e) ←− 1 for every edge e. Repeat the following steps until
all internal nodes share a weighted edge with both endpoints; the weight of the edge equals the distance.

(a) Every internal node with incident edges e = {u, v} and e′ = {v, w}, removes∗ e and e′ from H and
replaces them with a new edge e′′ = {u,w} and sets w(e′′) ←− w(e) + w(e′).
∗If u (or w) is an endpoint, node v does not remove e (or e′).

Lemma 6.5. (CountDistances) Every degree-2 node knows its distance to both endpoints. The algorithm does not
require prior knowledge of D, terminates in O(logD) low-space MPC rounds using O(n + m) words of global
memory.
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Proof. The weight of each edge {v, u} in the graph equals the number of edges between v and u in the original
graph. The base case being evident from the initialization of the weight of each edge, and the induction step from
the update step w(e′′) ←− w(e) + w(e′). Since the shortest path from either endpoint to any other node in the
path decreases by a factor of at least 3/2, CountDistances terminates in O(logD) time.

Creating edges and communicating through them can be done in constant time in MPC, since storing an edge
equals storing the ID of the neighbor. Observe that every internal node keeps exactly two edges in memory. In
order to not break their local memory, endpoints do not keep track of any edges. Since all nodes keep at most
two edges in memory, global memory is respected.

Next, we show that, by using the distances computed with CountDistances, we can compress paths of all
lengths in O(logD) time, while respecting both local and global memory. Recall that for a path, h denotes its
highest ID endpoint.

AdvancedCompressPaths(G)

1. Set i ←− 0 and execute the following steps for every path H until it consists of one edge.

(a) Define an MIS set Zi := {v ∈ H | deg(v) = 2 and dG(v, h) is not divisible by 2i+1}.
(b) Every node v ∈ Zi with incident edges e = {u, v} and e′ = {v, w} removes e and e′ from G′ and

replaces them with a new edge e′′ = {u,w} (with port 1 connected to u and port 2 connected to w).
Furthermore, for the new edge, v sets ψ(e′′) to the set of all tuples (�1, �2) satisfying that there exist
two labels x, y satisfying the following. Let p1 be the port connecting e to node u, let p2 be the port
connecting e to v, let p3 be the port connecting v to e, let p4 be the port connecting v to e′, let p5
be the port connecting e′ to v, and let p6 be the port connecting e′ to w:

• There is a tuple in ψ(e) with label �1 in position p1 and label x in position p2;

• There is a tuple in φ(v) with label x in position p3 and label y in position p4;

• There is a tuple in ψ(e′) with label y in position p5 and label �2 in position p6.

(c) Update i ←− i+ 1.

From the perspective of the nodes u and w, the new edge e′′ replaces the old edges e and e′, respectively. In
other words, if u was connected through port j to edge e, now it is connected through port j to edge e′′. Notice
that, the reason for which, at each step, we compute an MIS, is that, if MIS nodes replace their two incident
edges of the path with a single edge, we still obtain a (shorter) path as a result.

Consecutive MIS. Executing CountDistances gives us the means to compute consecutive maximal indepen-
dent sets in AdvancedCompressPaths, which is not exactly obvious nor easily attainable using other means. If we
were to compute an MIS directly with, e.g., Linial’s [32] algorithm in every iteration of Step 2, we would end up
with a total runtime of O(logD · log∗ n). An alternative approach would be to employ the component-unstable
O(1)-time algorithm that computes an independent set of size Ω(n/Δ) by [24]. This approach also fails for multi-
ple paths, since the algorithm in [24] does not give the guarantee that a constant fraction of nodes in all paths join
the independent set, leading to a total runtime of O(log n). To summarize, CountDistances is a novel approach to
a very non-trivial problem, yielding component stability and a sharp O(logD) runtime.

Lemma 6.6. Let φ and ψ be the compatibility tree before performing AdvancedCompressPaths, and let ψ′ be the
updated compatibility tree after performing AdvancedCompressPaths. Let G′ be the resulting graph after performing
AdvancedCompressPaths. The following holds.

