
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kemppinen, Pauli; Aittala, Miika; Lehtinen, Jaakko
Data-driven Pixel Filter Aware MIP Maps for SVBRDFs

Published in:
Eurographics Symposium on Rendering

DOI:
10.2312/sr.20231124

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Kemppinen, P., Aittala, M., & Lehtinen, J. (2023). Data-driven Pixel Filter Aware MIP Maps for SVBRDFs. In T.
Ritschel, & A. Weidlich (Eds.), Eurographics Symposium on Rendering (pp. 51-61). Eurographics Association.
https://doi.org/10.2312/sr.20231124

https://doi.org/10.2312/sr.20231124
https://doi.org/10.2312/sr.20231124


Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Editors)

Data-driven Pixel Filter Aware MIP Maps for SVBRDFs

Pauli Kemppinen1, Miika Aittala2 and Jaakko Lehtinen1,2

1Aalto University, Finland
2Nvidia Helsinki, Finland

(a) Naive linear (b) MIPNet (c) Ours (d) Reference

Figure 1: Our goal is to find a level of detail representation for surface appearance that produces high quality output without supersampling.
From left to right: Linear downsampling, MIPNet [GFL*22], our method, ground truth reference. Linear, MIPNet and ours are shaded once
per pixel. Note the smooth highlights in the closer object: in the reference image, these are caused by the high quality pixel filter. We optimize
our SVBRDF maps to match this appearance when shaded only once per pixel, obtaining a good match to the ground truth at all scales.

Abstract

We propose a data-driven approach for generating MIP map pyramids from SVBRDF parameter maps. We learn a latent
material representation where linear image downsampling corresponds to linear prefiltering of surface reflectance. In contrast
to prior work, we explicitly model the effect of the antialiasing pixel filter also at the finest resolution. This yields high-quality
results even in images that are shaded only once per pixel with no further processing. The SVBRDF maps produced by our
method can be used as drop-in replacements within existing rendering systems, and the data-driven nature of our framework
makes it possible to change the shading model with little effort. As a proof of concept, we also demonstrate using a shared latent
representation for two different shading models, allowing for automatic conversion.

1. Introduction

Rendering is the process of turning a virtual scene description into a
digital image. This image is a regularly sampled digital signal, so its
frequency content must be limited prior to sampling according to
the Nyquist-Shannon sampling theorem [Sha49]. In principle, we
can think of this process as first producing an infinitely sharp im-
age and then appropriately low pass filtering it before sampling. In
rendering, this low pass is typically realized as a convolution with
a pixel filter, such as a Gaussian or a function from the Mitchell-
Netravali family [MN88]. Since the infinitely sharp input image
cannot be obtained or stored, the convolution is typically approxi-
mated by supersampling or Monte Carlo integration.

Level of detail (LoD) techniques for texture maps are designed
to help the pixel filter approximation or replace it altogether. The
idea is to transform the pixel filter into the texture domain and ap-

ply the filter there aided by a precomputed structure. This structure
is typically a MIP map pyramid that stores several prefiltered and
downsampled versions of the texture. In real-time rendering it is
typical to sample the texture only once per output pixel and use
some other approach to filter the effects of visibility.

In their basic form, texture LoD techniques assume that the fi-
nal shading result depends linearly on the contents of the texture
map so that shading commutes with pixel filtering. This holds for
simple reflectance models, such as the spatially-varying albedo of
a diffuse surface, but breaks down when the texture is used to drive
a more complex surface appearance model such as a spatially vary-
ing BRDF (SVBRDF). As parametric BRDF models are typically
not linear with respect to their parameters, rendering does not com-
mute with pixel filtering: shading with a full resolution SVBRDF
and low pass filtering the image is not the same as low pass filter-
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ing the SVBRDF parameter textures and shading the result at a low
sampling rate. However, the shading result is, under distant illumi-
nation, linear w.r.t. the spatial average of the pointwise directional
values of the BRDF (the so-called “apparent BRDF”). This moti-
vates a long line of prior work for representing prefiltered appar-
ent BRDFs with varying simplifying assumptions [BM93; Tok05;
OB10]. A concurrent work [GFL*22] gives a data driven alterna-
tive. We will elaborate on this below.

