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On the Predictability of Future Impact in
Science
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1Laboratory of Innovation Management and Economics, IMT Institute for Advanced Studies Lucca, 55100 Lucca, Italy, 2Department
of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 12200, FI-00076, Finland,
3Laboratory for the Analysis of Complex Economic Systems, IMT Institute for Advanced Studies Lucca, 55100 Lucca, Italy.

Correctly assessing a scientist’s past research impact and potential for future impact is key in recruitment
decisions and other evaluation processes. While a candidate’s future impact is the main concern for these
decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear
regression models are capable of predicting a scientist’s future impact. By applying that future impact model
to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of
subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the
h-index contain intrinsic autocorrelation, resulting in significant overestimation of their ‘‘predictive
power’’. Moreover, the predictive power of these models depend heavily upon scientists’ career age,
producing least accurate estimates for young researchers. Our results place in doubt the suitability of such
models, and indicate further investigation is required before they can be used in recruiting decisions.

S
cience has evolved a merit driven career advancement process in which an individual is promoted through
the various career stages on the strength of his or her past achievements and perceived potential for future
achievement. Committees charged with the task of evaluating the past accomplishments and projecting the

future success of applicants are at the core of these advancement decisions, whether they be fellowship, grants,
tenure track hires, tenure etc. In this context, evaluation is rarely a straightforward matter, as recent case studies
indicate that grant committee selection decisions do not necessarily correlate with either the peer-review process
or cumulative achievement measures1.

Faced with applicant pools ranging in size from dozens, for tenure track hires, to thousands for national
fellowship and tenure competitions, it is a great challenge to distill the contents of each curriculum vitae to an
assessment of an individual’s past, present and future impact and arrive to an appropriate ranking of candidates.
Further, it is important to recognize that future impact is at the heart of this matter because the ultimate questions
are: Which candidate will be most successful in this position? With this fellowship? Do the most with this grant?
Emphasis is typically placed on past success but, for the most part, it is only relevant in so far as it correlates with
future success.

When an early career scientist is selected for a tenure track position it is not simply a matter of filling an open
position. The hire itself is an investment, at some institutions with low tenure rates it can amount to an outright
bet on one researcher who requires a start-up package upwards of a millions of dollars2. The economics alone
make this an issue that deserves attention. Nevertheless, beyond finances, these career advancement decision also
play a critical role in most of the major problems commonly identified with the academic profession. For example,
while gender biases may appear as early as undergraduate studies3, it is widely felt that ‘pipeline’ really leaks in the
later career decision points4–6.

For individual researchers the most widely known measure of impact is Hirsch’s h-index7. Debate continues over
whether h-index is a good way to measure a researcher’s quality, but as it is evident by its growth in popularity
[Fig. 1 (A)] it is reaching a level of acceptance and more importantly, a level of formal use8. While it has been shown
that a correlation exists between a researcher’s current and future h-index, the h-index is clearly a measure of a
researcher’s past accomplishments9. In recent work Acuna et al. propose a model for a researcher’s future h-index
and thereby establish a clear and concrete framework for connecting a researcher’s current CV to his or her future
impact in research10. On the conceptual level this aligns much better with the goal of most career advancement
decisions, as they are largely focused on what a researcher will produce rather than what he or she has produced.

However, on a technical level cumulative achievement models, such as the Acuna model, suffer from meth-
odological flaws mainly arising from the fact that the h-index is a non-stationary measure11,12. Here we show that
any regression model aimed at ‘‘predicting’’ should avoid using cumulative, non-decreasing, career measures
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because the retention of past information intrinsic to such measures
will yield artificially large coefficients of determination R2. A second
methodological flaw exists in that prediction models should not mix
career data from different age cohorts because such models deal
poorly with the radically different levels of uncertainty characteristic
of the various stages of career trajectories [Fig. 1 (B)]. Even efforts to
predictively model academic careers by disentangling the past and
future components of scientific achievement13, suffers from this sec-
ond methodological flaw.

Analyzing a large set of careers distributed across 3 disciplines,
physics, biology and mathematics (see Methods), we show that
although future measures of impact are correlated with past mea-
sures, the current state of the art models simply do not do a good
enough job of predicting future impact to be used with confidence in
the career advancement decision process. We demonstrate this using
career data of established scientists, as well as junior scientists. The
analysis of the benchmark set of stellar senior scientists serves as an
upper bound on ‘‘predictive power’’, while the junior scientists rep-
resent a set closer to the typical case in which these will be applied in
real academic hiring decisions.