• If there exists a correct solution for the input graph G according to φ and ψ, then there also exists a correct
solution for G′ according to φ and ψ′.

• Given any correct solution for G′ according to φ and ψ′, it can be transformed into a correct solution for G
according to φ and ψ.
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Proof. Assuming that Zi is indeed an MIS, the first statement follows from the fact that acting nodes (i.e., MIS
nodes) are never neighbors and every set ψ({u,w}) that an acting node v creates only discards configurations
that do not correspond to valid solutions for the subpath (u, v, w). The second statement holds by the definition
of labels �1, �2, x, y, since we can perform the process in reverse.

Let us show that Zi constitutes an MIS. For any i, observe that the distances of the remaining nodes constitute
all multiples of 2i up until some number (the length of the path). Hence, every second node is not divisible by
2i+1 and joins Zi, proving the statement.

Lemma 6.7. (AdvancedCompressPaths) There are no degree-2 nodes left in the graph. The algorithm terminates
in O(logD) low-space MPC rounds using O(n+m) words of global memory.

Proof. Since Zi constitutes an MIS, every path shortens by a constant factor. After O(logD) iterations, every
path is compressed into a single edge. Every iteration consists of a constant number of communication rounds,
every node uses a constant amount of memory, and compressing paths into edges never creates new degree-2
nodes.

6.9 Solving LCLs: DecompressPaths Assuming that the problem of interest is solved in the current graph,
we essentially reverse AdvancedCompressPaths and iteratively extend the solution from certain edges to the paths
that were previously compressed into those edges. By “the problem is solved in the current graph” we simply
mean that the output labels of the half-edges in the current graph satisfies Definition 6.8.

DecompressPaths(Ġ)

1. All nodes that performed AdvancedCompressPaths in phase k, know the last iteration i and can perform
the following until i = 0.

(a) Every node v ∈ Zi learns the fixed half-edge labels (�1, �2) assigned to e′′ = (u,w) (e′′ is the edge
v had created). Node v removes e′′ from the graph and replaces it with e = (u, v) and e′ = (v, w)
(edges e and e′ are the edges v had removed). Furthermore, v assigns half-edge labels �1, x to edge e
and labels y, �2 to edge e′ such that the labeling satisfies ψ(e), φ(v), and ψ(e′).

(b) Update i ←− i− 1

Lemma 6.8. (DecompressPaths) The LCL problem on the graph is solved according to Definition 6.8, and the
graph has the same node and edge sets as G in phase k before executing AdvancedCompressPaths. The algorithm
terminates in O(logD) low-space MPC rounds using O(n+m) words of global memory.

Proof. All we do is reversing the steps of AdvancedCompressPaths and extending the solution for Ġ to the
decompressed paths, resulting in a correct solution on the graph that has the same node and edge sets that
we had before the compression. Since the computation of the solution is done locally, and extending the solution
requires a constant amount of memory and communication, the lemma follows from Lemmas 6.6 and 6.7.

6.10 Solving LCLs: DecompressSubtrees The assumption for this algorithm, similarly to DecompressPaths, is
that the LCL problem on the graph is solved correctly according to Definition 6.8. We also assume, and keep the
invariant, that we do not only know the partial output assignment given to Ġ, but we also know, for each node v
of G, the tuple c(v) ∈ φ(v) assigned to it. This is especially useful at the beginning, when we have the root that
is a singleton, and hence has no incident edges in the current graph, but we still want to know how to label its
incident half-edges after decompressing the subtrees rooted at its children.

DecompressSubtrees(Ġ)
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1. Every local root v of phase k decompresses every subtree T (u) compressed into it during phase k, while
simultaneously solving the LCL problem on T (u).

Lemma 6.9. (DecompressSubtrees) The LCL problem on the graph is solved according to Definition 6.8, and it
has the same node and edge sets as G in phase k before executing CompressSubtrees. The algorithm terminates in
O(1) low-space MPC rounds using O(n+m) words of global memory.