We propose to learn a low pass operator that preserves the sur-
face appearance and suitably limits the frequency content of the
subsequent renderings. The operator is realized as a pair of convo-
lutional neural networks (CNN) that encode to and decode from a
latent texture representation. The latent representation is optimized
to be such that the appearance-preserving low-pass operation is lin-
ear in this space. This enhances training stability compared to a
simpler iterative encoder that autoregressively produces one MIP
map layer at a time. The encoder and decoder are trained in the
Noise2Noise fashion [LMH*18] using a rendering loss that em-
ploys the desired pixel filter. As we target real-time rendering, we
choose to output standard MIP maps that drive a standard real-time
SVBRDF model, so that no changes to the target rendering code are
required; only the MIP map generation is affected. In line with this,
we focus on the case of shading the material once per pixel. Using
our method in a supersampled offline renderer is still possible by
applying the proper MIP bias. Our method is fully data driven, and
can in principle be used for any BRDF model or shader, so long as
a differentiable implementation is available.

Interestingly, all prior work appears to treat only minification of
the surface reflectance function. We contribute the observation that
this picture is incomplete: even when rendering using no minifica-
tion, a proper antialiasing pixel filter has a smoothing effect that we
believe should be modeled by the reflectance prefiltering algorihm.
For example, rendering a perfect bumpy mirror with one sample
per pixel will generally clearly alias and produce the well-known
“shimmering” in specular highlights. We explicitly account for
pixel filtering also in processing the highest-resolution SVBRDF.
This results in noticeable smoothing in sharp specular reflections
and a much better match to the supersampled reference, as appar-
ent in the foreground crop in Figure 1 and our further experiments.

We also demonstrate training a single encoder and two differ-
ent decoders, each of which outputs parameters for a different
SVBRDF model. This offers automatic conversion between differ-
ent parametric BRDF models, with potential applications in tar-
geting hardware platforms of different capabilities from the same
source material.

2. Previous work

2.1. Prefiltering

MIP mapping [DSS78] with trilinear fetches [Wil83] or their
anisotropic extension [MPFJ99] is the standard technique for pre-
filtering color images in real-time rendering.

For bump [Bli78] and normal [COM98][CMRS98] maps no pre-
filtering solution is ubiquitous. However, several methods have
been proposed for specific material models with a varying set of

assumptions. A simple rule of thumb for Blinn-Phong materials
was given by [Tok05]. LEAN mapping [OB10] improves this by
approximating Blinn-Phong materials with the Beckmann distribu-
tion, and derives a formula for the roughness assuming normal vari-
ation to be Gaussian and independent of other material parameters.
Notably, LEAN mapping accounts for anisotropy that may result
from normal maps even if the base SVBRDF is isotropic. LEADR
mapping [DHI*13] extends this to displacement mapping. These
methods do not require any changes to the rendering system itself.
In contrast, Han et al. [HSRG07] use spherical harmonics to repre-
sent and filter the distribuiton of normals, and Xu et al. [XWZB17]
fit a von Mises-Fisher mixture to a BRDF and evaluate it adaptively.

In concurrent work, Gauthier et al. [GFL*22] propose a data
driven approach that learns to produce MIP maps with a multi-level
rendering loss. Their problem setting is identical to ours. How-
ever, their method does not explicitly consider the pixel filter and
any bandlimiting emerges purely from the downsampling opera-
tion. They also downsample some channels, such as the diffuse and
specular albedos, using conventional methods, and the roughnesses
and normals using their machine learning pipeline. This means that
they assume statistical independence of the albedo channels and the
specular lobes, which does not hold for all real-world materials as
they (and we, see Figure 11) demonstrate.

In the most extreme cases, highly specular materials and normal
maps cause extremely bright and small subpixel highlights which
produce a glinty appearance. Due to the remarkably complex dis-
tribution of normals (see Figure 8), rendering such materials ef-
ficiently requires a specialized algorithm such as the hierarchical
method of Yan et al. [YHJ*14]. In recent years, progress has been
made to render such materials in real time [TZX*22][CLS*21], but
these are still noticeably more costly than a standard single-lobe
specular shader.

In addition to normal maps, the rapidly varying normals on high
curvature surfaces can cause aliasing. Kaplanyan et al. introduce
a way to filter this variation based on the local geometric setup
[KHPL16], while Tokuyoshi et al. refine the approach for real-time
shading in forward rendering [TK21]. These approaches require
knowledge of the specific scene configuration, and are thus not eas-
ily combined into a prefiltering method. However, they work well
as a post-processing step for an already filtered local shading model
as shown by [KHPL16]. This being the case, we only consider pla-
nar local geometry and distant viewing and light directions.

