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Abstract
Background: Gestational diabetes mellitus (GDM) is an increasing health risk for pregnant women as well as their children.
Telehealth interventions targeted at the management of GDM have been shown to be effective, but they still require health care
professionals for providing guidance and feedback. Feedback from wearable sensors has been suggested to support the
self-management of GDM, but it is unknown how self-tracking should be designed in clinical care.
Objective: This study aimed to investigate how to support the self-management of GDM with self-tracking of continuous blood
glucose and lifestyle factors without help from health care personnel. We examined comprehensive self-tracking from self-discovery
(ie, learning associations between glucose levels and lifestyle) and user experience perspectives.
Methods: We conducted a mixed methods study where women with GDM (N=10) used a continuous glucose monitor (CGM;
Medtronic Guardian) and 3 physical activity sensors: activity bracelet (Garmin Vivosmart 3), hip-worn sensor (UKK Exsed),
and electrocardiography sensor (Firstbeat 2) for a week. We collected data from the sensors, and after use, participants took part
in semistructured interviews about the wearable sensors. Acceptability of the wearable sensors was evaluated with the Unified
Theory of Acceptance and Use of Technology (UTAUT) questionnaire. Moreover, maternal nutrition data were collected with
a 3-day food diary, and self-reported physical activity data were collected with a logbook.
Results: We found that the CGM was the most useful sensor for the self-discovery process, especially when learning associations
between glucose and nutrition intake. We identified new challenges for using data from the CGM and physical activity sensors
in supporting self-discovery in GDM. These challenges included (1) dispersion of glucose and physical activity data in separate
applications, (2) absence of important trackable features like amount of light physical activity and physical activities other than
walking, (3) discrepancy in the data between different wearable physical activity sensors and between CGMs and capillary glucose
meters, and (4) discrepancy in perceived and measured quantification of physical activity. We found the body placement of
sensors to be a key factor in measurement quality and preference, and ultimately a challenge for collecting data. For example, a
wrist-worn sensor was used for longer compared with a hip-worn sensor. In general, there was a high acceptance for wearable
sensors.
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Conclusions: A mobile app that combines glucose, nutrition, and physical activity data in a single view is needed to support
self-discovery. The design should support tracking features that are important for women with GDM (such as light physical
activity), and data for each feature should originate from a single sensor to avoid discrepancy and redundancy. Future work with
a larger sample should involve evaluation of the effects of such a mobile app on clinical outcomes.
Trial Registration: Clinicaltrials.gov NCT03941652; https://clinicaltrials.gov/study/NCT03941652

(JMIR Diabetes 2023;8:e43979) doi: 10.2196/43979

KEYWORDS
gestational diabetes; self-management; self-tracking; wearable sensor; mobile application; self-discovery; behavior change; user
experience

Introduction
Background
Gestational diabetes mellitus (GDM), defined as hyperglycemia
first recognized during pregnancy, is an increasing global
challenge currently affecting approximately 8%-23% of
pregnancies depending on the continent [1]. GDM has
considerable health effects as it increases the risk for short- and
long-term health disadvantages among both the mother and
child [2]. Although GDM is a temporary condition that lasts
until the birth of the child, it increases the later risk of type 2
diabetes for mothers by over 7 times [3]. Healthy lifestyle
choices help in GDM management, with nutrition being the
primary factor affecting glucose levels [4], and physical activity
[5-9], stress [10], and sleep [11] also have impacts on glucose
homeostasis. However, women with recently diagnosed GDM
do not adequately know how their own lifestyle choices
influence glucose levels [12,13], although they need to adapt
to the new situation quickly [14]. Given that pregnancy usually
lasts approximately 40 weeks and GDM is diagnosed after 12
to 28 weeks of pregnancy, any health intervention designed for
managing GDM can be used for a limited time (for
approximately 12-28 weeks). On the other hand, women with
GDM show extra motivation for managing diabetes owing to
the child [13,15], and pregnancy represents an exceptional
opportunity for lifestyle changes [16].

A recent meta-analysis of eHealth interventions targeted to
women with GDM showed that interventions providing weekly
or more frequent feedback from health care professionals to
women with GDM have the potential to improve glycemic
control [17]. Typically, in these interventions, women with
GDM can communicate with the study interventionists remotely
[18,19]. For example, a recent study by Miremberg et al [18]
revealed a statistically significant improvement in glycemic
control among women with GDM when systematic feedback
was provided by study personnel (every evening the participants
received individualized feedback via email from the clinical
team regarding their daily glycemic control). However, mobile
health (mHealth) interventions without such substantial input
from health care professionals are limited and have not been
shown to be effective [20,21]. We expect that the effectiveness
of mHealth interventions can be increased with comprehensive
self-tracking through wearable sensors by providing more
insights for women with GDM into learning associations
between lifestyle and glucose levels [22,23], a process known
as self-discovery (eg, [24]).

To establish knowledge on how self-tracking with wearable
sensors (including glucose levels and lifestyle) should be
designed to support self-management in GDM, we explored the
usage of continuous glucose monitors (CGMs) and 3 types of
wearable sensors for measuring physical activity. The overall
aim was to examine how wearable sensors can support
self-discovery and behavior change, and how women with GDM
experience them.

Wearable Sensors for Supporting Self-Discovery for
Women With GDM
Wearable sensors (eg, fitness trackers) have been included in
investigations on the management of noncommunicable diseases,
such as diabetes, migraine, and multiple sclerosis [25-32].
Moreover, in pregnancy, a recent review showed that wearable
sensors have the potential to support physical activity among
pregnant women, decrease gestational weight gain, predict
neonatal outcomes, and support monitoring of fetal heart rate
and movements [33]. However, there are no studies where the
focus is on investigating how different wearable sensors (eg, in
terms of body placement) and their data can support
self-discovery. Traditionally, studies on personal discovery in
diabetes management have been based on the data that users
enter into an app [34] or write in a paper-based journal [24].

The personal discovery of understanding medical conditions
with self-tracking data has gained a lot of attention
[24,25,27,29,35-37]. Personal discovery is an iterative and
complex process consisting of multiple stages [24,26,35]. These
stages include finding potential features that may affect the
desired outcomes, forming hypotheses, and evaluating their
impacts on outcomes [24,38]. In diabetes, successful
self-management requires knowledge of how one’s activities
and lifestyle (eg, nutrition, physical activity, sleep, and stress)
affect glucose levels. To help people with diabetes in
self-discovery, self-tracking with wearable sensors together
with glucose monitoring may provide a useful tool. However,
the role of self-tracking of activities and lifestyle together with
glucose levels using wearable sensors in the self-discovery
process is largely unknown. For example, while physical activity
and sleep have been found to influence glucose levels [6,8,11]
and a handful of wearable sensors for measuring physical
activity and sleep are available for self-tracking, the applicability
of wearable sensors in supporting the understanding of people
with diabetes about how their own lifestyle choices affect
glucose levels is largely unknown.
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Women with GDM represent an interesting user group to study
self-discovery, as they have not been managing their condition
for long. The design of supporting the discovery phase becomes
an especially important part of the management of GDM, as
“coming to terms with GDM” and learning new strategies for
self-regulation are important phases in GDM self-management
[13,15]. Qualitative studies have reported feelings of failure,
anxiety, loss of control, and powerlessness after receiving a
GDM diagnosis [13,14]. However, women with GDM
experience “a steep learning curve,” and they move from the
initial shock of the diagnosis to acceptance and active
management of their condition [39].

For women with GDM, it is typical to find associations between
nutrition and blood glucose by trying out different foods and
measuring glucose afterward [13,39,40]. The behavior where
patients try to establish hypotheses between daily activities and
changes in disease-specific outcomes has been identified as a
stage-based discovery process [24,35,38].

The framework from Mamykina et al [24] has been formulated
to explain the discovery process between daily activities and
changes in blood glucose levels. According to the framework
[24], self-discovery consists of the following 4 stages: (1) feature
selection (individuals identify activities that they believe have
an impact on outcomes, eg, blood glucose in the context of
diabetes); (2) hypothesis formulation (individuals formulate
suspected associations with activities and outcomes); (3)
hypothesis evaluation (individuals observe new information
about their condition and evaluate how it fits to already collected
data); and (4) goal specification (individuals formulate future
goals based on identified relationships between features and
outcomes).