Results
Modeling cumulative measures. Here we consider linear regression
models of the h-index but the analysis presented can be trivially
extended to any cumulative measure of impact. A recent publica-
tion proposes a model for predicting an individual’s future h-index
based on linear regression of five other metrics10. As a group, these
five metrics were found to be the best for predicting future h-index.
In this linear regression model the h-index h(t 1 Dt) of an individual
at time t 1 Dt is given by

h tzDtð Þ~b0 Dtð Þzbh Dtð Þh tð Þzb ffiffiffiffi
np
p Dtð Þ

ffiffiffiffiffiffiffiffiffiffi
np tð Þ

q
zbt Dtð Þtzbj Dtð Þj tð Þzbq Dtð Þq tð Þ:

ð1Þ

The variables found on the right-hand side of Eq. 1 are values
calculated for a given t, the number of years since the researcher’s
first publication. We will also refer to t as ‘‘career age’’. For a given
researcher, at a given career age t, the other variables are as follows:
h(t) is the h-index; np(t) is number of publications authored or co-
authored; j(t) is the number of distinct journals of the publications;
q(t) is the number of papers published in high impact journals. The
parameter associated with each independent variable is arrived at
using linear regression with elastic net regularization (see Methods).
We apply the above model to predict the future h-index (as measured
by the percentage variance explained, given by the squared correlation
coefficient R2) for both prominent physicists and prominent biologists.
For both data sets the model shows high R2 when lumping together all
career ages (red curves in Fig. 2). Even 15 years into the future the
model yields R2 values of 0.75 and 0.76, respectively. These results are
consistent with previous analyses and give the impression that the
model is quite good at predicting a scientist’s future h-index. For
both these datasets, the variations of standardized coefficient are
shown in Supplementary Fig. S1. The coefficient related to the h-
index at the time of prediction (career age t) is the largest; the coeffi-
cient for the number of article published is also quite high especially in
the distant future. In contrast, coefficients for publishing in many
distinct journals and top journals are relatively small.

Age-dependent cumulative model. To assess the suitability of
prediction models for applications in the real world, we analyze

Figure 1 | (A) Monthly Google search volume for the term ‘‘h-index’’, normalized to % peak value. Since the initial publication proposing the

h-index on Nov. 15, 20057, there has been roughly a 4-fold increase in h-index search volume over the 7-year period Dec. 2005–Dec. 2012, capturing the

persistent increasing interest and use of h over time28. (B) Schematic illustration of the career stages that define academic careers. The h-index is a

cumulative non-decreasing quantity intended to measure both the productivity and impact of a scientist i up to year t7. However, models for predicting

h(t 1Dt) must account for two important factors: (i) h(t) is non-decreasing so that ‘‘predictability’’ measures for h(t 1Dt) can be artificially inflated, and

(ii) variations in the ‘‘risk’’ profile and the ‘‘production function’’ of scientists across career stages must be accounted for in predictive models.

www.nature.com/scientificreports
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the t-dependence of the above model. We use the same regression
variables as in Eq. 1 but disaggregate the prediction problem into sets
of fixed career age (t). By modeling each career age separately we
analyze the robustness of the above model with respect to varying
career age. In this case the predicted h-index Dt years in the future, of
a scientist who is at a career age t, is given by:

h tzDtð Þ~b0 t,Dtð Þzbh t,Dtð Þh tð Þzb ffiffiffiffi
np
p t,Dtð Þ

ffiffiffiffiffiffiffiffiffiffi
np tð Þ

q
zbj t,Dtð Þj tð Þzbq t,Dtð Þq tð Þ:

ð2Þ

Note that as the data is already segregated by career age, t is not
considered as an independent variable in this version of the model.
In Figure 2 we also show the model’s predictive power for different
career ages, for prominent physicists and biologists. The model’s
predictive power for early career researchers is far lower than the
previous model where all career ages were lumped together (t 5 All).
Although these results indicate the future of scientists at early stages
of their career is less predictable, the R2 values are still quite high,
particularly for biologists. Those who are at the 3rd and 5th year of
their career have R2 5 0.63 and R2 5 0.73 respectively, 10 years into
the future. These values are notably high and may give the
impression that an individual researcher’s career trajectory is easily
predicted even from a very early point. However, in the following
section we show that cumulative measures like the h-index contain
an intrinsic auto-correlation that not only results in this career age
difference in the predictive power, but more importantly, to a
dangerous overestimation of the model’s overall predictive power.
Further, the variations of standardized coefficients as shown in
Supplementary Fig. S2 for t 5 3 and t 5 7 are different compared
to the t 5 All case. Although, the coefficient related to the h-index is
still largest, the coefficient for the number of papers in high impact
journals is comparable, especially for biologist career. The variation
of the coefficient related to h-index also increases with time, which is
in contrast to the observation when all career ages were lumped
together (t 5 All). Moreover, different coefficients for different
career age means that they can not be aggregated together for
regression analysis. Further, when a given dataset is sliced into two
different groups, both the R2 values as well as the coefficients of the
regression models were different (Fig. S3–S4), suggesting another
weakness of this analysis.

Non-stationary time series. An academic career is an endeavor
influenced by many factors, and in that light the Acuna model
takes a step in the right direction by integrating several different
variables into a prediction. However, the h-index is a cumulative

measure and hence, is non-stationary. This makes the h-index the
incorrect dependant variable to target for prediction. In this context
we are using the weak definition of stationarity, which requires the
mean and variance of a generic stochastic process to be time
independent and the auto-covariance between the variable at t and
t 1 Dt be a function only of Dt. As we show below its non-stationary
nature makes the h-index a poor predictor because it implies an
intrinsic correlation that (i) explains, in part, the career age
dependence noted above and (ii) results in an overestimation of
the predictive power of models focused on predicting the future h-
index and all other cumulative measures.

First, we consider a simple model for the evolution of an individual
researcher’s h-index, in which his/her h-index in a given year is a sum
of yearly independent and random incrementsDh. Hence, for a given
researcher s, his/her h-index after t-years is given by

hs tð Þ~
Xt

i~1

Dhs
i ð3Þ

where the Dhs
i are independent displacements with E Dhs

i

� �
~ms and

Var Dhs
i

� �
~s2

s , for all i.
Next we consider the statistical properties of the above model. The

expected value of the h-index at career age t is

E h2 tð Þ
� �

~E
Xt

i~1

Dhs
i

" #
~
Xt

i~1

E Dhs
i

� �
~tms, ð4Þ

and the variance

Var hs tð Þ½ �~Var
Xt

i~1

Dhs
i

" #
~
Xt

i~1

Var Dhs
i

� �
~ts2

s : ð5Þ

The auto-covariance is

Cov hs tzDtð Þ,hs tð Þ½ �~
XtzDt

i~1

Xt

j~1

Cov Dhs
i ,Dhs

j

� �

~s2
s

XtzDt

i~1

Xt

j~1

dij~ts2
s :

ð6Þ

Thus, the correlation between h(t 1 Dt) and h(t) equals

Cor hs tzDtð Þ,hs tð Þ½ �~ Cov hs tzDtð Þ,hs tð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var hs tzDtð Þ½ �Var hs tð Þ½ �

p ~

ffiffiffiffiffiffiffiffiffiffiffiffi
t

tzDt

r
: ð7Þ

Figure 2 | The ‘‘predictive power’’ of the regression model of the h-index for different disciplinary datasets and for different career age cohorts (years
since first publication t 5 3, 5, 7). The curve for t 5 All shows the model of Eq. 1, where all career ages were lumped together. For all the cases, overall

regression model is significant (p , 1026, calculated from F-statistic).

www.nature.com/scientificreports
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The mean, variance and auto-covariance depend on t. Further, hs(t 1

Dt) and hs(t) are completely correlated when Dt/t < 0, that is when
the researcher’s career age is much greater than the number of years
into the future you are attempting to predict his/her h-index.
Likewise, hs(t 1 Dt) and hs(t) are completely uncorrelated as Dt/t
R ‘, i.e. when attempting to predict an individual’s h-index many
more years into their future than the current career age.