Another related approach is path space regularization
[KD13][WDH*21], where BRDFs are mollified (made less
sharp in a specific sense) to enable rendering of some extremely
difficult kinds of light paths, and reduce variance in configurations
close to these. Here the BRDFs are modified not due to local
variations, but to make the global light transport more feasible.

2.2. Machine learning

Convolutional neural networks (CNNs) [LBH15] are a standard
tool for processing images and other signals in machine learning.
They consist of layers of convolutions that are learned from data,
and fixed nonlinearities between the layers. Stochastic gradient de-
scent (SGD) or Adam [KB14] is typically used to optimize the con-
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Figure 2: Overview of our model and training loss. An SVBRDF is encoded into a learned latent intermediate representation, which is linearly
downsampled to and decoded at multiple resolutions to form the predicted SVBRDF MIP stack. The encoder-decoder pipeline is wrapped in
a conversion to a suitable anisotropy-glossiness-normals parametrization, and whitening. To evaluate the training loss, a predicted filtered
SVBRDF is formed by trilinear interpolation of the model outputs using a randomly chosen scale (bandlimit), and differentiably rendered
under random viewing and illumination conditions. The training target is formed by jittering according to the same scale, and rendering the
ground truth input with the same parameters.

volutions, since datasets are too large to evaluate the full gradient
for each step.

Training a CNN becomes increasingly numerically unstable
when more layers are added. Two solutions to this are DenseNets
[HLMW17] and ResNets [HZRS16]. DenseNets work by stacking
the input of each layer to its output, never removing information
but steadily increasing the number of channels in the result images.
ResNets add residual connections, where the input to a set of layers
is added to its output, so only the difference between the input and
desired output has to be learned.

Noise2noise is an approach to CNN training introduced by
Lehtinen et al. [LMH*18] based on the interesting observation that
neural networks regress to the mean in the presence of noise. This
means that in cases where the mean is the desired outcome (such as
in denoising), one does not need the standard noise-free targets that
can be difficult or impossible to acquire. For all of this to work, the
mean of the noise has to be zero; in practice this means we need
to use unbiased statistical estimators and the L2 loss. Our render-
ing loss is based on Monte Carlo approximations so we adopt this
strategy instead of computing noise-free target images.

3. Method

3.1. Goals and Overview

Our goal is to find a pre-filtered multi-scale representation for spa-
tially varying reflectance that reproduces, when shaded only once

per pixel, high quality rendering results at any viewing distance.
By high quality, we mean that the rendered output should be a
close approximation to an ideal reference that would result if an
infinite-resolution rendering of the full-resolution input SVBRDF
was accurately low-pass filtered with a chosen pixel filter.

In order to work seamlessly with existing hardware and ren-
dering systems, we assume the input full-resolution SVBRDF is
represented by texture maps that drive a parametric BRDF model
(e.g. GGX), and seek to approximate the prefiltered appearance in
terms of the same parametric SVBRDF model. Concretely, given
texture maps that define the full-resolution input SVBRDF, our
system produces a MIP map stack of similar SVBRDF parameter
maps that have been optimized so that once-per-pixel shading of the
tri-linearly filtered parameters approximates the effects of accurate
pixel filtering. For simplicity of exposition, we assume the input
and output SVBRDF models are the same, but our architecture is
designed so that we can easily output parameter maps for one or
more different parametric models from the same input, facilitating
conversion.

Standard BRDF parametrizations are not linear in the sense that
the relationship between the parameter values and the resulting
shading values is nonlinear. Our main idea is, simply, to learn
an SVBRDF encoder-decoder pair with the special property that
linear low-pass filtering in the intermediate latent texture space
corresponds to pre-filtering the output rendering. The mapping is
realized as two convolutional neural networks: an encoder CNN
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EψE (θ) with parameters ψE that maps the input SVBRDF texture
θ(x,y) to a latent representation z(x,y), and a decoder CNN DψD(z)
with parameters ψD that maps the latent texture back to inter-
pretable SVBRDF parameters. Constructing a MIP map hierarchy
is performed by first encoding the full-resolution input; then creat-
ing a MIP map pyramid in the latent texture space using standard
linear filtering, and finally decoding each latent MIP map level:

θ̃r = D(ϕ̂r ∗E(θ)) (1)

Here r denotes the bandwidth of the desired low-pass filter, and ϕ̂r
denotes the joint operation of linearly filtering the input followed
by sub-sampling to reduce resolution; in practice, this is a standard
antialiased image resizing operation that operates on the latent tex-
ture. The encoder and decoder and learned using a multiscale ren-
dering loss, as described in the next subsection.