Multiple studies have emphasized the importance of automatic
data collection in diabetes apps [22,41], although this is rarely
found in apps used in diabetes research [22,41]. Current
standards emphasize the necessity of self-tracking glucose levels
in diabetes management [5], and measurement of blood glucose
levels has been found to be the most important feature of a GDM
app [42]. However, the requirement of manually entering blood
glucose values has decreased significantly for collecting glucose
data [42,43]. Glucose measurements can be performed
automatically and more frequently with CGMs. CGMs have
been found to be acceptable among women with GDM [44-47].
However, recent research suggests that a CGM alone does not
improve glycemic control [45,48] or decrease macrosomia [47].
One reason is that the cause and effect between lifestyle choices
and glucose levels are not clear for women with GDM after
receiving a diagnosis [13-15,39,40].

While self-discovery frameworks have been critiqued for
expecting too rational and coherent behavior from people using
self-tracking [25] (users are not scientists [49]), the trial and
error aspect (hypothesis formulation and evaluation) has been
identified as typical behavior among women with GDM
[13,39,40]. Moreover, the framework by Mamykina [24] also
considers the iterative nature of self-discovery, which is
important in the context of GDM, as the development of
pregnancy has an impact on glucose control [50]. Objectively
and automatically measured and constantly available data

obtained through wearable sensors can be expected to support
self-discovery [26,27].

User Experience With Wearable Sensors for Women
With GDM
Self-tracking is often mentioned as an effective behavior change
technique [51], for example, shown as increased physical
activity among people with type 2 diabetes [52]. Thus, we
investigated the possibilities and challenges of self-tracking
with wearable sensors beyond self-discovery. Wearable sensors
have the potential to facilitate the management of GDM, as
there is proof that lifestyle interventions using wearable sensors
can be effective among pregnant women. For example, Chan
and Chen [53] reported in their review that interventions with
wearable devices for increasing physical activity were more
effective than those without wearable devices among pregnant
women.

Physical activity is one of the cornerstones in the management
of GDM [5,7], but the automatic collection of physical activity
data has gained minimal attention in GDM apps [22]. This was
emphasized in a study by Skar et al [42] who asked women with
GDM to manually enter their physical activity data into an app,
but no participant entered the data, preventing the collection of
any physical activity data. This is understandable as pregnant
women often have limited energy for monitoring their own
behavior, since they already have a lot to do and deal with
[40,54]. Rigla et al [55] enabled tracking of physical activity
for women with GDM by recording the activity with an
accelerometer in a mobile phone. However, recording required
manual start and stop by pressing buttons in a mobile app, and
participants recorded their physical activity only approximately
once a week on average. Even engagement with automatic
self-tracking has been shown to decrease among people with
type 2 diabetes and type 1 diabetes [56]. For example, Böhm
et al [56] reported that the number of active users of CGMs
dropped by over 20% after 20 weeks, and similarly, active users
of automatic physical activity tracking dropped by over 30%
after 20 weeks.

The other issue to consider in addition to the automaticity of
tracking is what types of physical activities are possible to track.
Carolan et al [15] noted that although walking is commonly
advised for women with GDM by diabetes educators and
midwives, it can be painful for many. However, automatic
self-tracking beyond steps is more challenging. Årsand et al
[30] found that the largest problem for people with type 2
diabetes to track their physical activity was that wearable sensors
did not support the measurement of other activities, such as
cycling and swimming, which are common physical activities
among pregnant women [57]. More recent studies implied that
wearable sensors have still rather low validity in tracking
physical activities beyond walking and running, such as
bicycling and resistance training [58].

Studies investigating the practical challenges of wearable sensors
for self-tracking among women with GDM are largely lacking.
As described above, only few studies have enabled self-tracking
of physical activity among women with GDM [42,55], and in
the case of self-tracking of other lifestyle factors (eg, sleep and
stress) with wearable sensors, no studies have investigated
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self-discovery among women with GDM. In the context of
pregnancy, automatic self-tracking of lifestyle (eg, nutrition,
physical activity, and symptoms) has been argued to help in
countering pregnancy-related health risks [59,60]. However,
some women perceive pregnancy medicalization and state that
they lack control over their own bodies even without multiple
wearable sensors [13,54]. The use of sensors can further increase
the feeling of losing a normal pregnancy [13]. Moreover, it is
unclear how the sensors fit pregnant women whose physical
and mental conditions are different from those of the general
population. Pregnancy causes several lifestyle changes (eg, diet
limitations), physical changes (eg, difficulty moving,
contractions of the uterus, and increased waist size and heart
rate), sleeping disorders, and tiredness. The effect of differences

in these conditions on self-tracking with wearable sensors should
be investigated.

Methods
Research Design
We conducted a mixed methods study where women with GDM
(N=10) used a variety of wearable sensors and their mobile apps
for a week. Our primary aim was to examine how wearable
sensors can support the self-management of GDM. We studied
this with 2 research questions (RQs) as shown in Textbox 1.
We investigated how self-tracking with wearable sensors can
support or inhibit self-discovery (RQ1) and how women with
GDM experience wearable sensors (RQ2). The study was
performed in Finland.

Textbox 1. Research questions.

• Research Question 1: How self-tracking with wearable sensors (not only continuous glucose monitors) can support or inhibit the self-discovery
of women with gestational diabetes mellitus (GDM)? We investigated the role of wearable sensors at each stage of the self-discovery process
(feature selection, hypothesis formulation, hypothesis evaluation, and goal setting), as described in the section Wearable Sensors for Supporting
Self-discovery for Women With GDM.

• Research Question 2: How do women with GDM experience wearable sensors? Although wearable sensors have been investigated with pregnant
women and people with type 1 or type 2 diabetes, the knowledge of how women with GDM perceive wearable sensors is less known, as described
in the section User Experience With Wearable Sensors for Women With GDM.

Ethical Considerations
The study was performed in compliance with the Declaration
of Helsinki and was approved by the Ethics Committees of
Helsinki Central Hospital (September 14, 2006; Dnro
300/E9/06). The study was registered at Clinicaltrials.gov
(NCT03941652).

Sensors

Continuous Glucose
Medtronic Guardian Connect CGM with an Enlite sensor
(Medtronic; Figure 1) can continuously measure tissue glucose.
A flexible filament is inserted just under the skin to measure

glucose levels in interstitial fluid every 5 minutes. Values are
sent to the Medtronic Guardian app via Bluetooth. If a Bluetooth
connection is not possible, the CGM system transmitter collects
the data for several days. Medtronic requires calibration of the
sensor through fingertip blood glucose measurements 2 times
a day. The overall mean absolute relative difference has been
reported to be 13.6% [61].

The Medtronic CGM was attached to the skin by a study nurse.
This was because participants wished to wear the CGM on the
arm and they could not attach the CGM to the skin using only
one hand. Currently, CGMs do not allow tracking of lifestyle
data, and additional sensors are needed to support tracking
beyond glucose.
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Figure 1. The wearable sensors used in the study: (1) Firstbeat, (2) Medtronic Guardian Connect, (3) Vivosmart 3, and (4) Exsed.

Physical Activity
We chose to use multiple physical activity sensors to study
which sensor or combination of sensors should be used in terms
of wearing comfort and provided data. Details are provided in
Figure 1 and Table 1. Exsed (UKK-Institute) was worn on the
hip and provided data about standing and sitting. The data
analysis was based on validated MAD-APE algorithms [62,63].
These analyses have been employed in population-based studies
of Finnish adults [64,65]. Vivosmart 3 (Garmin) was worn on
the wrist and provided data about intensity minutes. Vivosmart
3 has been shown to measure steps well at slow walking speeds
(mean absolute percentage error was 1.0%) [66], which is
important as walking speed is affected by pregnancy [67].

Physical activity sensors also varied in terms of how visible
they were to others nearby. Exsed could be worn in a discreet

manner so that others would not see it, whereas Vivosmart 3
was worn on the wrist and was more conspicuous. This
physicality has been shown to be a prominent issue for wearable
sensors [49].

The heart rate variability (HRV) sensor Firstbeat Bodyguard 2
(Firstbeat Technologies) was added to explore the validity of
physical activity and sleep data recorded with physical activity
sensors. The device is able to continuously measure beat-to-beat
HRV with an error of <3 ms and a detection rate of >99.9% as
compared with clinical-grade electrocardiography [68].