Even disregarding the limiting behavior, Eq. 7 shows why regres-
sion models that attempt to predict the future h-index cannot per-
form as well for ’young’ careers as for ‘old’ ones. Further, the fact that
the correlation between current and future h-index intrinsically
increases with researcher’s age (for fixed Dt) indicates that the
observed predictive power of models of h(t 1 Dt) may only be an
outcome of general properties of the evolution of cumulative mea-
sures, rather than true ability to predict the future impact of a
researcher.

Empirical evidence of overestimation. In this section we provide
additional evidence that a trivial correlation is indeed present in h-
index and it leads to a significant overestimation of the predictive
power of linear models. To do this we resort to null models. That is,
we explore a number of methods for constructing synthetic careers
from the real career data, and show that when linear models for h-
index are applied to these careers high R2 values result. However,
within these models all information that a linear regression model
should be using to predict an individual’s future h-index has been
‘scrambled’, thus the resulting R2 values should be (essentially) nil in
the absence of the correlation arising from the fact h-index is a
cumulative measure.

We refer to our first null model as the Dh null model. Here we
construct synthetic careers of physicists with the following proced-
ure. First we generate the distribution of single year h-index increases
for all careers in a given dataset. Figure 3 (a) shows this distribution is
narrow, with 98% of the yearly increments less than 5. Second we
generate a career by constructing a sequence of yearly h-index
increases, drawn randomly from the distribution generated in the
previous step. Two such career trajectories can be found in Figure 3
(b). Finally we apply a simple linear model, h(t 1 Dt) 5 b0 1 bhh(t).
The R2 values produced by this approach can be found in Figure 3 (c).

The R2 values are quite high, far higher than the cumulative model of
Eq. 1 applied to real careers. But what do these high R2 values mean?
Are they an indicator of predictive power and ability to discriminate
between promising and not so promising careers? This is not the case
as due to the manner in which the careers are generated, over any
interval, the h-index of a researcher will increase by the same (aver-
age) amount at each step, regardless of whether the researcher has a
high or a low h-index at that point. We conclude that such high R2

values do not indicate predictive power, but they are rather evidence
of intrinsic autocorrelation.

We refer to our second null model as the paper shuffle null model.
In this case all papers published in year t are shuffled and distributed
randomly across all researchers (see Supplementary Text for details).
Hence, in this model the number of papers a researcher published in
each year of his/her career is conserved. However, since papers are
randomly assigned to each researcher each career is, statistically
speaking, indistinguishable from each other in that every one has
the same probability of ‘writing’ a high impact paper. In Figure 3 (c) it
can be seen that, as with the dh null model, this null model produces
high R2 values again indicating not predictive power but the presence
of inherent correlation.

Finally, as an example of a system where simple models are known
to have little predictive power, yet produce significant R2 values, we
turn to financial time series. We considered the stock market index of
5 different markets for the 15-year time period October 1997 to
September 2012. In Figure 3 (d) we plot the correlation (regression)
of the index value at time p(t 1 Dt) against p(t) as a function of Dt.
We note that this quantity exhibits a high degree of correlation even
after 100 days. However, the analysis of the autocorrelation of index
return (the actual predictability) shows that it decays quickly, thus
supporting the efficient market hypothesis14,15.

Modeling non-cumulative measures. The results presented above
provide significant evidence that linear regression models are not so
much predicting future impact as they are picking up on a correlation
intrinsic to cumulative measures. Auto correlation, Eq. 7, is only
present in cumulative measures like total number of publications,
total number of citations, total number of publications in distinct
journals, etc. It is not present in non-cumulative measures, e.g., the

Figure 3 | Correlation in non-stationary time series. (A) Distribution of Dh, i.e., the increment in scientist’s h-index in consecutive years. (B) The

evolution of h-index of two scientists in our dataset and their randomized version. (C) Variation of ‘‘predictability’’ R2 with time for two different null

models considered in the paper. (D) The auto-correlation of the actual value of the stock market index (not the price return) of 5 different countries. In

(C) and (D), overall regression model is significant (p , 1026).

www.nature.com/scientificreports
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incremental h-index, Dh(t, Dt) 5 h(t 1 Dt) 2 h(t). Following the
derivation above, the mean E Dh t,Dtð Þ½ �~mDt and variance
Var[Dh(t, Dt)] 5 s2Dt are independent of time, resulting in the
auto-covariance Cov[Dh(t 1 t, Dt), Dh(t, Dt)] 5 0 if t . 0. Hence,
it is important to examine the R2 for non-cumulative measures. Here
we focus on a regression model for the incremental h-index Dh(t, Dt)
of a scientist at career age t, which by analogy with Eq. 2 reads