The emergent latent representation is only used during prepro-
cessing: at render time, only the resulting MIP map in the original
parametrization is required. Note that the mappings E and D cannot
be pointwise operations; this would not be sufficient to capture the
effects of the pixel filter in the original resolution.

Our overall goal is shared with many previous methods, with the
exception of our explicit consideration of the pixel filter. Indeed,
it is clear that when shading is performed only once per pixel,
highly shiny materials easily cause aliasing when illuminated by
small light sources, even when the original SVBRDF is viewed at
1:1 pixel-to-texel ratio. Accordingly, we also process the original
resolution of the SVBRDF map, leading to appropriate smoothing
of the specular lobes to approximate proper pixel prefiltering.

3.2. Problem Formulation

The inputs to our method are (1) the desired parametric shading
model f (θ(x,y), l,v) that is a function of the viewing direction
v, lighting direction l, and the spatially-varying BRDF parameters
θ(x,y); (2) the desired pixel filter p(x,y), and (3) a training material
set Θ = {θ1, . . . ,θn} that will be expanded by data augmentation.
For simplicity in exposition, the Lambertian cosine is taken to be a
part of the shading model.

Assuming that the lighting and viewing conditions can be con-
sidered constant over the support of the pixel filter, the ideal pre-
filtered ground truth solution we seek is, for a single directional
light of unit intensity in direction l, the convolution of the full-
resolution rendering and the pixel filter pr(x,y) = p(x/r, y/r) of
desired scale r:

GTr(x,y, l,v) = (pr ∗ f (θ, l,v))(x,y) (2)

=
∫

pr(x− x′,y− y′) f (θ(x′,y′), l,v) dx′ dy′. (3)

The parameters ψE and ψD of the encoder and decoder are op-
timized to minimize a rendering loss L(·, ·) between the ground
truth and single-sample-per-pixel renderings of the SVBRDF tex-
tures θ̃r produced by the encoder-prefilter-decode pipeline as per
Equation (1), taken as an expectation over the training set and the
sets of viewing and lighting directions and viewing scales:

argmin
ψE ,ψD

EΘ,r,l,v
{

L( f (θ̃r, l,v), GTr(x,y, l,v))
}
. (4)

As the ground truth cannot be evaluated exactly, we compute it us-
ing Monte Carlo integration, relying on the Noise2Noise principle.
To deal with high dynamic range without resorting to bias-inducing
tone mapping, we use the relative mean squared loss

L(P,GT ) =
||P−GT ||22

stop_grad ||P||22 + ε
(5)

between the prediction P = f (θ̃r, l,v) and the ground truth images.
The stop_grad operator means that the given term is treated as a
constant by the optimization process. As shown by Lehtinen et al.
[LMH*18], the optimum for this loss is the expectation of the noisy
reference. The loss is evaluated by rendering images and summing
over the discrete pixel values. To properly account for the effects of
texture filtering that will be eventually applied to the resulting MIP
maps at render time, we perform random sub-pixel jittering before
rendering, effectively turning the loss into an integral over the (x,y)
plane. Note that this process requires considering texture recon-
struction filters during the rendering process, but we have omitted
the details for notational clarity. In practice, we use bilinear and
trilinear filtering for θ and θ̃, respectively.

Note that this formulation implies an approximation: the material
is filtered as if it were viewed directly from above, regardless of the
actual viewing direction v. However, this is in line with the isotropic
approximation of a trilinear MIP map sample, which is what we
use for rendering. The exact match to this optimization formulation
would be to perform texture space shading.

3.3. Model Architecture

We use the DenseNet architecture [HLMW17] for our networks,
since our task requires only slight modifications to the original sig-
nal, and DenseNets propagate the original signal to be always avail-
able. Initial testing showed that the choice of architecture is not cru-
cial, and for example ResNets [HZRS16] perform similarly in this
task.

The input to the encoder is an SVBRDF texture stack that has
been converted to our optimization parameterization and whitened
as detailed below. Its output is the latent code z. The input to the
decoder is the (potentially resized) latent code. Its output is, after
un-whitening and conversion from the optimization parameteriza-
tion, again an SVBRDF texture stack.