Due to incompatibility issues between different operating
systems and sensors, the participants were given an iPod touch
with the sensor apps preinstalled. The participants were able to
use their own mobile phones with Vivosmart 3, as we found no
incompatibility issues in the Garmin Connect app prior to the
study.
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Table 1. Wearable sensors worn by the participants (participants wore all sensors simultaneously).

Worn by each
participant

WaterproofUser interfaceComponentsWearabilityData providedTypeSensor name

Mean=94% of
the time (23 h
and 3 min/day)

Yes, up to
2.5 meters
for up to 30
minutes

None. Data access
through a mobile app
(Medtronic Guardian
Connect). The app en-
ables viewing the time
series of glucose values,
and the viewing range
can be changed from 1
hour to 1 day. Users in-
sert the calibration val-
ues twice a day, and it
is possible to add carbo-
hydrates and physical
activities to the time-
line.

Enlite sensor: flexi-
ble filament mea-
sures glucose levels
in interstitial fluid;
Guardian Connect
transmitter: Blue-
tooth

Typically worn on
the area of the ab-
domen, which is at
least 5 cm from the
navel, but partici-
pants wished for at-
tachment to the up-
per arm.

Interstitial fluid
glucose value
every 5 minutes

CGMMedtronic
Guardian
Connect
CGMa with
an Enlite
sensor

Mean=93% of
the time (22 h
and 30 min/day)

Yes, up to
50 minutes

Touch screen, and data
access through a mobile
app (Garmin Connect).
The app enables view-
ing of many kinds of
information about the
recorded data, and the
time span of the graphs
can be varied between
1 day and 1 year.

Bluetooth Smart,
ANT+, 3D ac-
celerometer, optical
heart rate sensor
(green LED), baro-
metric altimeter, and
ambient light sensor

Worn on the wrist
with an adjustable
plastic strap.

Steps, intensity
minutes, stairs
climbed, heart
rate, sleep dura-
tion, sleep quali-
ty, stress, and
calorie con-
sumption

Activity
tracker

Garmin
Vivosmart 3

Mean=83% of
the time (19 h
and 55 min/day)

Yes, up to
30 meters

None. Data access
through a mobile app
(Exsed2). The app visu-
alizes the recorded data
on a daily graph and a
weekly graph.

Bluetooth, 3D ac-
celerometer, and gy-
roscope

Worn on a belt
around the hip or on
a clip attached to
trousers, and worn
on the wrist during
nighttime.

Duration of
physical activi-
ty, sedentary
behavior, sleep
sensor, sitting,
standing, breaks
in sitting, steps,
sleep duration,
and sleep quali-
ty

Activity
tracker

Exsed

Mean=93% of
the time (22 h
and 30 min/day)

NoNone. Data are provid-
ed in a PDF after the
measurement period.

3D accelerometer
and beat-to-beat
heart rate

The device is at-
tached to the chest
with 2 disposable
clinical-grade elec-
trocardiography
electrodes.

Stress, recov-
ery, duration of
physical activi-
ty with intensi-
ties, HRV, heart
rate, excess pos-
texercise oxy-
gen consump-
tion, respiration
rate, and others

HRVb sen-
sor

Firstbeat
Bodyguard 2

aCGM: continuous glucose monitor.
bHRV: heart rate variability.

Recruitment and Data Collection
Our goal was to recruit 10 women with GDM from maternity
and antenatal clinics in the Helsinki Metropolitan Area
(Finland). The goal for the number of participants is similar to
that in multiple qualitative studies on women with GDM [12].
The clinic nurse asked women with GDM at least at 24
gestational weeks about their interest in participation. If
interested, the study nurse contacted the mother with more
information about the study and confirmed eligibility. The
exclusion criteria were type 1 or type 2 diabetes, use of
medication that can influence glucose metabolism (eg, oral

corticosteroids, metformin, and insulin), diagnosis of GDM in
previous pregnancies, current substance abuse, presence of a
severe psychiatric disorder, significant difficulty in cooperating
(eg, inadequate Finnish language skills), and significant physical
disabilities that would prevent the use of a smartphone or
moving without aid. Data were collected using the following
procedure. After obtaining informed consent, we collected
background information (eg, age, pregnancy weeks, and
familiarity with mobile apps) through a questionnaire.

Participants were asked to wear wearable sensors (see the section
Sensors) for 6 days and nights, after which they were
interviewed in their native language (Finnish). The length of
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the usage period was decided based on the battery life of the
transmitter of the CGM, which was 6 days. To compare data
from wearable sensors with their perception of physical activity
and sleep, participants filled out a logbook for physical activity
and sleep (duration in hours) for 6 days. For physical activity,
participants were asked to write down the type of activity,
duration, and intensity (light, moderate, or vigorous). The
perceived intensity levels were defined according to descriptions
by Norton et al [69]. Moreover, Firstbeat used the same intensity
categorization as provided in [69]: 20%-40% of maximal oxygen
consumption (VO2 max) is considered light physical activity,
40%-60% of VO2 max is considered moderate physical activity,
and over 60% of VO2 max is considered vigorous physical
activity. Vivosmart 3 shows the intensity of physical activity
as intensity minutes, which is gathered when physical activity
at a moderate level is performed for at least 10 consecutive
minutes. Physical activity at a vigorous level doubles the
gathered intensity minutes. Explicit thresholds for moderate
and vigorous activities are not provided in the documentation.
Exsed did not provide data regarding the intensity of physical
activity.

One of the most prominent features is tracking and managing
diet, as this is the primary factor that affects glucose levels.
However, wearable eating detection systems are not able to
detect the macros of food [70,71]. As such, wearable sensors
were not used to measure diet, and participants kept a diet
logbook for 3 days during the study period. We chose to gather

diet data for 3 days, because keeping a food diary is laborious
and it has been shown that diet data for 3 days provide valid
results [72].

Before starting the measurement period, participants were met
by an experimenter and a study nurse. In the meeting,
participants provided written consent, filled in a background
questionnaire, and were instructed on how to use the sensors.
They were given contact information in case they faced
problems in using the sensors. Finally, at the end of the meeting,
participants filled in a technology acceptance questionnaire
based on the Unified Theory of Acceptance and Use of
Technology (UTAUT) [73], which has been widely used for
evaluating the acceptance of technology in diabetes management
[74]. After the usage period, participants filled out the same
UTAUT questionnaire and took part in a semistructured
interview, which was audio-recorded. At first, we asked
questions concerning all the sensors, such as how they impacted
the users’ daily lives. After this, we asked questions concerning
each sensor, such as what the users were able to discover from
the data, how the data impacted their daily behavior, what data
they valued, and what challenges they had with each sensor.
See Textbox 2 for the main interview questions. Interviews
were conducted in quiet places that were easiest for the
participants to arrive at and were conducted in their mother
tongue. Interviews lasted approximately 1 hour on average.
After a 15-minute break, participants continued with an
interview about a prototype GDM application (results are
reported elsewhere [23]).

Textbox 2. Main interview questions regarding the wearable sensors.

Main questions about self-discovery

• Have you made deductions based on the data from the sensors and their apps? If yes, what kind of?

• Has the usage of the sensors influenced your behavior? If yes, how?

• Do you think that the <sensor name> would help you to manage blood glucose? Please justify.

• Has the information from the sensors or their apps been confusing or unclear? If yes, what?

• Did you feel that the information from the sensors described your behavior truthfully?

Main questions about the user experience

• What factors influenced wearing the sensors?

• Have the sensors or their apps caused you any discomfort or inconvenience? If yes, which sensors or apps and how?

• Think about your experience with the sensors and their apps. How would you improve them?

Analysis
Interviews were transcribed, and 2 researchers familiarized
themselves with the interviews by reading the transcripts. The
analysis was performed according to the framework method,
which is a recommended approach for multidisciplinary health
research [75]. We used self-tracking of blood glucose, diet,
physical activity, sleep, and stress as initial codes. Coding was
implemented with Atlas.ti by employing emergent theme
analysis of the data collected [76], resulting in 66 codes
altogether. These codes were combined into larger categories,
which are presented and discussed in relation to the main themes

of the study (ie, self-discovery and experiences with wearable
sensors).

Quotes provided in the results were translated into English
intelligent verbatim, a process whereby filler words such as “er”
are removed during translation. Log files from the sensors were
used to determine how much the participants wore them, how
data from the sensors correlated with self-reported data, and
whether there were differences in data between the sensors. The
statistical significance of differences in data between sensors
was computed with the Friedman test, and correlations between
automatically measured and self-reported data were calculated
with Spearman or Pearson correlations, depending on the test
for normality (Shapiro-Wilk). Finally, we triangulated among
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these data sources (interviews, data from the sensors, and
logbooks) to understand how self-tracking with wearable sensors
should be designed to support self-discovery.

