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One of the most striking consequences of quantum physics is quantum teleportation – the possibility to
transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been
demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a
maximally entangled quantum state acting as a resource for the teleportation task. If, however, the state is
influenced by decoherence, perfect teleportation can no longer be accomplished. Therefore, one of the
current major challenges in accomplishing teleportation over long distances is to overcome the limitations
imposed by decoherence and the subsequent mixedness of the resource state. Here we show that, in the
presence of nonlocal memory effects, perfect quantum teleportation can be achieved even with mixed
photon polarisation states. Our results imply that memory effects can be exploited in harnessing noisy
quantum systems for quantum communication and that non-Markovianity is a resource for quantum
information tasks.

Q
uantum teleportation is the best known example of how entanglement serves as a valuable resource for
information processing. Since the original discovery of quantum teleportation by Bennett et al. in 19931,
remarkable technological advances have been made and teleportation with higher than classically

achievable fidelities has been demonstrated experimentally2–7 up to the distance of 143 km8. In practice, perfect
teleportation is not possible since, instead of maximally entangled states, decoherence effects force us to deal with
mixed states. It has been shown that with classical communication and local operations perfect teleportation with
mixed states is impossible1,9 and therefore, one of the current major challenges in accomplishing teleportation
over long distances is to overcome the limitations imposed by decoherence and the subsequent mixedness of the
resource state.

When an open quantum system, due to its coupling with the external environment, continuously loses
information to its surroundings, the noise induced dynamics is called Markovian10–12. Non-Markovian quantum
dynamics with memory effects arise when the system does not only lose information, but temporarily recovers
some of it from the environment at a later time13,14. Recently, a significant progress in developing a general theory
of non-Markovian quantum dynamics13–20 as well as in the experimental detection and control of memory
effects21–23 has been made.

Previously, environment-assisted quantum processes have been studied in the context of e.g. quantum trans-
port24,25 and communication networks26, but protocols for quantum information tasks utilising the non-
Markovian nature of otherwise harmful noise have been so far missing. In this paper we show how quantum
memory effects can be harnessed to give an advantage in mixed state quantum teleportation in the presence of
dephasing noise. We consider photonics realisations due to their dominant role in the experimental implementa-
tions of teleportation8. The key element of the scheme introduced here are nonlocal memory effects where the
local exposure of the bipartite quantum system to Markovian noise can create strong global memory effects27; a
scheme which has also been recently experimentally demonstrated23. The fundamental source for these effects are
the initial correlations between the local environments of the bipartite open system. For entangled photon
polarisation states, nonlocal memory effects needed for the protocol arise naturally since the frequency distribu-
tions of the photons, which act as environments, are unavoidably correlated after a downconversion process23. We
also analyse how the amount of initial correlations between the environments affects the fidelity of the teleporta-
tion, and find that even in the absence of maximal correlations between the environments, the protocol will
substantially outdo the performance of the known optimal protocol without memory effects9.

In the standard quantum teleportation protocol Alice has a qubit whose state jwæ1 5 a j1æ 1 b j2æ she wants to
teleport to Bob. Alice and Bob share an entangled pair of qubits 2 and 3 in the Bell-state:
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23~
1ffiffiffi
2
p zzj iz {{j ið Þ: ð1Þ

Alice performs a Bell-state measurement on the particles 1 and 2,
which projects particle 3 in Bob’s hands into one of four states
depending on which Bell-state Alice gains as an outcome. Alice fur-
ther communicates her measurement outcome to Bob who performs
a unitary operation on particle 3 depending on the outcome of Alice.
The final state of particle 3 is the original state jwæ3 5 a j1æ 1 b j2æ.
During the Bell-state measurement particle 1 becomes entangled
with particle 2 and the state jwæ1 is destroyed on Alice’s side during
the protocol.

However, if the entangled pair of particles that Alice and Bob share
is disturbed by noise, the fidelity of the standard teleportation goes
down radically. Even if one chooses, instead of the standard tele-
portation scheme, an optimised protocol, perfect teleportation can
no longer be achieved9. Let us now demonstrate how perfect tele-
portation can be achieved with photon polarisation states, even in the
presence of dephasing noise, if the pair shared by Alice and Bob is
influenced by nonlocal memory effects, see Fig. 1.

Results
Let us assume that the pair of entangled photons is created in a
spontaneous parametric downconversion process after which the
two particles are sent to remote locations to Alice and Bob.
However, the particle sent to Alice is not perfectly isolated, but is
interacting with its local environment giving rise to local decoher-
ence, which destroys the entanglement between the two parties. As a
physical implementation of the local dephasing noise, we consider
photon traveling through a quartz plate, where the polarisation
degree of freedom (system) and the frequency degree of freedom
(environment) interact22,23,27. The quartz plate exposes the polarisa-
tion state of the photon to a random external field giving rise to a
dephasing evolution28.