Proof. The first statement follows from Lemma 6.3, since the solution for Ġ can be extended to the decompressed
trees, resulting in a correct solution on the graph that has the same node and edge sets that we had before the
compression. For each node u in the decompressed trees, we store in c(u) the tuple used to label its incident
half-edges. The runtime follows from Lemma 6.4, and the memory is respected trivially.

6.11 Proof of Theorem 1.3 By the lemmas in Sections 6.6 to 6.10, the problem is solved in the original forest,
and all subroutines of LCLSolver have time complexity O(logD) in the low-space MPC model and use O(n+m)
words of global memory. All of the subroutines are clearly deterministic. What is left to prove is that

(i) after a constant number of phases in Step 2, the graph is reduced to a single node;

(ii) after a constant number of repetitions in Step 4, the graph is expanded to its original form;

(iii) if the input graph is a forest, the algorithm is component-stable, and the runtime becomes O(logDmax),
where Dmax denotes the maximum diameter of any component.

Proof. [Proof of (i)] The proof is very similar to the proof of Lemma 4.11, but we restate the claims for
completeness. Let us recall what effectively happens during a phase. There are only two subroutines that
alter the graph: in CompressSubtrees, all subtrees of size ≤ nδ/2 are compressed into the first ancestor v with a
subtree of size > nδ/2; then, in AdvancedCompressPaths, all paths are compressed into single edges, leaving no
degree-2 nodes in the graph. Let Gj and nj = |Gj | denote the graph and the size of the graph at the beginning
of phase j, respectively. We claim that after one phase, the number of nodes in the graph drops by a factor of
Θ(nδ/2). Observe, that after CompressSubtrees every leaf w in the graph corresponds to a subtree of size ≥ nδ/2

that was removed. Moreover, the same holds also after AdvancedCompressPaths. Hence,

nj ≥ nj+1 + |{w ∈ Gj+1 | degGj+1
(w) = 1}| · nδ/2

> nj+1 + nδ/2 · nj+1/2·
= nj+1(1 + nδ/2/2),

implying that

nj+1 ≤ nj

1 + nδ/2/2
.

The first strict inequality stems from the fact that there are no degree-2 nodes left after phase j, and hence
the number of leaf nodes in Gj+1 is strictly larger that ni+1/2. It is clear that after O(1/δ) phases, the graph is
reduced to one node.

Proof. [Proof of (ii)] Let us recall what effectively happens during a repetition. Both subroutines DecompressPaths
and DecompressSubtrees alter the graph by decompressing the paths and subtrees that were compressed previously
in some phase. Hence, the number of repetitions is equal to number of phases, which is constant.

Proof. [Proof of (iii)] During the algorithm, the only communication between the components happens in order
to start the subroutines in synchrony, which does not affect the LCL solution. It does however affect the runtime,
since smaller components may be stalled behind larger components. Hence, in all runtime arguments, D can be
substituted with Dmax.
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Extension to unsolvable LCL problems. If the LCL problem is unsolvable, we can detect it in the following
way. If, during any phase of Step 2, a local root v ends up with an empty set of tuples in φ(v), the original LCL
problem must be unsolvable. Node v can then broadcast to all nodes in the graph to output label ⊥ on their
incident half-edges, indicating that there is no solution to the LCL problem.

7 Conditional Hardness Results

In this section, we show that our algorithm for solving all LCLs is optimal, assuming a widely believed conjecture
about MPC. By earlier work, we consider the following more convenient problem that is also hard under the
conjecture. We note that, due to technical reasons, our problem definition is slightly different to the one in [26].
Following in the footsteps of previous work, we will show that our version of the problem is also hard under the
1 vs. 2 cycles conjecture.

Definition 7.1. (The D-diameter s-t path-connectivity problem) Consider a graph that consists of a
collection of paths of diameter O(D), for some parameter D satisfying D ∈ Ω(logn) and D = no(1). Given two
special nodes s and t of degree 1 in the graph, the algorithm should provide the following guarantee: If s and t
are in the same connected component, then the algorithm should output YES. If s and t are in different connected
components, the algorithm should output NO.