Dh t,Dtð Þ~a0 t,Dtð Þzah t,Dtð Þh tð Þza ffiffiffiffi
np
p t,Dtð Þ

ffiffiffiffiffiffiffiffiffiffi
np tð Þ

q
zaj t,Dtð Þj tð Þzaq t,Dtð Þq tð Þ:

ð8Þ

In Supplementary Fig. S5 we show this model’s ‘‘predictive power’’,
as measured by R2, for different career ages t and varying horizonsDt.
All the curves except for early career years t 5 1 and t 5 2 follow
similar behavior and there is no consistent trend of decreasing R2

with decreasing t. The careers at t 5 1 show lower correlation,
indicating that the state of an individual’s CV after his/her first
year of publishing is a poor predictor of his/her future trajectory.
In Figure 4 we show this average predictive power for the model
when applied to established physicists, biologists and mathema-
ticians from different age cohorts. It is immediately clear that
when dealing with the non-cumulative measure, Dh(t, Dt), the
model has significantly less predictive power.

Figure 4 also shows that the incremental variation in the h-index of
a prominent biologist is more tightly connected to his/her past met-
rics. We speculate this may be due to other factors, like leading a large
laboratory. We note similar behavior for prominent mathematicians.

As these three datasets represent only prominent scientists, selected
based upon their high success, the R2 values give an upper bound on
predictability of scientists in that field. In contrast the dataset of
physics assistant professors, young biologists and graphene research-
ers, all relatively young scientists, exhibit much lower R2. Finally we
show the variation of the mean of the standard coefficient of the
model. The coefficient related to h-index is not as important as we
found for Eq. 1, and other factors such as number of publications,
number of publications in distinct journals, and number of publica-
tions in top journals are more important. For prominent biologists
the coefficients for publication in top journals and number of pub-
lications are higher than for physicists. For mathematicians the coef-
ficient related to the number of distinct journals is largest. In relative
terms, the coefficient of the h-index is more important for physicists.

Although this figure shows the average trend, one ought to exer-
cise caution in interpreting the results because coefficients for scien-
tists at different stages of their careers are also different. For example,
Supplementary Fig. S6 shows the coefficient for age t 5 3, t 5 5 and t
5 10 for both prominent physicists and biologists. It is easy to see
that the coefficient related to the number of papers decreases as Dh is
measured over largerDt. Further, for biologists, the coefficient for the
number of publications in top journals is larger in the late part of
the career than in the early stages. Nevertheless, the coefficients of the
regression analysis were different even when for the same set of
scientist during different age of their career. This variation in the
coefficients across fields, as well as across career stages, indicates that
it is unlikely there is a unique set of parameter that can be used to
predict future impact for all cases.

Figure 4 | The ‘‘predictive power’’ of h-index increments (Dh(t, Dt)) for different discipline. (A,B,C) Variation of the mean R2 as a function of time

period Dt over which the increment is calculated for established physicists, biologists and mathematicians. The mean is calculated by averaging

over different career age cohorts t 5 2, …, 15. (D,E,F) Variation of the mean standard coefficient as a function ofDt. The shaded region indicates the 95%

confidence error bars. Similar plots are also shown for relatively young researchers in (G,H,I) for assistant professors in physics, biologists and graphene

researchers. As the careers of young scientists are short, in this case the mean is calculated by averaging over different career age cohorts t 5 2, …, 8. In all

the cases, overall regression model is significant (p , 1022).

www.nature.com/scientificreports
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Correlating past and true future. Although in the previous section
we considered non-cumulative measures of scientific productivity
and impact, the correlation between an individual’s past accomp-
lishments and future achievements deserves a more fine grained
examination. For example, the number of citations received by a
scientist at career age t, during the period Dt years into the future
depends both upon the papers he/she has written up to year t and
upon the papers published up to year t 1Dt. Similarly, the increase in
h-index during any given period is due to citations to papers he/she
has already written in past years as well as citations to papers
published during the period in question. In order to investigate the
career uncertainty across academic transition points we analyze each
scientist’s citation impact over 3 consecutive non-overlapping
periods. The first period, {Tearly}, starts at the beginning of his/her
career, t 5 1, and extends up to t 5 5. The second period, {Tmid},
starts at year t 5 6 and extends to t 5 10, while the third period,
{Tlate}, starts at year t 5 11 and extends to t 5 15 years. For each
period, we collect for each scientist only the publications that he/she
published within that period, and, considered the citations received
by these publications within the same period.