Results
Participants
Ten women with GDM (Table 2) were recruited. We had a
variety of participants in terms of age (minimum 24 years,
maximum 40 years). Participants were familiar with mobile

apps and measuring glucose, but they had less experience with
using wearable physical activity sensors, as depicted in Table
2. The same participants participated in another study after this
study [23]. The mean age of the participants was 33.6 years,
which is similar to that of women with GDM in Finland (mean
32.5, SD 5.3 years) and in the Helsinki area (mean 33.1, SD 5.1
years) [77]. The mean BMI of the participants was 25.7 kg/m2,
which is in the range of the mean BMI of women with GDM
in the Helsinki area (mean 27.1, SD 6.0 kg/m2) and in Finland
(mean 28.5, SD 6.3 kg/m2) [77].

Table 2. Participant demographics and their experience with mobile apps and sensors.

I am familiar
with measuring
blood glucosea

I am used to us-
ing physical activ-
ity sensors (such
as Fitbit, Vivos-
mar, and Polar)a

I am used to us-
ing various mo-
bile appsa

How many min-
utes per day do
you exercise at a
moderate level?

BMI before preg-
nancy (kg/m2)

Weeks of gesta-
tion

Age (years)ID

53415022.235.0361

424430.133.3322

42412023.131.2403

52524029.833.7244

424326.035.6315

41521021.030.3316

512320.236.6327

55512025.437.0368

41512022.934.8359

55515036.628.13910

4.52.44.325.725.733.633.6Mean

aFor the statements, the Likert scale ranged from 1 (strongly disagree) to 5 (strongly agree).

Factors Supporting Self-Discovery (RQ1)

Continuous Glucose Monitoring
While participants were familiar with measuring their glucose
levels (Table 2), they learned new things owing to continuous
monitoring.

I wish I had this [CGM] when I got the GDM
diagnosis, so I would have got some knowledge of the
glucose curve. [Participant #9]

They learned new causalities between food and glucose levels.

I think it is better to have the data from 24 hours.
Then you can see what happens in between.
Nowadays, I eat nuts because I know that when I
started eating nuts, my blood glucose started to be at
a good level. [Participant #1]

Improved glucose control was noted in Participant 2, who started
monitoring glucose levels continuously and learned to adjust
eating accordingly.

I had a couple of hypers [hyperglycemia], but I think
with normal measurements those would not be noticed
because they were irregular...especially the hypers
in the morning...At first, I was like I don’t have any

problem with them [glucose levels] but when you had
that continuous measurement I figured out that it is
not actually the case. [Participant #2]

The CGM facilitated monitoring the variability of glucose, and
among 7 of the 10 participants, the variability of glucose values
decreased, which was calculated as a trend in the variability of
glucose using LAGE (large amplitude of glucose excursions)
[78]. The CGM not only supported self-discovery but also
improved motivation to change the diet.

...you are able to see it [glucose] for the whole day...it
motivates for changing the diet. [Participant #2]

While participants had extra costs from wearing the CGM (see
the section Wearing the CGM on the Arm) and calibration (see
the section Needed Effort Using the Sensors), most of the
participants would have liked to continue using the CGM, as
they got used to it.

Numerical Affirmation for Assumed Cause and Effect
Half of the participants (5/10) discussed that they found
numerical evidence for the assumptions they had before the
study.

These sensors have confirmed my assumptions what
are the most important factors to control blood
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glucose and GDM and weight management in the
future...so the regular eating is of paramount
importance for me. [Participant #10]

Moreover, this included more specific causalities that had been
assumed before using the sensors, as Participant 9 found
evidence for an association between physical activity and blood
glucose.

If you move or plan to move, then you can eat food
which has more carbs...so I have been following if I
do something I can eat a little bit more...this kind of
normal thing that I kind of had thought before...but
now it was more like you can actually see it.
[Participant #9]

Factors Inhibiting Self-Discovery (RQ1)
Most of the participants (7/10) did not discuss finding cause
and effect between physical activity and glucose levels. For
example, Participant 9, who was data-oriented, tried to figure
out the causalities.

Well, maybe the information from the activity bracelet
was useful, as I have never used such a device before
and I am interested in numbers...and this information
connected to what is happening in my blood
glucose...so I tried to figure out connections.
[Participant #9]

As the self-discovery process seemed to be tedious for many of
the participants, they would have liked to receive clear
instructions on how to change their behaviors. Some participants
wished to see important data being highlighted.

I wished I could have seen highlighting or other
markings, what to look for from the data. [Participant
#10]

As such, the current tools did not support establishing links
between glucose levels and physical activity. In the following
text, we discuss issues that inhibited self-discovery.

Lack of Trackable Features
Participants had less physical activity than recommended during
the measurement period, as measured with Firstbeat. According
to the recommendation, pregnant women should have at least
150 minutes of moderate physical activity in a week [79], but
according to Firstbeat, the participants had approximately 7
minutes per day of moderate physical activity (Figure 2). In
most cases, the lack of physical activity was explained by being
in the third trimester of pregnancy.

Unfortunately, I did not have much physical activity
as I get pain from normal walking...I was tempted to
do more, but my condition did not allow it.
[Participant #2]

Thus, without enough physical activity, it was difficult to
interpret the effect on glucose.

As the intensity levels of physical activity were difficult to
quantify and recognize, the participants had only very little
understanding of what the physical activity shown as intensity
minutes meant.

They were very confusing, I did not follow them
actively, one day I just realized that I have got more
of them, but I did not have any clue what they are
based on. On one day I became unwell in a shop, and
I noticed that I had received intensity minutes because
my heart rate had increased...but it was not something
nice. [Participant #4]

The number of intensity minutes varied a lot between
participants, as 1 participant did not gain intensity minutes at
all during the measurement period and 1 participant gained 145
minutes (the goal being 150 minutes per week). Moreover,
Vivosmart 3 required physical activity to last 10 consecutive
minutes to be counted, which was not often the case for
participants as their physical activities were performed for
shorter periods, such as walking the stairs.

While the intensity of physical activity was difficult to recognize
and the intensity minutes were not achieved much or understood
well, steps were easily understood, and step goals provided by
sensor applications were achieved more often. However, half
of the participants (5/10) did not care about the goal, as walking
was perceived to be tedious.

I did not care about the step goals, before pregnancy
I could have challenged myself, but now I go for a
walk which feels good and that’s it. [Participant #5]

Three of the 10 participants discussed the importance of the
possibility of tracking swimming and water running, as these
were the only exercises they were able to perform well.

For a gestational diabetes patient, swimming is almost
the only sport that you can pretty normally do, so the
sensor should definitely be one that encourages you
to move, especially to swim. [Participant #1]

This highlights the importance of the waterproofness of physical
activity trackers and the possibility of tracking swimming for
women with GDM.
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Figure 2. Duration and intensity of daily physical activity as measured with Firstbeat (heart rate variability) and as self-reported. A substantial portion
of physical activity that heart rate variability measured to be light was perceived as moderate.

Difficulty of the Quantification of Self-Tracking Data
We expected the quantified information through wearable
sensors to help in forming hypotheses, as an abstraction to
quantifiable units (eg, from a fast walk to the heartbeat) is often
required at the hypothesis formulation stage [24]. However, the
discrepancy between perceived and measured quantification
and clearly erroneous quantification with wearable sensors
imposed significant challenges for hypothesis formulation. This
study showed a significant difference between measured and
perceived quantification of physical activity. Participants
interpreted the intensity of physical activity as higher than it
was measured, that is, participants perceived light activity as
moderate activity. This can be seen in Figure 2, which shows
a high proportion of physical activity being light, as measured
with Firstbeat. The participants self-reported their overall
duration of physical activity rather similarly to Firstbeat. In fact,
there was a statistically significant correlation between Firstbeat
and self-reports (Spearman r59=0.43; P<.001) in terms of the
duration of physical activity. However, the participants
categorized the intensity (intensity was instructed according to
[69]) of physical activity differently than Firstbeat. There were
no statistically significant correlations between self-reported
values and the values from Firstbeat when looking at each
intensity within the categories.

In general, the participants had difficulties in interpreting what
is counted as physical activity.