The encoder E consists of 6 layers with 3x3 convolutions, and
the decoder D consists of 4 layers with 1x1 convolutions. Both
introduce 16 new feature maps per layer. The latent SVBRDF z
contains 64 feature maps. Note that neither the encoder nor de-
coder internally change the resolution of the feature maps by up-
or downsampling. This has the effect that each output texel only
depends on a limited pixel neighborhood in the input SVBRDF.
Thanks to this fully convolutional nature, the models can be run on
arbitrarily-sized inputs.

3.4. Training Details

We now provide details related to optimization, including parame-
terization and data augmentations.

Optimizer. We use the gradient-based Adam optimizer [KB14]
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Figure 3: Example data augmentations. Top left is fab-
ric_zigzag, the rest are random augmentations of it.

with learning rate 5× 10−5, (β1,β2) = (0.95,0.95) and ε = 1×
10−6. We train our models for 310k iterations or 24 hours on a
V100 using 64 lights per batch, 32x32 crops, and 5 MIP map lev-
els. Both light and camera directions are cosine distributed, and the
MIP level is chosen at uniform random from -0.5 to 5.5 (half more
than the highest MIP level). The learning rate is ramped up dur-
ing the first 100 iterations and halved every 50 thousand iterations.
Beyond this we do not use dropout, weight decay, batch normal-
ization, or other additional modifications to the optimization pro-
cedure.

Batching. For each iteration, a single material is chosen, augmen-
tations are performed, and a number of view and light directions
are chosen for the shading; a minibatch contains multiple identi-
cal instances of a material patch, each with a single distinct distant
lighting and viewing direction. We use patches of resolution 32x32
and 64 view/light configurations per mini batch. The same setup
is rendered at 5 different levels of detail by interpolating between
the predicted MIP levels. The integrals in the rendering loss are
computed with Monte Carlo integration at one sample per pixel
by jittering the locations where the shading is evaluated: a jittered
pixel grid is used for the integral of the norm, and a further offset is
chosen for the ground truth, distributed according to the pixel filter.
As our shading estimates are unbiased, the networks will regress
towards the correct mean.

Parameterization. Parameterization plays an important role in
optimizing parametric (SV)BRDF fits. Naive parameterizations,
such as using angles for anisotropy, suffer from discontinuities that
are difficult to model by typical neural networks and optimizers.
Simple remedies, such as parameterizing anisotropy through the
entries of a covariance matrix, may introduce constraints that are
difficult to enforce in optimization: not all tuples of four real num-
bers form a valid 2x2 positive definite covariance matrix. We adopt
a simplified version of the anisotropy/glossiness parameterization
of Aittala et al. [AWL15] that directly ensures that the tensor will be
positive definite. The network outputs three unconstrained scalars
(a,b,c) that are uniquely and smoothly mapped to a positive defi-
nite 2x2 matrix A by the matrix exponential:

A = exp
(

a c
c b

)
. (6)

If required by the following renderer, principal axes and their scales
may be extracted by eigendecomposion.

Similarly, surface normals are required to be unit vectors. We
choose to simply drop their height coordinates before feeding them
to the encoder, and lift the 2D vectors output by the decoder back to
the hemisphere before rendering. If the network predicts a normal
outside of the unit disc, we normalize it before lifting.

Finally, even in our smooth parameterization, the different
SVBRDF parameters have different dynamic ranges. As large dif-
ferences between the scales of input (resp. output) channels are
known to be problematic for CNNs, we approximately whiten the
parameters by means and covariance matrices that are precomputed
from the training set using 16 augmented samples. The whitening
is applied as the last step before feeding to the encoder, and un-
done as the first step after reading the output from the decoder (cf.
Figure 2).

Data Augmentation. We use data augmentations to increase the
range of materials covered by the input set, see Figure 3 for ex-
amples. Augmentations are a natural fit, as the different parame-
ters can be modified independently and relatively easily. We apply
random permutations of colors, rotations and scalings of the rough-
ness/glossiness tensor, and modify the eccentricity of normals. Ad-
ditionally, we combine two differently augmented instances with
a binary mask that is formed using a random iso-level of a Perlin
noise [Per85] texture with several octaves. This is to make sure that
a single example patch can contain drastically different values for
each parameter even if such materials do not exist in the training
set.