Now, Alice wishes to teleport the state jwæ1 5 a jHæ 1 b jVæ to Bob.
Here, H (V) refers to horizontal (vertical) polarisation state of the
photon. Initially Alice and Bob share the Bell-state wz

�� �
23

~
1ffiffiffi
2
p HHj iz VVj ið Þ and the total initial state (system and envir-

onment) of the photons 2 and 3 is

w 0ð Þj i~ Qzj i236

ð
dv2dv3g v2,v3ð Þ v2j i v3j i, ð2Þ

where g(v2, v3) gives the joint frequency amplitude of the photons 2
and 3 and # dv2dv3jg(v2, v3)j2 5 1. The Hamiltonian for the local
dephasing due to the quartz plate takes the form

Hi~{

ð
dvivi ni

V Vj i Vh jzni
H Hj i Hh j

� �
6 vij i vih j, ð3Þ

where, e.g., jVæ fl jviæ denotes the state of photon i (i 5 2, 3) with
polarisation V and frequency vi, and ni

H (ni
V ) is the index of refrac-

tion for polarisation component H (V). The time dependent inter-
action Hamiltonian describing the evolution of the two-photon state
is given by

HI tð Þ~x2 tð ÞH2zx3 tð ÞH3, ð4Þ

where

xi tð Þ~ 1 if ti
inƒtƒti

out
0 otherwise

�
ð5Þ

and ti
in denotes the time photon i enters the quartz plate and ti

out the
time photon i exits the quartz plate. Now the time evolution of the

total system is given by y tð Þj i~ exp {i
Ð t

0dt0HI t0ð Þ
h i

y 0ð Þj i. Let us

also write ti~
Ð?

0 xi tð Þdt~ti
out{ti

in.
In terms of our protocol, first photon 2 interacts with its quartz

plate followed by the Bell-state measurement on photons 1 and 2.
Then Alice communicates her measurement outcome to Bob and the
interaction of photon 3 with its local environment in Bob’s side
finishes the procedure. The combined polarisation state of the sys-
tems 2 and 3, after photon 2 has interacted with its quartz plate on
Alice’s side, is

r23 t2ð Þ~
1
2

HHj i HHh jzk2 t2ð Þ HHj i VVh jð

zk�2 t2ð Þ VVj i HHh jz VVj i VVh j
�
,

ð6Þ

where the decoherence function k2 is

k2 t2ð Þ~
ð

dv2dv3 g v2,v3ð Þj j2e{iDn2v2t2 , ð7Þ

Dn2~n2
V{n2

H is the birefringence, and t2 the interaction time of
photon 2. Now, if Alice and Bob were to perform the standard tele-
portation with the shared state r23(t2), the fidelity of the teleportation
would decrease linearly with respect to k2, see Fig. 2. Let us now
describe how they can outperform this fidelity with nonlocal mem-
ory effects.

After the local interaction of photon 2 the total state for the three
photons is

Y t2ð Þj i~ 1ffiffiffi
2
p wj i1 HHj i yHH t2ð Þj iz VVj i yVV t2ð Þj ið Þ, ð8Þ

where

yHH t2ð Þj i~
ð

dv2dv3g v2,v3ð Þein2
H v2t2 v2j i v3j i,

yVV t2ð Þj i~
ð

dv2dv3g v2,v3ð Þein2
V v2t2 v2j i v3j i:

ð9Þ

This can be written in the form

Figure 1 | A schematic picture of the teleportation protocol with nonlocal
memory effects. EPR refers to a source producing states of the form of

equation (1) and BSM refers to a Bell-state measurement. The local noise

before the BSM makes the EPR pair mixed while the noise in the last step of

the protocol allows to recover the teleported state.
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Y t2ð Þj i~ 1
2