Lemma 7.1. Assuming that the 1 vs. 2 cycles conjecture holds, there is no deterministic low-space MPC algorithm
with poly(n) global memory to solve the D-diameter s-t path-connectivity problem in o(logD) rounds.

Proof. On a high level, we show that we can use an algorithm for the D-diameter s-t path-connectivity problem to
reduce the size of the given cycles by a multiplicative factor D, unless the given cycles are already too small. We
then show that, by recursively applying this algorithm, we obtain a solution for the 1 vs. 2 cycles cycles problem.

In more detail, we are given a graph G that is either one or two cycles, where each cycle is of length at least
n/2. Let D be in Ω(logn) and in no(1). We proceed in phases, starting in phase i = 0. We assume that at the
beginning of phase i the graph G contains at least (n/Di)/2i nodes and at most (n/Di)·2i nodes, and we guarantee
that at the end of phase i the graph contains at least (n/Di+1)/2i+1 nodes and at most (n/Di+1) · 2i+1 nodes. If
the graph contains two cycles, this factor-D reduction will actually independently hold for the size of each cycle.
This is performed by running the algorithm A that solves the D-diameter s-t path-connectivity problem. We
stop when the number of nodes is no(1), which requires O(logD n) phases. Then, we can spend o(log n) rounds
to solve the problem with known techniques (e.g., [14]). If the D-diameter s-t path-connectivity problem could
be solved in o(logD) rounds, we would obtain a total running time of O(logD n) · o(logD) + o(log n) = o(log n),
which violates the 1 vs. 2 cycles conjecture. We now explain a single phase of the algorithm.

In each phase i, we maintain the invariant that, if there are two cycles, the larger one contains at most 4i

times the nodes of the smaller one. Assume that at the beginning of phase i there are at least (4i + 1)cD log n
nodes, for a sufficiently large constant c. If it is not the case, then we are done, because the number of nodes is
in no(1).

Sample the nodes in G with probability 1/D and turn each sampled node inactive. At the end of the phase,
only inactive nodes will remain, and by a standard Chernoff bound, with high probability, the number of inactive
nodes is at least a factor D/2 and at most a factor 2D smaller than the original amount of nodes. Moreover, this
holds independently on each cycle, and hence the ratio of the sizes of the obtained cycles can increase by at most
a factor 4, hence maintaining the invariant.

We now show an upper bound on the length of the obtained paths, induced by active nodes. Consider a
sequence of c′D log n nodes, for some sufficiently large constant c′. The probability that none of them is sampled
is (1 − 1/D)c

′D logn, and hence, with high probability, each path has length O(D log n). Moreover, since the
shortest cycle has at least cD log n nodes, then, by fixing c sufficiently larger than c′, we obtain that each cycle
contains at least one sampled node with high probability, and hence G′ is a collection of paths, as required.

We create many instances of the D-diameter s-t path-connectivity problem from these paths as follows. Fix
a node u with degree 1 in G′. We set u := s and create an instance of D-diameter s-t path-connectivity for each
possible choice of t �= s, where t is also a degree 1 node. Notice that there can be at most n of such choices.
Furthermore, we do the same construction for all possible choices of s, which results in O(n2) instances of the
D-diameter s-t path-connectivity problem.

Suppose now that we have a deterministic o(logD) time algorithm A to solve the D-diameter s-t path-
connectivity problem. The paths have length O(D log n), and hence running this algorithm requires o(log(D log n))
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rounds, which, by the assumption on D, is still in o(logD). Run A independently on each of the O(n2) instances of
the D-diameter s-t path-connectivity problem. On an instance where s and t are on the same path, the algorithm
returns YES and otherwise NO. Hence, we can derive which endpoints in G′ are on the same path in o(logD)
time.

Then, we create a new instance of the 1 vs. 2 cycles cycle problem as follows. For each pair s and t on the
same path, we create a virtual edge between the inactive neighbors of s and t and remove the active nodes. The
number of nodes decreases at least by a factor D/2 and at most by a factor 2D, as required.

Since a connected component algorithm clearly solves the D-diameter s-t path-connectivity problem, we
obtain the following corollary.