Implementation. We implement our method in PyTorch
[PGM*19] with a custom CUDA kernel for the shading models
for improved performance. The gains are due to data locality; fus-
ing all of the operations of a complex shading model into a single
kernel reduces global memory traffic significantly. The kernel uses
checkpointing and local forward mode automatic differentiation to
provide gradients.

3.5. Cross-training multiple shading models

Our high-level architecture allows for encoding and decoding pa-
rameters for any shading model to a shared latent representation.
This can be done relatively freely in any desired combination, as
we can treat any set of shading models as inputs and outputs. For
this, we need the shading models and a set of example materials
for each desired model. The training process is only minimally af-
fected: We pick a material from each of the given sets in turn and
encode it using the encoder of its respective shading model. We
then decode and shade the same latent with all of the chosen de-
coders and respective shading models. This way each step we train
one encoder and all of the decoders, and the same latent code is
jointly used for all shading models.

4. Results

Training data and shading models. We test our model on two shad-
ing models: a generalized Beckmann model from [AWL15] and
anisotropic GGX. We use the dataset generated by [AWL15] for the
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(a) Scene (b) MIPNet (c) LEAN (d) Ours (e) Reference

Figure 4: A temporal slice over an animation. An animation is rendered where the object rotates 0.1 degrees per frame. The same column
of pixels is taken from each frame and stacked horizontally to form a new image. (a) scene configuration, green line indicates the column
of pixels, (b)-(d) animation stacks, (e) reference. Due to explicitly modeling the pixel filter, our result avoids most of the temporal aliasing
present in others. The aliasing is visible here as overly sharp horizontal features.

Figure 5: Rendering quality over our datasets as deltas in signal to
noise ratios and LPIPS scores. The renderings use the scene from
Figure 1 with only the closer object. The differently colored areas in
the histograms match different texture repetition scales. The near,
middle and far scales correspond roughly to MIP levels 0, 3, and 7,
respectively. Both our model and MIPNet are only trained on MIP
levels 0-5, making the far case a test on generalization. Positive
values indicate that our method outperforms the respective com-
parison method. The histograms contain both the train and test set
due to the small number of materials in the test set. The main con-
clusions remain the same when only considering the test set.

Beckmann variant and a dataset curated from [PH23] for GGX. The
latter contains only isotropic materials, and both contain mainly
stationary materials without stark jumps or large differences in ma-
terial parameters. As neither dataset contains extremely sharp spec-
ularities or stark normal maps, we boost both properties slightly
in the training and test data. The resulting materials are still rea-
sonable, the goal of these modifications is to make the differences
between methods more apparent.

Comparison methods. We compare our results against our imple-
mentations of the concurrent MIPNet [GFL*22] and LEAN map-
ping [OB10]. For the generalized Beckmann material, we use linear

prefiltering for the additional kurtosis parameter for both MIPNet
and LEAN. This violates LEAN’s underlying distribution assump-
tion, but works well in practice.

Performance metrics. We quantitatively compare our method to
previous work by computing the signal to noise ratio and the LPIPS
perceptual distance [ZIE*18] of renderings under a set of environ-
ment maps, see Figure 5. Neither of these error metrics are directly
optimized by any of the methods. The histograms show LEAN hav-
ing better average SNR but worse LPIPS than our method, while
MIPNet performs slightly worse than our method on both metrics.
Initial testing showed that the MIPNet architecture is unstable for
our loss, and our Noise2Noise training produces unusable results
with their tonemapped L1 loss, so comparing the networks with
the same loss is not feasible. LEAN only works for the Beckmann
model due to how it is derived, so GGX materials are omitted from
its results.

We begin the results by showing a series of test set materials ren-
dered on a plane from two different distances to illustrate a standard
surface reflectance prefiltering setting (Figure 9 and Figure 10). As
can be seen, LEAN mapping generally fixes the issues in naive lin-
ear filtering. The differences between MIPNet and our result are
mostly subtle. Again, refer to Figure 5 for numerical results.