We calculate three non-cumulative impact measures for each sci-
entist: (a) the total number of publications np(tj{Tj}); (b) the square

root of total number of citations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc tj Tj

	 
� �q
; (c) the h-index

h(tj{Tj}). These measures account only for citations within the period
to papers also published within that period. In this way, we test the

predictability of the citation impact of a scientist’s future work using
publication information measuring his/her earlier research. Figure 5
shows a scatter plot of physicists for all the three measures. The left
panels show the correlation between the ‘early’ and the ‘mid’ career
and the right panels show the correlation between the ‘mid’ and the
‘late’ career. The correlation coefficient R is also shown for each
measure. These values are lower than, but qualitatively similar to,
the observation in Fig. 4, indicating that future measures are indeed
somewhat correlated with the past. We found that for all the mea-
sures the correlation between past and future is similar. Thus our
analysis suggests that all these measures are equally good (or equally
bad) in predicting future impact. Further, the correlation between
mid and late career is slightly higher than the correlation between
early and mid. This is reasonable in so far as there is greater fluc-
tuation in the early career stage than the later stages when scientists
are more established. Additionally, our results diverge from recent
work showing that future citations to future work are hardly predict-
able13. Instead, we found low but significant correlation between past
and future measures. It is possible that this difference arises from the
fact that this portion of our analysis focuses on scientists that are all
relatively well established, thus missing scientists that produce low
impact work and ultimately exit academia. This result does never-
theless suggest that the predictability of top scientists can be used as
an extreme upper bound for the predictability of all scientific careers.
The results for prominent biologists and mathematicians are quali-
tatively similar, whereas for young researchers, physics assistant

Figure 5 | Correlation between the past and the true future for prominent physics careers. Scatter plot of the number of papers calculated for each

author using non-intersecting sets of papers published in (A) ‘‘early’’- and ‘‘mid’’- career periods and (B) ‘‘mid’’- and ‘‘late’’- career periods. Scatter plot

of the square root of number of total citations for each author in (C) ‘‘early’’- and ‘‘mid’’- career periods and (D) ‘‘mid’’- and ‘‘late’’- career periods.

Scatter plot of non-cumulative h-index h(t | {Tj}) calculated for each author using non-intersecting sets of papers published in consecutive (E) ‘‘early’’-

and ‘‘mid’’- career periods and (F) ‘‘mid’’- and ‘‘late’’- career periods. The correlation coefficient R for each plot is also shown.

www.nature.com/scientificreports
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professors, young biologists and graphene researchers correlation is
much smaller (Fig. S7–S11).

Discussion
The sheer amount of information that enters into an evaluation is
daunting. In addition to the research output, factors such as the
prestige of an applicant’s previous institutions16,17, supervisors18,
volume and quality of service work, teaching and mentoring poten-
tial, etc., are also considered in the process. Indeed, science is based
upon systems of reputation, which is typically estimated using cumu-
lative measures19. However, evaluation criteria that are heavily
weighted on cumulative achievement measures may reinforce strati-
fication and cumulative advantage mechanisms in science20–23, which
may inadvertently increase the risk burden of young careers24.

Thus, we need to not only understand the success and attrition
rates of scientific careers, but, it is critical to grasp the limits-of-
prediction. In the past, research, and especially researchers, have
been evaluated qualitatively but now quantitative approaches, based
upon citation counts, are becoming increasingly common. Indeed
they are now being used formally and informally in the career
advancement process. Citation counts, like other science metrics,
are just one of the many dimensions of academic success and have
to be used together with, and not instead of other evaluations. Still, if
one wants to use science metrics in real comparative career evalua-
tions, it is necessary to account for their biases and possibly correct
them25.