Corollary 7.1. Assuming the 1 vs. 2 cycles conjecture, there is no low-space memory MPC algorithm to solve
connected components in o(logD) rounds on forests.

We now show that we can define an LCL problem Π for which we can convert any solution into a solution for
the problem of Definition 7.1 in constant time. This implies a conditional lower bound of Ω(logD) for Π, implying
also that our generic solver, that runs in O(logD) rounds, is optimal. Instead of defining Π by defining CV and
CE formally, which makes it difficult to parse the definition, we provide a human understandable description of
the constraints.

• The possible inputs of the nodes are 0 or 1. In the instances that we create, all nodes will be labeled 0,
except for s, which will be labeled 1.

• The possible outputs are on edges, and every edge needs to be either oriented or unoriented.

• All nodes of degree 2 must have either both incident edges unoriented, or both incident edges oriented. If
they are oriented, one must be incoming and the other outgoing.

• Any node of degree 1 with input 1 must have its incident edge oriented.

• Any node of degree 1 with input 0 must have its incident edge either unoriented, or oriented incoming.

We can observe some properties on the possible solutions for this problem:

• The edges of a path are either all oriented or all unoriented.

• The edges of a path containing only nodes with input 0 must all be unoriented, because a path needs to be
oriented consistently, and endpoints with input 0 must have their edge oriented incoming.

• All the edges of a path containing an endpoint with input 1 must be oriented.

We can use an algorithm for Π to solve the problem of Definition 7.1 as follows. By giving 0 as input to all nodes
except s, and 1 to s, and solving Π, we obtain a solution in which only the other endpoint of the path containing s
has an oriented incident edge, and we can hence check if this node is t. Since Π is an LCL, we obtain the following.

Theorem 7.1. Assuming the 1 vs. 2 cycles conjecture, there is no low-space memory MPC algorithm to solve
any solvable LCL in o(logD) rounds on forests.

A MPC Implementation Details

Initially, before executing any algorithm, the input graph of n nodes and m edges is distributed among the
machines arbitrarily. By applying Definition A.1, we can organize the input such that every node and it’s edges
are hosted on a single machine, or, in the case of high degree, on multiple consecutive machines.

Definition A.1. (Aggregation Tree Structure, [13]) Assume that an MPC algorithm receives a collection
of sets A1, . . . , Ak with elements from a totally ordered domain as input. In an aggregation tree structure for
A1, . . . , Ak, the elements of A1, . . . , Ak are stored in lexicographically sorted order (they are primarily sorted by
the number i ∈ {1, . . . , k} and within each set Ai they are sorted increasingly). For each i ∈ {1, . . . , k} such
that the elements of Ai appear on at least 2 different machines, there is a tree of constant depth containing the
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machines that store elements of Ai as leafs and where each inner node of the tree has at most nδ/2 children. The
tree is structured such that it can be used as a search tree for the elements in Ai (i.e., such that an in-order
traversal of the tree visits the leaves in sorted order). Each inner node of these trees is handled by a separate
additional machine. In addition, there is a constant-depth aggregation tree of degree at most nδ/2 connecting all
the machines that store elements of A1, . . . , Ak.

This section is dedicated to showing how MAX-ID-Solver can be implemented in the low-space MPC
model. We only cover routine CompressLightSubTrees, since the implementation details for CompressPaths,
DecompressLightSubTrees, and DecompressPaths are simple, and included in the corresponding proofs.

In the proof of CompressLightSubTrees, we have reasoned that the local memory of a node never exceeds
O(nδ), and that the total memory never exceeds O(n · D̂3). However, we have to also ensure that the low-space
MPC’s communication bandwidth of O(nδ) is respected throughout the routines (Lemma A.1). Also, we have to
address the possibility of a node having degree > nδ, since we work with arbitrary degree trees.

If, during some iteration of CompressLightSubTrees, the degree of a node is > nδ, it is clearly heavy, and does
not partake in the ongoing iteration. In fact, if the degree is > nδ/8 + 1, it is also heavy and does not partake.
Hence, in the following lemma, we can assume that every node v and its edges are hosted on a single machine,
and that deg(v) ≤ nδ/8 + 1.