wz
�� �

12 a Hj i3 yHH t2ð Þj izb Vj i3 yVV t2ð Þj i
	 �

z
1
2

w{j i12 a Hj i3 yHH t2ð Þj i{b Vj i3 yVV t2ð Þj i
	 �

z
1
2

yz
�� �

12
b Hj i3 yHH t2ð Þj iza Vj i3 yVV t2ð Þj i
	 �

z
1
2

y{j i12 a Vj i3 yVV t2ð Þj i{b Hj i3 yHH t2ð Þj i
	 �

,

ð10Þ

where

wz
�� �

~
1ffiffiffi
2
p HHj iz VVj ið Þ, w{j i~ 1ffiffiffi

2
p HHj i{ VVj ið Þ,

yz
�� �

~
1ffiffiffi
2
p HVj iz VHj ið Þ, y{j i~ 1ffiffiffi

2
p HVj i{ VHj ið Þ

ð11Þ

are the Bell states. Alice then performs the Bell state measurement
and communicates her results to Bob. Bob further applies a unitary
operation on his particle depending on Alice’s measurement out-
come. Thus, so far, Alice and Bob have performed the standard
teleportation scheme with the mixed state of equation (6). Now, in
order to improve the protocol, Bob needs to harness the nonlocal
memory effects. He can use the information sent by Alice and subject
his particle to conditional noise depending on Alice’s measurement
outcome. By adding the conditional noise to his system, Bob actually
cancels out the effect of the noise which earlier acted on Alice’s
system. He chooses the following unitary operations and the birefrin-
gence of his quartz plate to produce noise according to Alice’s out-
comes:

Qzj i [ , Dn3~Dn2

Q{j i [ sz, Dn3~Dn2

yz
�� �

[ sx, Dn3~{Dn2

y{j i [ isy, Dn3~{Dn2:

ð12Þ

Let us assume that Alice’s outcome of the Bell measurement is the
state jw1æ12. Now the total state of Bob’s photon 3 is

aj j2 Hj i Hh j6rHHzab1 Hj i Vh j6rHV

za1b Vj i Hh j6rVHz bj j2 Vj i Vh j6rVV ,
ð13Þ

where

rH H~

ð
dv3dv03dv2g v2,v3ð Þg1 v2,v03

	 �
v3j i v03

 ��~rV V ,

rH V~

ð
dv3dv03~g v3,v03

	 �
v3j i v03

 ��~r{

V H ,

ð14Þ

and ~g v3,v03
	 �

~

ð
dv2g v2,v3ð Þg1 v2,v03

	 �
e{iDn2v2t2 . When Bob

subjects his photon to noise by putting his photon through a quartz
plate with Dn3 5 Dn2 his final state can be written as

rF t2,t3ð Þ~ aj j2 Hj i Hh jzab1k t2,t3ð Þ Hj i Vh j

za1bk1 t2,t3ð Þ Vj i Hh jz bj j2 Vj i Vh j,
ð15Þ

where the decoherence function is

k t2,t3ð Þ~
ð

dv2dv3 g v2,v3ð Þj j2e{iDn2 v2t2zv3t3ð Þ, ð16Þ

and t3 is the interaction time in Bob’s quartz plate.
In the description of the downconversion process, the frequency

distribution can be taken to be a joint Gaussian distribution23,27

g v2,v3ð Þj j2~ 1

2p
ffiffiffiffiffiffiffiffiffiffi
detC
p e{1

2 ~v{ ~vh ið ÞT C{1 ~v{ ~vh ið Þ, ð17Þ

where C 5 (Cij) is the covariance matrix with elements Cij 5 Ævivjæ
2 Æviæ Ævjæ. We assume that both the means and the variances of v2

and v3 are equal, i.e., Æv2æ 5 Æv3æ 5 v0/2 and
C11~C22~ v2

i


 �
{ vih i2. To quantify the frequency correlations

we use the correlation coefficient K~C12

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22
p

~C12=C11 sat-
isfying jKj # 1.

If Bob chooses t3 5 t2 and the frequency distribution is of the form
of equation (17) with the correlation coefficient K 5 21, the polar-
isation state of photon 3 is given by equation (15) with
k t2,t3ð Þ~eiv0Dn2t2 , i.e., the magnitude of the decoherence function
has returned to its original value equal to 1. If Bob now performs a
phase gate with phase 2v0Dn2t2, perfect teleportation has been
completed. The other measurement outcomes of Alice give the same
result if Bob applies the operations given in equation (12). It is
important to notice that all the steps of this protocol can be applied
locally, and that the applied noise is locally Markovian and globally
non-Markovian within the bipartite system27.

Discussion
We have demonstrated how Alice and Bob can recover perfect tele-
portation in the presence of dephasing noise if Bob after the standard
teleportation protocol subjects his particle to noise. The key element
in the protocol are the nonlocal memory effects which arise when the
local decoherence is present on Bob’s side. The source of the nonlocal
memory effects lies in the initial correlations between the local envir-
onments described by the correlation coefficient K, which in turn is
determined by the width of the original pump pulse in the down-
conversion process. In the case of perfect anticorrelation K 5 21
(delta peak pump), perfect teleportation is achieved and for an
uncorrelated distribution K 5 0 no advantage with respect to the
standard protocol can be gained. It is also important to note that no
initial entanglement is necessary between the local environments, but
classical correlations suffice23,27.