Thanks to our consideration of the pixel filter, differences be-
come clearly more pronounced when we consider closer texture
scales. We demonstrate this with two experiments: changes under
a small translation in Figure 6 and a slow rotation in Figure 4. The
goal in both of these is to emphasize the stability of our results
under motion when the texel to pixel ratio is close to 1:1 (the ren-
derings use values between the original resolution and the first MIP
level). In Figure 6, we show the change in the rendered results when
an object is moved by half a pixel. The comparison methods pro-
duce noisy differences, corresponding to temporal aliasing under
animations. In Figure 4 we stack the same column of pixels from
a number of animation frames to form an image. The animation is
a slowly rotating object. This setup makes temporal changes ap-
parent: our result changes smoothly over time, like the reference,
while the comparison methods produce popping and sparkling im-
ages, corresponding to abrupt changes in pixel brightness. Also see
the accompanying videos.
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(a) Scene (b) MIPNet (c) LEAN (d) Ours (e) Reference

Figure 6: Changes under a small translation. We compute how offsetting the object by 0.1 pixel changes the resulting rendering. (a) scene
configuration, (b)-(e) change in pixel intensity reference. Change is positive for bright pixels and negative for dark ones. Our rendering is
relatively stable under this slight perturbation, like the reference.
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Figure 7: Qualitative results of our cross-training setup. In this experiment we train one encoder and two decoders for each input model
(GGX and Beckmann). Here the reference is rendered using the respective input model, and the predicted output for both models is shown.

Figure 11 shows a material that exhibits strong correlations be-
tween albedo, anisotropy and normal channels, violating the as-
sumptions in MIPNet and LEAN. As our model takes in all the
SVBRDF parameters at once, it has the means to capture the result
better.

Our model architecture makes it possible to decode the same
latent code into the parameters of multiple material models. We
demonstrate this in Figure 7, where we jointly trained one encoder
for a target input material model, and two decoders for two output
material models. Decoding to a different model is mostly success-
ful, but sometimes fails due to the inherent difference in specular
lobe shape (for example, top right). Perhaps unsurprisingly, the de-
coder that corresponds to the input material model generally pro-
duces more accurate results.

4.1. Limitations

As is apparent from Figure 8, the single-lobe shading model is a
shared limitation of all of the methods considered in this work. It is
hopeless to try to match the appearance well when the normal map

causes the apparent BRDF to have multiple distinct lobes, or a lobe
that is of a distinctly different shape than implied by the shading
model. For a dramatic example of how this complexity may create
nontrivial patterns in the image, see the reference image of the red
material in the lower right corner of Figure 9.

Our assumption of constant viewing and lighting directions over
the support of the pixel filter means we do not properly model
the effects of curvature. This will lead to incorrect results in sharp
edges and creases if no post-hoc correction like [KHPL16] is used.

5. Conclusion

We have presented a way to prefilter general surface appearance
as represented by an SVBRDF, while retaining the exact desired
pixel filter and allowing to automatically convert between materi-
als. Interesting extensions include incorporating anisotropic filters
and surface curvature, handling multiple pixel filters with a shared
latent, and treating the multi-lobe case where more complicated ap-
parent BRDFs could be achieved.
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(a) MIPNet (b) LEAN

(c) Ours (d) Reference

Figure 8: Apparent BRDF for a complex normal map. Top row:
renderings, Bottom row: the apparent BRDF visualized at the point
shown with the red dot in the reference. The apparent BRDF is
the pixel filter weighted average of the BRDF for one pixel. The
material has a normal map that isn’t possible to fit with a single
lobe with the chosen BRDFs. All methods struggle.
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Figure 9: Overview of the generalized Beckmann test set. Each row contains two views of the same material. The left column is viewed from
slightly closer, the right column from further away. At both of these levels of detail, the methods are mostly comparable in quality.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

60



P. Kemppinen, M. Aittala & J. Lehtinen / SVBRDF MIP maps

Naive linear MIPNet Ours Reference Naive linear MIPNet Ours Reference

SNR↑
LPIPS↓

-3.77dB
0.44

5.43dB
0.31

5.61dB
0.33

N/A -4.29dB
0.68

9.00dB
0.48

12.10dB
0.58

N/A

SNR↑
LPIPS↓

6.34dB
0.16

15.79dB
0.13

14.93dB
0.13

N/A 7.31dB
0.11

17.74dB
0.09

15.22dB
0.07

N/A

SNR↑
LPIPS↓

12.29dB
0.29

19.59dB
0.22

19.12dB
0.21

N/A 13.06dB
0.24

22.87dB
0.17

22.49dB
0.17

N/A

Figure 10: Overview of the GGX test set. When viewed far enough so that most detail is gone, MIPNet and our method are comparable in
quality. Slight color variations are visible in some of our highlights.
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Figure 11: A material with strong correlations between different channels. Our method is the only one that takes these into account.
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