At this point of pregnancy you move a little, and tasks
like fetching the mail is already pretty tough...so it is
a bit difficult to say what is counted as exercising and
what is not. [Participant #4]

As such, perceiving physical activity as more intense than
measured might lead to incorrect conclusions about its effect
on glucose levels.

Contradicting Self-Tracking Data
Differences in the data provided by the sensors caused
significant challenges for self-discovery. Regarding physical
activity, there were statistically significant differences in the
number of steps between the devices, as evaluated with the
Friedman test (χ2

2=16.22; P=.008). These differences were not
explained by the differences in how long the sensors were worn,
as Vivosmart 3 and Firstbeat were worn for similar durations,
but Vivosmart 3 (mean 7191 steps/day) provided twice as many
steps as Firstbeat (mean 3519 steps/day). Exsed was in the
middle with a mean of 6307 steps/day. Firstbeat required a
longer continued movement to start the counter, whereas
Vivosmart 3 started counting the steps immediately. It is
probably a more desirable strategy to also count the steps during
small transitions (eg, in the home), as there were only a few
pregnant women who exercised. However, Vivosmart 3 counted
movement as steps, even though the participants had not walked.

When I woke in the morning, I had several hundred
steps, although I had not walked that much during
the night. [Participant #1]

Contradictory data between sensors were not only limited to
steps, as there was no significant correlation in the duration of
moderate physical activity between Firstbeat and the amount
of intensity minutes in Vivosmart 3 (Spearman r57=0.22; P=.12).

Regarding sleep, there was a statistically significant difference
in the length of sleep between the devices, as evaluated with
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the Friedman test (χ2
2=17.27; P<.001). Exsed showed

significantly less sleep (mean 7.2 h/night) compared with
Vivosmart 3 (mean 7.8 h/night) and Firstbeat (mean 8.0 h/night).
These differences raised a lot of questions among participants
and decreased the credibility of the data. These responses on
contradictory data also reflect the UTAUT responses on
incompatibility (see the section General Acceptance Based on
the UTAUT). Three participants found that the data provided
by the sensors they normally use (activity bracelets by Fitbit,
Polar, and Suunto) varied significantly in terms of physical
activity and sleep.

In addition, 6 of the 10 participants discussed differences
between continuous glucose measurements taken from tissue
and fingerstick measurements taken from the blood. The
reported differences varied a lot. Some participants reported
that the differences were significant.

...a couple of times it [Medtronic] showed that the
glucose was low, but it wasn’t that low...at one time
it [Medtronic] showed 2.8 [mmol/l], but it was 5.3
[mmol/l, as measured from fingertip]. [Participant
#4]

On the other hand, some reported that the differences were
minor.

I don’t think they differed much...looking at the graph
you were able to see an increase after eating and
during night time it was low, so they seemed to be
pretty accurate. [Participant #6]

Nevertheless, the differences decreased the credibility of glucose
monitoring data.

...the values were somewhat different than taken from
fingertip...so it made me think how much I can trust
this data. [Participant #9]

However, the use of multiple sensors supported gathering a lot
of data from many perspectives, with the potential to increase
understanding.

Challenges in Self-Tracking of Sleep
As pregnancy decreases the quality and length of sleep [80],
sleep information could be valuable for women with GDM, as
they learn to understand their sleeping disorders. Five of the 10
participants mentioned information about sleeping to be
particularly interesting.

On Thursday night I slept two hours and six minutes,
so it was pretty interesting to get that kind of readings,
but I think it is positive in the sense that it proves that
I am not becoming crazy but instead slept too little.
[Participant #10]

Moreover, these participants discussed that they were interested
in the quality of sleep.

It was interesting to look at the sleep graph...so in
the early night I had slept deeper and lighter towards
the morning, and how you have woken or not woken
up. [Participant #9]

However, 2 of the 10 participants did not want to get feedback
about their sleeping as they knew they had slept too little.

I have not had any possibilities to influence my
sleeping during the past month, so it could be a bit
depressing information that you have slept
lousy...Well, I know that already. [Participant #1]

Thus, seeing sleep data was clearly a matter of personal
preference.

Participants sometimes had difficulties in estimating at what
time they had fallen asleep; thus, objectively measured sleep
has the potential to provide unbiased information for the
self-discovery process. In general, participants’ self-reported
duration of sleep (mean 7.8 h/night) correlated with the duration
of sleep measured with the wearable sensors Firstbeat (Pearson
r42=0.58; P<.001), Vivosmart 3 (Pearson r42=0.57; P<.001),
and Exsed (Pearson r36=0.55; P=.001). Moreover, sleep data
gathered through sensors were more comprehensive as
participants sometimes forgot to mark the waking and sleeping
times in the logbook.

Nevertheless, participants were not able to link their sleep with
glucose values, although they tried to increase their
understanding of how to manage glucose values.

I am most interested in the quality of sleep and stress
levels. And how and if they impact the glucose
somehow...my fasting glucose values don’t seem to
be within the limits no matter what, so it is the same
whatever I eat, so I feel that they are always high.
[Participant #8]

Challenges in Self-Tracking of Stress and Recovery
In general, all participants were curious about their stress levels
and how these levels were linked to glucose levels. However,
most of them (7/10) had difficulties interpreting the stress data
provided by Vivosmart 3. Pregnancy increases the resting heart
rate and decreases the HRV [81], which has been used as a
measurement for stress [82]. The decrease in HRV due to
pregnancy most likely caused Vivosmart 3 to interpret standing
as stress, although participants did not feel stressed.

The stress data was confusing. I did not understand
how it figured out that I had been very stressed that
day. I stood a lot at my workstation, so I wondered if
it is so silly that it thinks that I am terribly stressed if
I stand. [Participant #3]

However, 3 of the 10 participants valued the stress data from
Vivosmart 3 as it helped them know whether they recovered
from stress.

There was one day when I was using a computer and
I had meetings for the whole day, it was very stressful
for the body, even though I did not do anything
physically...these stress sensors sort of gave me
information on what is enough rest for recovery, this
was new to me. [Participant #9]

Seeing themselves being described as stressed did not seem to
make them more stressed but sometimes helped to distinguish
between stress and rest.
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I was able to look at the stress level, so it concretized
when I am like resting and when the stress is high.
[Participant #7]

Participant 8 discussed that the stress reading from the sensor
could be used as an objective value like body temperature, which
would make a partner understand the condition.

...at home I can show, look how stressed I am...so you
should take care of the child while I’m resting.
[Participant #8]

Thus, stress data were valued by other means than supporting
the self-discovery of glucose levels.

Toward Better Tools for Supporting Self-Discovery
Although the participants had received their GDM diagnosis
some weeks prior to the study’s measurement period, they were
still in the discovery phase [38], meaning that they were figuring
out the factors affecting their glucose levels. We found many
instances that followed the chosen self-discovery framework
[24]. Over half of the participants (7/10) found causalities
between nutrition and glucose values in continuous glucose
monitoring, and 3 of the 10 participants found causalities
between physical activity and glucose values in continuous
glucose monitoring. However, these causalities were based on
gained experience (ie, the food that was just eaten or the walk
that was just taken) and CGM data, but not on the data from
lifestyle sensors. This indicates that establishing causalities
based on self-tracking data through wearable sensors appears
to be too challenging, and better tools (or more support from
health care professionals) for interpreting the self-tracking data
through wearable sensors are needed. In this study, 6 of the 10
participants commented that they would have liked to have
added information in a single app, which would have decreased
the amount of redundant data shown.

So that the same information would not be entered in
many places, but also the same or overlapping
information would not be presented to the user, so
you should have one app. [Participant #10]

This was also reflected by Participant 9.

So that all the information is visible in one place, and
there won’t be many links and sources. So, the
challenging thing was what I should write on the
paper, what I see on the bracelet...so there should be
one place and one way to show this information.
[Participant #9]

The other issue was that participants had to enter the blood
glucose values taken from their fingertips into the Medtronic
app, as well as write them down with a pen and paper and report
these values to a health care professional. This requires double
marking of blood glucose values, which can decrease the
motivation to track glucose values in the GDM application in
the long term [42]. As such, participants indicated that they
wished to have a single application where all the data from
lifestyle sensors and the CGM are gathered. This would decrease
the amount of redundant and contradictory data, as participants
were confused by the differences in the data provided by
multiple sensors.