Thus, we have shown that when the initial joint frequency distri-
bution has perfect anticorrelation K 5 21, this leads to perfect
teleportation with mixed polarisation states. If, however, the initial

Figure 2 | The fidelities of the standard, optimal and non-Markovian
protocols. The fidelities of different teleportation protocols for the mixed

state of equation (6) as a function of the decoherence function | k2 | . The

red dashed line represents the fidelity of the standard protocol FM
w

[equation (20)], the red dot dashed line the fidelity of the optimal protocol

Fopt [equation (21)], the red solid lines the fidelity of the protocol with

memory effects FNM
w with dK g [0, 0.1] [equation (19)] and the light red

solid lines with dK g [0.1, 0.5].
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pump pulse does not have a delta peak distribution, the fidelity of the
protocol decreases. In the following we study how a finite width of
the pump pulse will affect the fidelity of the teleportation protocol.
Let us take the correlation coefficient to be K 5 21 1 dK, i.e., dK
measures the deviation from the ideal case. The fidelity F 5 1Æwj r3

jwæ1 between the original state a jHæ 1 b jVæ and the teleported state
becomes

F~1{2 aj j2 bj j2 1{ k2 t2ð Þj j2dK
� 

: ð18Þ

Considering the worst case scenario, i.e. jaj2 5 jbj2 5 1/2, we obtain

FNM
w ~1{

1
2

1{ k2 t2ð Þj j2dK
� 

: ð19Þ

If the teleportation was performed with the decohered state in equa-
tion (6), using the standard scheme without taking advantage of the
memory effects, we would have the fidelity

FM
w ~1{

1
2

1{ k2 t2ð Þj jð Þ: ð20Þ

If instead of the standard teleportation scheme, one would use an
optimal teleportation scheme for the decohered state at hand9, one
would get the fidelity

Fopt~
k2 t2ð Þj jz2

3
ð21Þ

which gives the value 2/3 for a classical state. The fidelities of the
different teleportation protocols are plotted in Fig. 2 as a function of
the decoherence function jk2(t2)j. We see that the fidelity of the
protocol with memory effects for sufficiently large values of the
correlation coefficient jKj is still much larger than the fidelity of
the standard protocol or the optimal protocol in the absence of
memory effects. For sufficiently large correlations (dK # 0.1, i.e.
21.0 # K # 20.9) the fidelity of the protocol with memory effects
exceeds the fidelity of the optimal protocol without memory effects
all the way to an almost fully decohered state. For a smaller value of
correlations (0.1 # dK # 0.5) the fidelity still exceeds the one of the
standard protocol. It is also important to note that the high value of
the correlation coefficient K 5 20.9 (or dK 5 0.1) is experimentally
realisable23.

In Fig. 3, we plot the fidelity of the proposed protocol as a function of
the non-Markovianity measure N introduced in13. Assuming t3 5 t2,
t2
in~0, and t3

in~t2
out, the dynamical map describing the teleportation

protocol for Alice’s initial unknown state jwæ 5 a jHæ 1 b jVæ can be
written as

Wt w 0ð Þj i½ �~
rF t,0ð Þ if tƒt2

rF t2,t{t2ð Þ if t2ƒtƒ2t2:

�
ð22Þ

Here, rF is given by Eq. (15), rF(t, 0) denotes the case where the
teleportation is performed at time t with no quartz plate on Bob’s side,
and rF(t2, t 2 t2) the case of teleportation at time t2 with subsequent
evolution with Bob’s quartz plate. The non-Markovianity measure N
can now be written analytically23:

N~ k2 t2ð Þj j1{K2

{ k2 t2ð Þj j: ð23Þ

Thus, the fidelity of the protocol in equation (19) as a function of the
non-Markovianity is

FNM
w Nð Þ~1{

1
2

1{ k t2ð Þj j
2 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

ln Nz k2 t2ð Þj jð Þ
ln k2 t2ð Þj j

q� 0
@

1
A ð24Þ

As can be seen in Fig. 3, the fidelity is a monotonically increasing
function of the non-Markovianity and thus the memory effects act
as a resource for quantum teleportation.

Summarising, we have found that nonlocal memory effects can
substantially increase the fidelity of mixed state quantum teleporta-
tion in the presence of dephasing noise. In the protocol Alice and Bob
act on their particles locally and the nonlocal memory effects occur
due to initial correlations between the local environments of the
photons. In order for Bob to harness the memory effects, he needs
to subject his photon to local noise after the standard teleportation
protocol. We have shown that one can perform perfect mixed state
teleportation of photon polarisation states if the environments of the
two photons share maximal initial correlations. The protocol pre-
sented here demonstrates how to overcome dephasing noise induced
by random external fields in a quantum communication setup by
exploiting memory effects. The result serves as an encouraging
example of how non-Markovianity can serve as a resource for
quantum information tasks but it still remains to be shown whether
the same technique could be applied for environments giving rise to
also relaxation and dissipation.
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