Lemma A.1. The following routines can be performed in O(1) low-space MPC rounds:

1. A node can detect whether it is happy or full,

2. Exp(X), X ⊆ N(v),

3. If node v is added in Sw for some w, v is able to add w to Sv.

Proof. We prove the three statements separately. All three statements have the a common technical difficulty: it
is possible for node v to be included in Sw for some w, such that w �∈ Sv, which causes communication bandwidth
congestion. We address this common issue shortly, after reasoning about the separate challenges of each routine.

1. Since the property of being full depends solely on the size of Sv, it can be computed locally. In order for a
node v to detect if it is happy, v only has to ask all nodes w ∈ Sv for their degrees.

2. In order for a node v to perform Exp(X), X ⊆ N(v), v must ask a subset of nodes w ∈ Sv for their Sw �−→rw(v),
which is straightforward to implement.

3. When needed, a node w can inform nodes v ∈ Sv that they have been added to Sw. After which it is
straightforward for v to add w to Sv.

In all of the routines above, it is possible for v ∈ Sw for some w, such that w �∈ Sv. This can happen when
v does not maintain a symmetric view towards a direction in fullDirs in Step 1(c). This can cause > nδ nodes
querying node v, breaking the communication constraint of the low-space MPC model. The following scheme
resolves the issue. Let us first restate a tree structure that is useful to carry out computations on a set or on a
collection of sets, in O(1) low-space MPC rounds and with O(n+m) global memory.

Denote the collection of machines we are using for the algorithm as M = {M1,M2, . . . ,Ml}. Let us allocate
a new collection of empty machines M ′ = {M ′

1,M
′
2, . . . ,M

′
l}. For every node w ∈ Sv of a node v hosted by Mj ,

send a directed edge (v, w) to M ′
j . Let us call all edges of form (x, y) as the outgoing edges of x and incoming

edges of y. Along with the edge, send the address of machine Mj .
Define sets A1, . . . , Ak such that set Ai contains all incoming edges of node i. Apply Definition A.1 such that

sets A1, . . . , Ak are stored in M ′ in lexicographically sorted order (by the ID of i ∈ {1, . . . , k} and within each
set Ai, the elements are sorted increasingly). By Definition A.1, for each i ∈ {1, . . . , k} such that the elements of
Ai appear on at least 2 different machines, there is a tree of constant depth containing the machines that store
elements of Ai as leafs and where each inner node of the tree has at most nδ/2 children. Let us denote this kind
of tree as Ai.

Observe that every Ai corresponds to a node i that has > nδ incoming edges, which is exactly the problematic
case we have set out to deal with. The root of Ai can ask for Si from the machine in M hosting node i, and
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distributes Si to all leaf nodes hosting the incoming edges (this requires a communication bandwidth of O(n3δ/2)).
We also establish a mapping from the machines in M to machines in M ′ such that the machine in M hosting u
and Su knows the machines in M ′ hosting edges (u, v) for every v ∈ Su. This is straightforward to implement,
since when we distributed the edges to M ′, we also distributed the corresponding addresses of machines in M .

Let us describe what effectively happens when a node u asks for Sv �−→rv(u) of node v ∈ Su if v has > nδ

incoming edges. The machine Mu ∈ M hosting node u queries the machine M ′
(u,v) ∈ M ′ for Sv �−→rv(u), where

M ′
(u,v) is the machine hosting edge (u, v). Due to the design of the aggregation tree, machine M ′

(u,v) is a leaf of

tree Av and has at most nδ elements (edges) stored on it. The queries to machine M ′
(u,v) comprise an incoming

message size of O(nδ). Answering the queries would require a communication bandwidth of O(n2δ).
We can reduce the communication bandwidth of O(n3δ/2) (the distribution of Si) and O(n2δ) (the leaves of

Av answering queries) to O(nδ) by using δ/2 instead of δ for the whole algorithm.

References
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