Experiences of Wearing the Sensors (RQ2)

Wearing the CGM on the Arm
Most of the participants (8/10) preferred wearing the CGM on
the arm instead of near the navel. One reason was that
participants did not like to attach the sensor near the baby.

Now when you feel with your hands your baby
moving, it would feel somehow weird if there was
something in that place during pregnancy. [Participant
#6]

Other reasons were that the abdomen was sore and the sensor
would be visible to self and others. However, wearing the CGM
on the arm caused problems with glucose measurement during
the night, as the participants slept on the glucose sensor, which
caused the sensor readings to drop below the alarm limit, and
this woke up most of the participants (8/10). The participants
had to turn off the iPod to silence the alarm, which caused some
of the glucose measurements to be missing from the sensor.
Thus, the participants could not sleep on the side where the
sensor was placed. We tried to avoid this by asking on which
side the participant typically sleeps and attaching the sensor on
the other side, but this did not always help as some participants
slept on both sides.

At this stage of pregnancy...you must sleep on both
sides, they are the only poses in which you can sleep,
so the position has to be something else than that [the
arm]... [Participant #1]

While most participants (9/10) preferred not to wear the glucose
sensor near the navel, Participant 10 preferred that option.
However, this participant hit the glucose sensor at various
places, such as a car seat.

For example, I hit it [glucose sensor] on the car seat
every time I got in the car or got out of the car it
hurt...so I wonder if there is a better place for it.
[Participant #10]

In fact, 3 of the 10 participants reported the issue of hitting the
sensor on various objects, causing some pain in the arm. As
such, there was no optimal place where this CGM could be
placed. An issue with the stickers holding the CGM is that they
can be loosened when swimming, which was an important hobby
for 3 participants. In fact, the stickers holding the CGM were
loosened in 1 participant, and the sensor got detached when
swimming. Therefore, stickers as a fastening mechanism for
sensors should be avoided in the long run.

...six days is pretty heavy, so you do not want to take
them all with you, so I think, especially when there
are these glues, so I would not like to wear them for
very long. [Participant #1]

Wearing the Lifestyle Sensors
Overall, the participants wore the sensors over 80% of the time
(ie, over 19 h/day), as shown in Table 1. Participants wore the
sensors, except when they were showering or swimming.
Sometimes they forgot to wear the sensors, and this was
especially the case with Exsed (hip worn), which required a
change of position before and after sleeping. In fact, there was
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a statistically significant difference in measurement durations,
as evaluated with the Friedman test (χ2

3=8.124; P=.04). A
post-hoc test using Bonferroni correction [83] revealed that data
from Exsed were acquired for a significantly (P=.03) shorter
time (mean 83% of the time) than from the Vivosmart 3 activity
bracelet (mean 93% of the time). No other differences were
found between the sensors in terms of measurement durations.
The Exsed hip sensor operated with batteries during the whole
period and did not require charging; however, the Vivosmart 3
sensor was worn more. Participants had only limited wearing
issues with Vivosmart 3. Two participants discussed that it
caused some swelling, but no other issues were raised. This was
different from Exsed worn on the hip. Information regarding
the preference of Exsed was obtained from 9 participants. Of
the 9 participants, 4 preferred to wear Exsed on a clip, 2
preferred to wear it with a belt, and 3 did not have a preference.
The primary reason participants preferred wearing Exsed on a
clip was that it was difficult to adjust the tightness of the belt.
When the belt was loose, it easily moved around.

It rolled all the time and fell down, so it was a bit
irritating. [Participant #10]

Moreover, if it was tight, it pressed uncomfortably.

The belt pressed even more [than the clip], I do not
know how much it could have been looser. [Participant
#8]

The belt was used if no place was available for the clip.

I am wearing a skirt or dress, so the belt has been
more natural. [Participant #5]

Participants also had issues with the clip, as it chafed the skin.

As I have this belly, it [Exsed] is irritating on the
waist. ...I had to fix its [Exsed] position and move it
so if I am sitting it is under pressure. [Participant #2]

In fact, 5 of the 10 participants reported that they had some
issues with wearing Exsed with either the clip or belt. As such,
pregnancy decreased the feasibility of using a hip sensor for
tracking physical activity. However, the hip sensor was
perceived as unnoticeable by some participants as it did not
have a user interface and it was worn in the trousers.

You did not notice it at all, so sometimes I forgot that
I needed to put it on when I took my trousers off.
[Participant #4]

Needed Effort Using the Sensors
The requirement to calibrate the CGM twice a day was found
to be tedious.

It [calibration] was needed surprisingly
often...although it did not bother me during the week,
but in the long term it could become an issue, all those
calibrations if you are somewhere [else than home]...
[Participant #2]

This influenced the sleep of Participant 4, as this participant
needed to wake up in the mornings to calibrate the sensor.

On some mornings, it was irritating that it notified
me half an hour before calibration, I thought I could
have slept half an hour more. [Participant #4]

The other issues that needed substantial effort from participants
were keeping the nutrition diary and filling the physical activity
logbooks. These would not be feasible in the long term.

Writing the diaries took a lot of time. I could not
manage that every day. [Participant #3]

These responses support the findings from [42] that the
requirement of manually entering physical activity reduces the
amount of data significantly in the long run among women with
GDM. Even manual start/stop for recording exercises was not
used much, as it was easily forgotten.

...it was very difficult to remember to mark the
activities, like starting the activity and stopping the
activity. [Participant #10]

General Acceptance Based on the UTAUT Questionnaire
Responses to the UTAUT questionnaire (see results in
Multimedia Appendix 1) showed good acceptance of sensors
before and after usage. For example, participants agreed with
the statement “I would find using the sensors as a good idea”
(before: mean 6.0, after: mean 6.1; out of 7, where 7 is “strongly
agree”). Participants felt that wearable sensors supported
behavior change, and they agreed with the statement “Using
the sensors will improve my possibility to make a concrete
improvement in my lifestyle” (before: mean 6.0, after: mean
5.9; out of 7, where 7 is “strongly agree”). Participants
mentioned that being able to see trends could guide their
behavior related to diet and physical activity.

Acceptance was not affected by the usage of the sensors, as
there was no statistically significant difference in acceptance
before and after usage (evaluated with the Wilcox signed-rank
test). The largest difference between before and after usage was
in the statement “The sensors are not compatible with the other
sensors I use for self-tracking.” Before usage, the study
participants disagreed with the statement (mean 2.5), but after
usage, they slightly agreed (mean 4.5). Only the participants
who were using other self-tracking sensors responded to this
statement, so the sample size was too small to conduct a
meaningful statistical test. However, the responses in the
interviews reflected the change in responses on incompatibility.

I found differences in both activity sensors [Exsed
and Vivosmart 3] compared to this my own Polar,
which was on my other hand. I changed its settings
to correspond with the right arm...it [Polar] gave
different readings on activity and steps, although the
length of a step was set to the same. It was so
mysterious why they differed so much. [Participant
#10]

Despite this incompatibility with the participants’ existing
self-tracking devices, the use of wearable lifestyle sensors
together with the CGM was acceptable.
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Discussion
Principal Findings
This is the first study that aimed to investigate how to support
self-management of GDM with wearable sensors in addition to
CGMs. Regarding self-discovery (RQ1), we found that the
CGM supported the learning of the associations between blood
glucose and nutrition, but the wearable sensors measuring
physical activity, sleep, and stress did not provide significant
support for the learning. The challenges included the dispersion
of data among multiple apps, missing trackable features, such
as type and intensity of physical activity, and a lack of
GDM-specific goals for behavior. From the user experience
perspective (RQ2), this study highlighted that the benefits
overcame the discomfort and effort when wearing the sensors.
There were differences in sensor preference, and a wrist-worn
sensor was preferred over a hip-worn sensor and was worn for
longer. In general, this study further emphasizes the findings
[22,43] that self-tracking among women with GDM should be
highly automatic. We discuss these results in the following
sections with respect to each RQ.

Supporting Self-Discovery With Wearable Sensors
(RQ1)

Feature Selection
Starting from feature selection (ie, identification of activities
that have an impact on blood glucose), this study highlighted
the need to tailor the available features and their presentation
with respect to GDM. Women with GDM had difficulties in
interpreting and accessing the physical activity features. The
activity bracelet required users to perform physical activity at
a moderate level for 10 consecutive minutes to be able to see
the duration of physical activity, which was not often the case
for the women with GDM as they performed small activities,
such as short walks. In fact, 2 participants did not achieve
intensity minutes at all. This might mean showing light physical
activity, for example, in terms of steps. However, there are no
official health recommendations for steps among pregnant
women, and thus, showing the duration of moderate or vigorous
physical activity with respect to health recommendations (150
min/week of physical activity at a moderate level [79]) would
be a feasible feature on a weekly basis.