Our analysis shows that for the purpose of predicting a scientist’s
future h-index linear regression models suffer a variety of flaws.
Their performance strongly depends upon career age. Cumulative,
nondecreasing, dependent variables contain an intrinsic correlation
that makes R2 a misleading measure of predictive power. Removing
this correlation by reformulating the problem as one of predicting the
h-index increase (Dh) over a fixed time interval, and segregating the
careers into different age cohorts, linear models do a poor job of
predicting future impact. Finally, our effort to examine the correla-
tion between the impact of a scientist’s past papers and future papers
shows there may be a relationship to be discovered, but doing so will
require a highly sensitive and powerful approach.

Despite these shortcomings, and in fairness to those that have
broken this path, the real impact of these early models does not,
necessarily, lie in their ability to predict future impact. A significant
contribution has been made by turning the critical eye of the com-
munity on the issue of predicting future scientific impact, and a much
larger set of issues surrounding the use of quantitative measures in
the academic career advancement process. But much work remains
to be done before predictive models of future impact come of age and
there are several obvious directions for future inquiry. For example,
how the weights of coefficients vary, across disciplines as well as
career ages should be thoroughly studied. As well, other independent
variables should be studied in detail, for example, what impact does
advisor prestige have upon a scientist’s future h-index.

Of course, critical to all future efforts is the availability of high
quality career data and some new, interesting, opportunities lie in
that direction26. The questions that could drive the future research
are: What would the perfect prediction model need to be capable of in
order to be suitable for real world application? Further, what addi-
tional characteristics would it need to have to see widespread and
responsible use?

With regards to the first question, it is critical that efforts to model
future research impact focus on the fact that we are not predicting an
individual’s future impact in a vacuum. The vast majority of ‘real’
world uses demand models be able to differentiate between research-
ers, to correctly rank them in order of their future impact. The
capacity to produce a correct ranking, not just a number for each
researcher, is really what is critical. Indeed it is advisable that future
work on predicting future impact bypass R2 all together in favor of

ranking based measures of predictive power. Turning to the second
question, it is important that these rankings must be highly precise
and explicitly assign a confidence score to the order. It is also highly
desirable that these models be easy to calibrate because, as shown
above, it is not possible for a single set of parameters to transcend the
wide range of citation, publishing, etc. behaviors known to exist
between disciplines. Hence, ease of calibration would be particularly
important for adoption in less quantitative disciplines. It is also
important that the community develops models that are able to
separately predict future impact arising from future citations to past
papers, and future impact arising from future citations to future
papers. This may seem a minor distinction, but it is really at the heart
of many hires, a tenure track position being a good example. In that
case a candidate whose h-index will increase due to work performed
in the position is far more desirable than one whose h-index increases
due to work performed previously, assuming they both end up with
the same h-index.

In closing, cumulative measures of future impact are not appro-
priate targets of predictive modeling because they contain trivial
correlation by construction. We have provided significant evidence
that the current predictive models for future impact possess far less
predictive power than previously reported. Further, the next genera-
tion of efforts to predictively model future impact need aimed more
directly at applications in the career advancement decision process.

Methods
Data description. We analyzed the publication profiles for 762 scientists divided into
3 broad disciplines: 476 physicists, 236 cell biologists, and 50 pure mathematicians.
The top-cited scientists in their respective field comprise the ‘‘prominent’’ scientist
datasets. For each scientist we compiled his/her comprehensive publication and
citation profile using the Thomson Reuters (formerly ISI) Web of Knowledge
historical publication and conference proceedings database. For more information on
author selection and disambiguation method, see the Supplementary Text.

We also studied five different stock market indices each from a different country (a)
S&P 500 from US (b) BSE Sensex from India (c) FTSE 100 from UK (d) BOVESPA
from Brazil and (e) NIKKEI 225 from Japan. The data was downloaded from
www.finance.yahoo.com and covers the period from October 1997 to September
2012.

Elastic net regularization for linear regression. When the independent variables of a
linear regression model are correlated the estimated coefficients obtained by least-
square method are highly sensitive to random errors in the observed response. To
resolve this problem we use elastic-net regularization which is useful when there are
multiple features which are correlated with one another (collinear)27. There are two
parameters, the first one is the mixing parameter a, which controls the collinearity of
the parameters, the second one is the regularization parameter l, which controls the
complexity of the model. In all our analysis we set a 5 0.2, whereas the best l is
determined by cross-validation. We also checked that our results are qualitatively
similar for other alpha values, say a 5 0.1. More information on all aspects of the
regression method can be found in the Supplementary Text.
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