Although we used multiple distinct types of wearable sensors
for measuring physical activity, there was a lack of automatic
recognition of physical activities (ie, swimming and water
running) that are important for women with GDM. This
challenge will decrease in the future as the automatic recognition
of diverse types of physical activities is improving. However,
this challenge of automatic recognition of features related to
nutrition will remain for a long time. To cover a wide variety
of features, MacLeod et al [27] suggested the use of manual
tracking as an aid to automatic tracking. This approach allows
tracking a large number of features. However, qualitative studies
emphasize that pregnant women are typically overwhelmed
[54,84] and that women with GDM face considerable time
pressures [84]. As such, we argue that automatic self-tracking
is especially important for these user groups. In this study, most

efforts were required to keep a food diary with a pen and paper,
and less demanding methods were requested. Chung et al [85]
proposed a lightweight photo-based food diary to support the
collection of nutrition data for clinical visits of patients with
irritable bowel syndrome. This photo-based diary approach
appears to be promising for women with GDM as well. Peyton
et al [54] suggested that self-monitoring of pregnant women
can be supported and encouraged, in addition to photographic
journals, by using simple designs, such as reminders, and by
keeping the techniques for user data input simple. Data
collection techniques that are undemanding (eg, checkboxes
instead of long text) support a quantifiable format, which is
needed in the hypothesis formulation process [24].

Hypothesis Formulation
With respect to hypothesis formulation (ie, formulation of
suspected associations with activities and blood glucose),
participants experienced difficulties in the quantification of the
self-tracking data on physical activity, sleep, and stress. Still,
most of the participants were interested in monitoring stress,
which plays a significant role in the lives of women with GDM
[13,86], and sleep, which allows following sleeping disorders
due to pregnancy. Thus, this quantified information about stress
and sleep provided value to the participants in terms of providing
information about their condition, being part of documentary
tracking [49]. As such, participants were interested in
monitoring their sleep and stress rather than changing them.
This was opposite to nutrition and physical activity, which were
more related to goal-driven tracking [49], and their features
(although not based on self-tracking data) were an integral part
of the self-discovery process.

The results of this study indicate that quantification by sensors
needs to match with quantification by the user so that
meaningful hypotheses can be formulated. For physical activity,
misperception of intensity is problematic as the rate of change
of glucose levels depends on the intensity of physical activity
[87], and perceiving physical activity differently may lead to
wrong conclusions about its effect. This finding of a discrepancy
in the perceived and measured intensity of physical activity is
in line with the finding in a previous report [88], where women
with GDM estimated the amount of vigorous physical activity
to be higher than that measured with a hip-worn accelerometer.
These results are opposite to the results of a previous study [32],
where users with type 2 diabetes reported a high correlation
between self-reported physical activity and the duration of
vigorous activity measured with an activity bracelet. This
indicates that the discrepancy between perceived and measured
physical activity is more prominent among pregnant women
than among people with type 2 diabetes. This would mean that
the intensity levels should be more clearly defined for women
with GDM, and providing feedback during the activity (eg,
“Now you are swimming at the moderate level.”) would be a
good approach. Moreover, the quantification of features with
wearable sensors was unreliable, for example, participants could
not rely on stress data, which were affected by decreased HRV
due to pregnancy. Thus, we agree that more advanced techniques
are required to differentiate between the decreased HRV caused
by pregnancy and decreased HRV due to stress [59].
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Hypothesis Evaluation
For hypothesis evaluation (ie, evaluation of how the latest
information about associations fits with existing knowledge),
we observed the challenges of scattered and conflicting data.
At this stage, we expected that having the wearable sensors
would have facilitated hypothesis evaluation, as there is more
data available and its quantified form enables quantitative
comparison against existing data. However, we found 2 major
reasons why this stage was difficult for the participants. First,
the data were scattered across different apps, making
comparisons between lifestyle and glucose tedious. The
dispersion of data has been identified as a challenge in personal
informatics [26,89,90], and this study further emphasized that
there should be integrative tools to support self-discovery.
Second, the data were contradictory between sensors in multiple
ways. For example, there was a statistically significant
difference in the number of steps and the duration of sleep
between sensors. Moreover, the discrepancies between CGM
and fingerstick measurements caused confusion regarding how
much participants could rely on CGM data. The discrepancies
in data were not limited to the given sensors but extended to
participants’ existing sensors (see the section General
Acceptance Based on the UTAUT). These discrepancies directed
the attention of women with GDM from self-discovery to
evaluation of these differences. While the use of multiple sensors
potentially increases the reliability of the data, the use of a single
sensor for each lifestyle variable would be more appropriate to
support reflection. Then, the attention of the user would not be
on looking at differences in the data between sensors, but rather
on evaluating the impact of activities on glucose levels between
instances, such as small variations in meals and physical
activities. Moreover, the relative differences in data within a
single wearable sensor would provide useful information.
However, we acknowledge that trackable features may be
unknown for people with chronic illnesses, especially in poorly
understood conditions [27]. Thus, figuring out the relevant
features may require the use of multiple wearable sensors to
gather various aspects of chronic illnesses. However, in that
case, the data from multiple sensors should not be conflicting
but rather supportive for increasing the understanding of the
chronic condition.

Goal Setting
The goal for women with GDM is simple. The fasting glucose
value in the morning should be less than 5.5 mmol/L, and the
glucose value 1 hour after a meal should be under 7.8 mmol/L.
However, this is a very high-level goal, which participants try
to transform into concrete behavioral goals. For the goal
specification (ie, identification of future goals based on activities
and outcomes) phase in self-discovery, we found that
participants primarily created goals based on continuous glucose
monitoring and experience. Of all the target behaviors, changing
the diet was the one that the participants seemed to be the most
optimistic about, and they could name several ways of changing
it. For example, Participant 1 defined a goal of eating nuts in a
meal as the participant figured out that this helps to keep the
glucose level below the maximum limit. To help in goal setting,
this participant with GDM should know how many nuts or how
many grams of nuts to include in the meals and should have a

tool to track this goal, which should be developed following a
goal-directed self-tracking approach [91]. Transformation of
goals defined by the participants (eg, eating more nuts by
Participant 1) into features, which are possible to track with
wearable sensors, is still a major challenge.

Goals provided by wearable sensors (eg, 150 min/week of
physical activity at a moderate or vigorous level) are related to
general guidelines and are not specific to the management of
GDM. This decreases their value for women with GDM. Some
limitations are part of every chronic illness, and individuals
with a chronic illness should not be pushed too hard to achieve
the goals, as there is a risk of causing goal frustration [92], if
it is impossible to achieve the goals due to implications from
their illness. The goals should be concrete (eg, “walking for 30
min at a moderate level would decrease your glucose levels”)
and trackable with wearable sensors. Another type of goal
specification we observed was that participants defined goals
to collect further evidence for their hypothesis. For example,
for Participant 3, the goal was to climb stairs to see whether
this had a real impact on glucose levels. Again, this goal should
be trackable. Half of the participants (5/10) discussed that they
would be willing to change behaviors for physical activity. One
reason was that physical activity was measured in a
straightforward way (ie, steps) and was experienced as more
tangible by the participants than the target behaviors related to
sleep and recovery (see the section Challenges in Self-Tracking
of Sleep and the section Challenges in Self-Tracking of Stress
and Recovery).

One way to approach this would be to provide options for
concrete goals, where women with GDM could choose the most
preferred goals. Having such a set of options for goals would
ease the tracking with wearable sensors, as the number of
trackable features and goals could be narrowed down to certain
options. Harrison et al [93] suggested having practical options
for goals for encouraging physical activity among women with
GDM, as the authors found that women with GDM wish to have
clear goals for physical activity while still retaining autonomy.
We made similar observations for nutrition goals. The requested
goals did not only include what to eat considering the diet
limitations (eg, due to pregnancy) but also when to eat. This
reflects the wish of people with type 2 diabetes, who have
experience with continuous glucose monitoring, to have more
knowledge on the effect of meals on temporal glucose patterns
[94]. While we made the same observation, the women with
GDM wished to have concrete suggestions on how to influence
these glucose patterns by the content and timing of the meals.

Experiences of Self-Tracking With Wearable Sensors
(RQ2)
We learned that the body placement of sensors is a key factor
in acceptability, quality of measurements, and preference, and
ultimately a challenge for collecting data. Wearing the physical
activity sensor on the wrist, instead of on the hip, has several
benefits for pregnant women. Half of the participants (5/10)
had issues with wearing the sensor on the hip, as it moved
around or chafed the skin when sitting. The drawback of a
wrist-worn sensor is that it is not possible to recognize whether
the user is sitting or standing. A sensor worn on the hip can
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recognize this [63]. However, the regulation of sitting and
standing relates more to long-term health and health risks [95]
rather than to the management of GDM. The sensor on the wrist
was worn significantly more than the sensor on the hip,
providing more data to the user. Although the hip-worn sensor
was used less than the activity bracelet, it was still worn for
more than 10 hours a day, which is the minimal duration to
obtain credible data [96].

Wrist-worn sensors are particularly feasible for pregnant women,
as bracelets can be adjusted with respect to swelling. This is
not the case with activity rings, such as Oura, which are not
easily worn during pregnancy owing to swelling of the fingers
[97]. While there are wearability issues with wrist-worn devices
among pregnant women, such as smartwatches if they are heavy
[97], the activity bracelet used in the study did not raise issues
beyond slight irritation of the skin. This finding has evidence
from a long-term study conducted with a similar activity bracelet
among pregnant women [98].

The lifestyle sensors were highly accepted among women with
GDM. This result extends the finding by Scott et al [46] that
CGMs are highly accepted in self-tracking during pregnancy.
Women with GDM seem to be less concerned about using
wearable sensors compared with people having chronic illnesses,
such as chronic heart patients who have had feelings of
uncertainty, fear, and anxiety [99]. In our study involving
women with GDM, the clear purpose of the wearable sensors
(supporting self-discovery and healthy behavior) could have
increased the acceptability of the sensors. This was the opposite
in the case of heart patients, where the purpose of the sensors
was to gather “self-tracking of activity data in relation to their
embodied condition and daily practices of dealing with a chronic
heart condition” [99]. Thus, clear framing of the purpose of
wearable sensors and supporting the goals of the user (in this
case, management of glucose levels) with wearable sensors
seem to increase the acceptability of self-tracking.

Although the data provided by the CGM was highly valued
among participants, most of the participants (8/10) had issues
wearing the CGM. Most of the participants (9/10) preferred
wearing the CGM on the arm, instead of having it near the navel,
which is the primary placement location for the sensor. Wearing
the sensor on the arm caused false alarms of glucose levels
dropping too low because women with GDM slept on top of
the sensor. As such, if the CGM is worn on the arm, a more
robust sensor that can overcome pressure issues is needed as
pregnant women tend to sleep on their side, at least when over
30 weeks into gestation [100]. Moreover, due to placement on
the arm, the participants could not attach the sensor themselves.
This decreases the feasibility of using this CGM in the long
term, as the CGM needs to be recharged once a week and the
sensor can detach, for example, due to swimming (see the
section Wearing the CGM on the Arm).

To support self-management, having a single “output” (ie, a
GDM application where all the collected data would be shown
in a single view; see the section Toward Better Tools for
Supporting Self-discovery) also induces the question of having
a single “input” (ie, a wearable sensor that collects all the data).
A feasible approach would be adding lifestyle tracking

capabilities to continuous glucose monitoring. This kind of
sensor does not exist yet. An integrated sensor would decrease
the problems of wearing and managing multiple sensors, and
the data would be recorded in synchrony and without
discrepancies, thus helping in establishing the causalities
between lifestyle and glucose levels. Moreover, having a single
sensor would remove the technical work required to integrate
data from multiple cloud services [101]. Ultimately, this
integrated sensor would be worn on the wrist. Having a
wrist-worn sensor would overcome the difficulties associated
with wearing the CGM behind the arm (which can cause false
alarms during the night) and wearing the physical activity sensor
on the hip. However, noninvasive glucose tracking from the
wrist shows poor accuracy resulting from movement, exercise,
and sweating [102]. Thus, an optimal solution for a single
wearable sensor is yet to be developed.

While we focused on self-discovery without the help of health
care professionals, they were very often mentioned. The
continuous data collected by the wearable sensors provide an
opportunity for remote monitoring and feedback by health care
professionals [60]. The participants discussed the importance
of having contact with a diabetes nurse, so that they can share
the data with them and discuss the data provided by the glucose
sensor. This is in line with previous findings that people with
a chronic illness need help from experts in the self-discovery
process [24,27] and in behavior change. This is further supported
by reviews on technological support for diabetes management,
which emphasize the importance of 2-way communication
between people with diabetes and health professionals [103,104].
Further, self-tracking with wearable sensors can increase the
completeness of the self-tracking data presented to health care
professionals [105] and can increase the perceived usefulness
of the sensors [103,104]. Thus, at this stage, having a 2-way
channel between women with GDM and diabetes nurses (eg,
through a text chat as suggested by 1 participant) would be a
crucial factor in supporting the management of GDM.

Although no wearable sensor other than the CGM supported
self-discovery, the sensors increased self-awareness of one’s
own lifestyle, and women with GDM believed that this would
help them to improve their habits. Thus, wearable sensors have
the potential to support behavior change for women with GDM,
as self-tracking itself has been found to be an effective behavior
technique among people with type 2 diabetes [52]. However,
participants discussed that behavior change should be facilitated
with recommendations, which would be formulated either
automatically based on self-tracking data or manually by health
care professionals, and further, the use of artificial intelligence
approaches can increase the understanding of cause-and-effect
relationships [55,106]. This understanding can be used for
setting personal goals for lifestyle changes among women with
GDM [107], which were highly requested by the participants
of this study.

Study Limitations and Future Research
We acknowledge that the number of participants could have
been higher. However, the main approach of this study was
qualitative, and we believe that the number of participants was
enough as no new codes emerged after 8 interviews, indicating
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the saturation of data. Moreover, the same number of
participants has been used in qualitative studies on experiences
of GDM (eg, [14]). Quantitative investigations on the acceptance
of self-tracking among women with GDM would require a
longer usage period with more participants.

Women with GDM wore multiple wearable sensors at the same
time in this study, which might have affected their acceptance.
Despite this, responses to the UTAUT questionnaire in this
study reflected high acceptance of wearable sensors. The high
acceptance could have been influenced by the fact that the
participants volunteered for the study, and thus, they showed
at least some interest in self-tracking and were not afraid of
pricking their skin. In fact, 1 participant did not want to
participate as this participant heard that the study involves skin
pricking. Therefore, the acceptability could be biased, and this
is similar to studies investigating the acceptability of CGMs
among women with GDM [44-47].

The self-discovery process of GDM is challenging and
demanding, which currently takes a considerable amount of
time. Carolan-Olah et al [84] investigated how the teaching of
GDM could be improved, particularly among women with
multiethnic and low socioeconomic backgrounds. Cultural
differences may pose a need for different trackable features for
GDM, for example, water activities among women (eg,
swimming and water running) are less feasible in some cultures
[108].

This study focused on CGMs and wearable physical activity
sensors. As nutrition is an important factor in the management

of GDM, future work should investigate the use of wearable
sensors for nutrition tracking. At the current stage, they are not
able to detect the intake of macronutrients (eg, carbohydrates)
[70,71,109], and thus, their support for self-discovery is
expected to be limited. However, research on wearable and
nutrition collection methods is very active and should be
considered in the future.

We have designed a mobile app according to the results of this
study, and we will conduct a long-term clinical evaluation in a
randomized controlled trial to explore the effect of
comprehensive self-tracking with a mobile app on glucose levels
[110].

Conclusions
We have provided the results of a user-centered design process
of a mobile health intervention for supporting the
self-management of GDM. Our holistic approach for supporting
the self-management of GDM with mobile technology included
investigations of wearable sensors and a mobile app from
self-discovery (learning) and user experience perspectives. We
showed multiple issues that inhibit self-management, such as
inadequate support for self-tracking physical activity, data
discrepancy, and challenges wearing the CGM. One major
challenge was the scatteredness of self-tracking data. To support
learning further, visualization with guidance through tips and
recommendations should be designed to increase the ability of
women with GDM to manage diabetes in their pregnancy. The
design should consider pregnancy-specific wearability
challenges and requirements for data gathering and
representation proposed in this paper.
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